

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	M16C/60
Core Size	16-Bit
Speed	16MHz
Connectivity	I ² C, IEBus, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	5K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 18x10b
Oscillator Type	External
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m30302fapgp-u5

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RENESAS

M16C/30P Group

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

1. Overview

The M16C/30P Group of single-chip microcomputers is built using the high-performance silicon gate CMOS process using a M16C/60 Series CPU core and is packaged in a 100-pin plastic molded QFP.

These single-chip microcomputers operate using sophisticated instructions featuring a high level of instruction efficiency. With 1 Mbyte of address space, they are capable of executing instructions at high speed. In addition, these microcomputers contain a multiplier and DMAC which combined with fast instruction processing capability, make it suitable for control of various OA, communication, and industrial equipment which requires high-speed arithmetic/ logic operations.

1.1 Applications

Audio, cameras, TV, home appliance, office/communications/portable/industrial equipment, etc.

1.2 Performance Outline

Table 1.1 lists Performance Outline of M16C/30P Group.

Table 1.1 P	Performance Ou	utline of M160	C/30P Group
-------------	----------------	----------------	-------------

	Item	Performance			
CPU	Number of Basic Instructions	91 instructions			
	Minimum Instruction	62.5ns(f(XIN)=16MHz, VCC1=VCC2=3.0 to 5.5V, no wait)			
	Execution Time	100ns(f(XIN)=10MHz, VCC1=VCC2=2.7 to 5.5V, no wait)			
	Operation Mode	Single-chip, memory expansion and microprocessor			
		mode			
	Memory Space	1 Mbyte			
	Memory Capacity	See Table 1.2 Product List			
Peripheral	Port	Input/Output : 87 pins, Input : 1 pin			
Function	Multifunction Timer	Timer A : 16 bits x 3 channels,			
		Timer B : 16 bits x 3 channels			
	Serial Interface	1 channels			
		Clock synchronous, UART, I ² CBus ⁽¹⁾ , IEBus ⁽²⁾			
		2 channels			
		Clock synchronous, UART, I ² CBus ⁽¹⁾			
	A/D Converter	10-bit A/D converter: 1 circuit, 18 channels			
	DMAC	2 channels			
	CRC Calculation Circuit	CCITT-CRC			
_	Watchdog Timer	15 bits x 1 channel (with prescaler)			
	Interrupt	Internal: 20 sources, External: 7 sources, Software: 4			
		sources, Priority level: 7 levels			
	Clock Generating Circuit	2 circuits			
		Main clock generation circuit (*),			
		Subclock generation circuit (*),			
		(*)Equipped with a built-in feedback resistor.			
Electric	Supply Voltage	VCC1=VCC2=3.0 to 5.5 V (f(XIN)=16MHz)			
Characteristics		VCC1=VCC2=2.7 to 5.5 V (f(XIN)=10MHz, no wait)			
	Power Consumption	10 mA (VCC1=VCC2=5V, f(XIN)=16MHz)			
		8 mA (VCC1=VCC2=3V, f(XIN)=10MHz)			
		1.8 μA (VCC1=VCC2=3V, f(XCIN)=32kHz, wait mode)			
		0.7 μA(VCC1=VCC2=3V, stop mode)			
One time flash version	Program Supply Voltage	3.3±0.3 V or 5.0±0.5 V			
Flash memory version	Program/Erase Supply Voltage	3.3±0.3 V or 5.0±0.5 V			
	Program and Erase Endurance	100 times (all area)			
Operating Ambi	ent Temperature	-20 to 85°C, -40 to 85°C			
Package		100-pin plastic mold QFP, LQFP			

NOTES:

1. I²C bus is a registered trademark of Koninklijke Philips Electronics N. V.

2. IEBus is a registered trademark of NEC Electronics Corporation.

3. Use the M16C/30P on VCC1 = VCC2.

1.4 **Product List**

Table 1.2 lists the M16C/30P group products and Figure 1.2 shows the Part No., Memory Size, and Package. Table 1.4 lists Product Code of MASK ROM version for M16C/30P. Figure 1.3 shows the Marking Diagram of Mask ROM Version for M16C/30P (Top View). Table 1.5 lists Product Code of One Time Flash version, Flash Memory version, and ROM-less version for M16C/30P. Figure 1.4 shows the Marking Diagram of One Time Flash version, Flash Memory version, and ROM-less Version for M16C/30P (Top View). Please specify the marking for M16C30P (MASK ROM version) when placing an order for ROM.

Table 1.2 Proc		. (1)			AS OF March 2007
Part No.		ROM Capacity	RAM Capacity	package code (1)	Remarks
M30302MAP-XXXFF	C	96 Kbytes	5 Kbytes	PRQP0100JB-A	Mask ROM version
M30302MAP-XXXG	Р			PLQP0100KB-A	
M30302MCP-XXXF	C	128 Kbytes		PRQP0100JB-A	
M30302MCP-XXXG	Р			PLQP0100KB-A	
M30302MDP-XXXF	C	160 Kbytes	6 Kbytes	PRQP0100JB-A	
M30302MDP-XXXG	P			PLQP0100KB-A	
M30302MEP-XXXFF	C	192 Kbytes	_	PRQP0100JB-A	
M30302MEP-XXXG	Р			PLQP0100KB-A	
M30302GAPFP		96 Kbytes	5 Kbytes	PRQP0100JB-A	One Time Flash
M30302GAPGP	(D)			PLQP0100KB-A	version (blank product)
M30302GCPFP		128 Kbytes		PRQP0100JB-A	
M30302GCPGP	(D)			PLQP0100KB-A	
M30302GDPFP		160 Kbytes	6 Kbytes	PRQP0100JB-A	
M30302GDPGP	(D)			PLQP0100KB-A	
M30304GDPFP	(D)		12 Kbytes	PRQP0100JB-A	
M30304GDPGP	(D)			PLQP0100KB-A	
M30302GEPFP		192 Kbytes	6 Kbytes	PRQP0100JB-A	
M30302GEPGP	(D)			PLQP0100KB-A	
M30304GEPFP	(D)		12 Kbytes	PRQP0100JB-A	
M30304GEPGP	(D)			PLQP0100KB-A	
M30302GGPFP	(D)	256 Kbytes	12 Kbytes	PRQP0100JB-A	
M30302GGPGP	(D)			PLQP0100KB-A	
M30302GAP-XXXFF)	96 Kbytes	5 Kbytes	PRQP0100JB-A	One Time Flash
M30302GAPvGP	(D)			PLQP0100KB-A	version (factory programmed
M30302GCP-XXXFF	2	128 Kbytes		PRQP0100JB-A	product)
M30302GCP-XXXG	P (D)	-		PLQP0100KB-A	
M30302GDP-XXXFF	2	160 Kbytes	6 Kbytes	PRQP0100JB-A	
M30302GDP-XXXG	P (D)			PLQP0100KB-A	
M30304GDP-XXXFF	р (D)		12 Kbytes	PRQP0100JB-A	
M30304GDP-XXXG	P (D)			PLQP0100KB-A	
M30302GEP-XXXFF)	192 Kbytes	6 Kbytes	PRQP0100JB-A	
M30302GEP-XXXG	- (D)			PLQP0100KB-A	1
M30304GEP-XXXFF	P (D)		12 Kbytes	PRQP0100JB-A	1
M30304GEP-XXXG	> (D)			PLQP0100KB-A	1
M30302GGP-XXXF	P (D)	256 Kbytes	12 Kbytes	PRQP0100JB-A	1
M30302GGP-XXXG	P (D)			PLQP0100KB-A	1

Table 1.2 **Product List (1)**

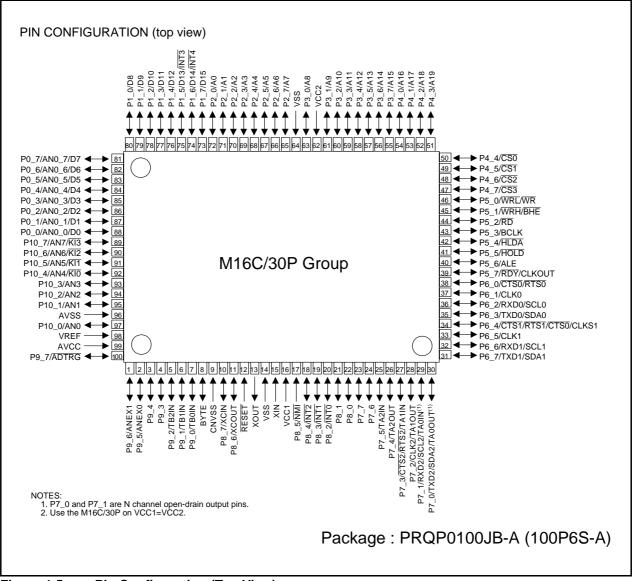
As of March 2007

(D): Under development

(P): Under planning

NOTES:

1. Previous package codes are as follows.


PRQP0100JB-A : 100P6S-A, PLQP0100KB-A : 100P6Q-A

2. Block A (4-Kbytes space) is available in flash memory version.

RENESAS

1.5 Pin Configuration

Figures 1.5 to 1.6 show the pin configurations (top view).

Figure 1.5 Pin Configuration (Top View)

RENESAS

2.2 Address Registers (A0 and A1)

The register A0 consists of 16 bits, and is used for address register indirect addressing and address register relative addressing. They also are used for transfers and logic/logic operations. A1 is the same as A0. In some instructions, registers A1 and A0 can be combined for use as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is configured with 16 bits, and is used for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is configured with 20 bits, indicating the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is configured with 20 bits, indicating the address of an instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

Stack pointer (SP) comes in two types: USP and ISP, each configured with 16 bits. Your desired type of stack pointer (USP or ISP) can be selected by the U flag of FLG.

2.7 Static Base Register (SB)

SB is configured with 16 bits, and is used for SB relative addressing.

2.8 Flag Register (FLG)

FLG consists of 11 bits, indicating the CPU status.

2.8.1 Carry Flag (C Flag)

This flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic/logic unit.

2.8.2 Debug Flag (D Flag)

The D flag is used exclusively for debugging purpose. During normal use, it must be set to "0".

2.8.3 Zero Flag (Z Flag)

This flag is set to "1" when an arithmetic operation resulted in 0; otherwise, it is "0".

2.8.4 Sign Flag (S Flag)

This flag is set to "1" when an arithmetic operation resulted in a negative value; otherwise, it is "0".

2.8.5 Register Bank Select Flag (B Flag)

Register bank 0 is selected when this flag is "0"; register bank 1 is selected when this flag is "1".

2.8.6 Overflow Flag (O Flag)

This flag is set to "1" when the operation resulted in an overflow; otherwise, it is "0".

2.8.7 Interrupt Enable Flag (I Flag)

This flag enables a maskable interrupt.

Maskable interrupts are disabled when the I flag is "0", and are enabled when the I flag is "1". The I flag is cleared to "0" when the interrupt request is accepted.

2.8.8 Stack Pointer Select Flag (U Flag)

ISP is selected when the U flag is "0"; USP is selected when the U flag is "1".

The U flag is cleared to "0" when a hardware interrupt request is accepted or an INT instruction for software interrupt Nos. 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is configured with three bits, for specification of up to eight processor interrupt priority levels from level 0 to level 7.

If a requested interrupt has priority greater than IPL, the interrupt is enabled.

2.8.10 Reserved Area

When write to this bit, write "0". When read, its content is indeterminate.

3. Memory

Figure 3.1 is a Memory Map of the M16C/30P group. The address space extends the 1 Mbyte from address 00000h to FFFFFh.

The internal ROM is allocated in a lower address direction beginning with address FFFFFh. For example, a 64-Kbyte internal ROM is allocated to the addresses from F0000h to FFFFFh.

The fixed interrupt vector table is allocated to the addresses from FFFDCh to FFFFFh. Therefore, store the start address of each interrupt routine here.

The internal RAM is allocated in an upper address direction beginning with address 00400h. For example, a 5-Kbyte internal RAM is allocated to the addresses from 00400h to 017FFh. In addition to storing data, the internal RAM also stores the stack used when calling subroutines and when interrupts are generated. The SFR is allocated to the addresses from 00000h to 003FFh. Peripheral function control registers are located here. Of the SFR, any area which has no functions allocated is reserved for future use and cannot be used by users.

The special page vector table is allocated to the addresses from FFE00h to FFFDBh. This vector is used by the JMPS or JSRS instruction. For details, refer to the M16C/60 and M16C/20 Series Software Manual.

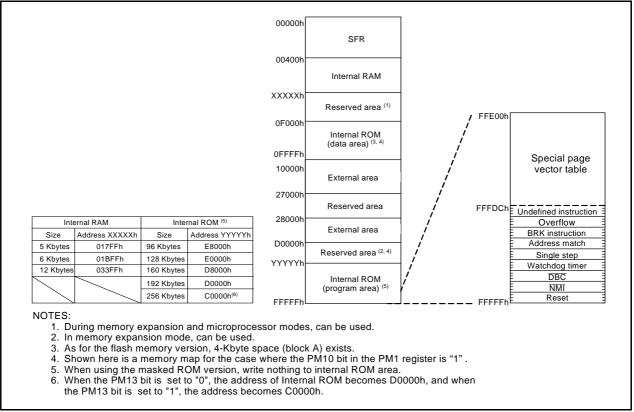


Figure 3.1 Memory Map

Address	Register	Symbol	After Reset
0340h			
0341h			
0342h			
0343h			
0344h			
0345h			
0346h			
0347h			
0348h			
0349h			
034Ah			
034Bh			
034Ch			
034Dh			
034Eh			
034Fh			
0350h			
0351h			
0352h			
0353h			
0354h			
0355h			
0356h			
0357h			
0358h			
0359h			
035Ah			
035Bh			
035Ch			
035Dh			
035Eh	Interrupt Factor Select Register 2	IFSR2A	00XXXXXb
035Fh	Interrupt Factor Select Register	IFSR	00h
0360h			
0361h			
0362h			
0363h			
0364h			
0365h			
0366h			
0367h			
0368h			
0369h			
036Ah			
036Bh			
036Ch	UART0 Special Mode Register 4	U0SMR4	00h
036Dh	UART0 Special Mode Register 3	U0SMR3	000X0X0Xb
036Eh	UARTO Special Mode Register 2	U0SMR2	X000000b
036Fh	UARTO Special Mode Register	U0SMR	X0000000b
			00h
0370h	UART1 Special Mode Register 4	U1SMR4	
0371h	UART1 Special Mode Register 3	U1SMR3	000X0X0Xb
0372h	UART1 Special Mode Register 2	U1SMR2	X000000b
0373h	UART1 Special Mode Register	U1SMR	X000000b
0374h	UART2 Special Mode Register 4	U2SMR4	00h
0375h	UART2 Special Mode Register 3	U2SMR3	000X0X0Xb
0376h	UART2 Special Mode Register 2	U2SMR2	X000000b
0377h	UART2 Special Mode Register	U2SMR	X000000b
0378h	UART2 Transmit/Receive Mode Register	U2MR	00h
0379h	UART2 Bit Rate Generator	U2BRG	XXh
	UART2 Transmit Buffer Register		
037Ah	UANTZ HAISHIL DUHEL REGISLEI	U2TB	XXh
037Bh			XXh
037Ch	UART2 Transmit/Receive Control Register 0	U2C0	00001000b
037Dh	UART2 Transmit/Receive Control Register 1	U2C1	00000010b
		1	<u>+ </u>
037Eh	UART2 Receive Buffer Register	U2RB	XXh

Table 4.3SFR Information (3) (1)

NOTES:

1. The blank areas are reserved and cannot be accessed by users.

X : Nothing is mapped to this bit

5. Electrical Characteristics

Table 5.1 Absolute Maximum Ratin	gs
----------------------------------	----

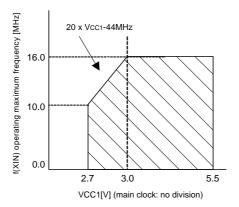
Symbol		Parameter	Condition	Rated Value	Unit
Vcc	Supply Voltage	e(Vcc1=Vcc2)	Vcc1=Vcc2=AVcc	-0.3 to 6.5	V
AVcc	Analog Supply	Voltage	Vcc1=Vcc2=AVcc	-0.3 to 6.5	V
Vı	Input Voltage	RESET, CNVSS, BYTE, P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, VREF, XIN		–0.3 to Vcc+0.3	V
		P7_0, P7_1		-0.3 to 6.5	V
Vo	Output Voltage	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, XOUT		–0.3 to Vcc+0.3	V
		P7_0, P7_1		-0.3 to 6.5	V
Pd	Power Dissipa	tion	–40°C <topr≤85°c< td=""><td>300</td><td>mW</td></topr≤85°c<>	300	mW
Topr	Operating Ambient	When the Microcomputer is Operating		-20 to 85 / -40 to 85	°C
	Temperature	One Time Flash Program Erase		0 to 60	
		Flash Program Erase		0 to 60	
Tstg	Storage Temp	erature		-65 to 150	°C

O wash a l	Derometer			Unit		
Symbol		Parameter	Min.			Unit
Vcc	Supply Voltage (\	bly Voltage (Vcc1=Vcc2) 2.7 5.0				
AVcc	Analog Supply Vo	bltage		Vcc		V
Vss	Supply Voltage	Supply Voltage				V
AVss	Analog Supply Vo	bltage		0		V
Viн	HIGH Input	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7	0.8Vcc		Vcc	V
	Voltage	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (during single-chip mode)	0.8Vcc		Vcc	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (data input during memory expansion and microprocessor mode)	0.5Vcc		Vcc	V
		P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, XIN, RESET, CNVSS, BYTE	0.8Vcc		Vcc	V
		P7_0, P7_1	0.8Vcc		6.5	V
VIL	LOW Input Voltage	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7	0		0.2Vcc	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (during single-chip mode)	0		0.2Vcc	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (data input during memory expansion and microprocessor mode)	0		0.16Vcc	V
		P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, XIN, RESET, CNVSS, BYTE	0		0.2Vcc	V
IOH(peak)	HIGH Peak Output Current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7			-10.0	mA
IOH(avg)	HIGH Average Output Current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7			-5.0	mA
IOL(peak)	LOW Peak Output Current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7			10.0	mA
IOL(avg)	LOW Average Output Current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7			5.0	mA
f(XIN)	Main Clock Input	VCC=3.0V to 5.5V	0		16	MHz
	Oscillation Frequency ⁽⁴⁾	VCC=2.7V to 3.0V	0		20×Vcc1-44	MHz
f(XCIN)	Sub-Clock Oscilla	ation Frequency		32.768	50	kHz
f(BCLK)	CPU Operation C	lock	0		16	MHz

Table 5.2	Recommended Operating Conditions (1)
-----------	--------------------------------------

NOTES:

1. Referenced to Vcc1 = Vcc2 = 2.7 to 5.5V at Topr = -20 to 85°C / -40 to 85°C unless otherwise specified.


2. The Average Output Current is the mean value within 100ms.

The total IoL(peak) for ports P0, P1, P2, P8_6, P8_7, P9 and P10 must be 80mA max. The total IoL(peak) for ports P3, P4, P5, P6, P7 and P8_0 to P8_4 must be 80mA max. The total IOH(peak) for ports P0, P1, and P2 must be -40mA max. The total IOH(peak) for ports P3, P4 and P5 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max.

The total IOH(peak) for ports P8_6, P8_7 and P9 must be -40mA max. Set Average Output Current to 1/2 of peak.

4. Relationship between main clock oscillation frequency, and supply voltage.

Main clock input oscillation frequency

Symbol	Parameter			Unit		
Symbol	Falalletei	Min.	Тур.	Max.	Unit	
-	Program and Erase Endurance ⁽²⁾ Word Program Time (Vcc1=5.0V) Lock Bit Program Time		100 ⁽³⁾			cycle
-				25	200	μS
-				25	200	μS
-	Block Erase Time	4-Kbyte block		0.3	4	S
-	(Vcc1=5.0V)	8-Kbyte block		0.3	4	S
-		32-Kbyte block		0.5	4	S
-		64-Kbyte block		0.8	4	S
tPS	Flash Memory Circuit Stabilization Wait Time				15	μS
-	Data Hold Time ⁽⁴⁾		10			year

Table 5.4 Flash Memory Version Electrical Characteristics (1)

NOTES:

1. Referenced to Vcc1=4.5 to 5.5V, 3.0 to 3.6V at Topr = 0 to 60 °C (U3, U5) unless otherwise specified.

2. Program and Erase Endurance refers to the number of times a block erase can be performed.

If the program and erase endurance is 100, each block can be erased 100 times. For example, if a 4 Kbytes block A is erased after writing 1 word data 2,048 times, each to a different address, this counts as one program and erase endurance. Data cannot be written to the same address more than once without erasing the block.

(Rewrite prohibited)3. Maximum number of E/W cycles for which operation is guaranteed.

4. Topr = -40 to 85 °C (U3) / -20 to 85 °C (U5).

Table 5.5Flash Memory Version Program / Erase Voltage and Read Operation Voltage
Characteristics

Flash Program, Erase Voltage	Flash Read Operation Voltage
VCC1 = 3.3 ± 0.3 V or 5.0 ± 0.5 (Topr = 0°C to 60°C)	VCC1=2.7 to 5.5 V (Topr = -40°C to 85°C (U3)
	-20°C to 85°C (U5))

Symbol	Parameter	or	Maaa	uring Condition	:	Standard	ł	Unit
Symbol	Falamet		Ivieas	Min.	n. Typ. Max.	Offic		
Icc	Power Supply Current (Vcc1=Vcc2=4.0V to 5.5V)		Mask ROM	f(XIN)=16MHz No division		10	15	mA
		pins are open and other pins are Vss	One Time Flash	f(XIN)=16MHz, No division		10	18	mA
			Flash Memory	f(XIN)=16MHz, No division		12	18	mA
			One Time Flash	f(XIN)=10MHz, VCC1=5.0V		15		mA
			Flash Memory Program	f(XIN)=10MHz, VCC1=5.0V		15		mA
			Flash Memory Erase	f(XIN)=10MHz, VCC1=5.0V		25		mA
			Mask ROM	f(XCIN)=32kHz Low power dissipation mode, ROM ⁽³⁾		25		μA
			One Time Flash	f(XCIN)=32kHz Low power dissipation mode, RAM ⁽³⁾		25		μA
				f(XCIN)=32kHz Low power dissipation mode, Flash Memory ⁽³⁾		350		μΑ
			Flash Memory	f(XCIN)=32kHz Low power dissipation mode, RAM ⁽³⁾		25		μA
				f(XCIN)=32kHz Low power dissipation mode, Flash Memory ⁽³⁾		420		μA
			Mask ROM One Time Flash Flash Memory	f(XCIN)=32kHz Wait mode ⁽²⁾ , Oscillation capability High		7.5		μΑ
			r asir memory	f(XCIN)=32kHz Wait mode ⁽²⁾ , Oscillation capability Low		2.0		μΑ
				Stop mode Topr =25°C		0.8	3.0	μA

Table 5.10 Electrical Characteristics (2) (1)

NOTES:
1. Referenced to Vcc1=Vcc2=4.2 to 5.5V, Vss = 0V at Topr = -20 to 85°C / -40 to 85°C, f(XIN)=16MHz unless otherwise specified.
2. With one timer operated using fC32.
3. This indicates the memory in which the program to be executed exists.

VCC1=VCC2=5V

Timing Requirements

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85°C / -40 to 85°C unless otherwise specified)

Table 5.19 Timer B Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Star	Standard	Unit
	Falameter	Min.	Max.	Onit
tc(TB)	TBiIN Input Cycle Time (counted on one edge)	100		ns
tw(TBH)	TBiIN Input HIGH Pulse Width (counted on one edge)	40		ns
tw(TBL)	TBiIN Input LOW Pulse Width (counted on one edge)	40		ns
tc(TB)	TBiIN Input Cycle Time (counted on both edges)	200		ns
tw(TBH)	TBiIN Input HIGH Pulse Width (counted on both edges)	80		ns
tw(TBL)	TBiIN Input LOW Pulse Width (counted on both edges)	80		ns

Table 5.20 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Standard		Unit	
	Farameter	Min.	Max.	Unit	
tc(TB)	TBiIN Input Cycle Time	400		ns	
tw(TBH)	TBiIN Input HIGH Pulse Width	200		ns	
tw(TBL)	TBiIN Input LOW Pulse Width	200		ns	

Table 5.21 Timer B Input (Pulse Width Measurement Mode)

Symbol	Parameter	Stan	dard	Unit
	Falameter	Min.	Max.	Onit
tc(TB)	TBiIN Input Cycle Time	400		ns
tw(TBH)	TBilN Input HIGH Pulse Width	200		ns
tw(TBL)	TBiIN Input LOW Pulse Width	200		ns

Table 5.22 A/D Trigger Input

Symbol	Parameter	Standard		Lipit
	Falameter	Min.	Max.	Unit ns
tc(AD)	ADTRG Input Cycle Time	1000		ns
tw(ADL)	ADTRG input LOW Pulse Width	125		ns

Table 5.23 Serial Interface

Symbol	Parameter	Stan	dard	Unit
	Falametei	Min.	Max.	Unit
tc(CK)	CLKi Input Cycle Time	200		ns
tw(CKH)	CLKi Input HIGH Pulse Width	100		ns
tw(CKL)	CLKi Input LOW Pulse Width	100		ns
td(C-Q)	TXDi Output Delay Time		80	ns
t h(C-Q)	TXDi Hold Time	0		ns
tsu(D-C)	RXDi Input Setup Time	70		ns
th(C-D)	RXDi Input Hold Time	90		ns

Table 5.24 External Interrupt INTi Input

Symbol	Parameter	Standard		Unit
Symbol	Falameter	Min.	Max.	Onit
tw(INH)	INTi Input HIGH Pulse Width	250		ns
tw(INL)	INTi Input LOW Pulse Width	250		ns

VCC1=VCC2=5V

Switching Characteristics

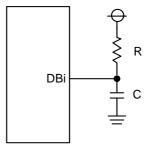
(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 5.26	Memory Expansion and Microprocessor Modes (for 1 wait setting and external area
	access)

Cumbal	Parameter		Stan	dard	Unit
Symbol	Farameter		Min.	Max.	Unit
td(BCLK-AD)	Address Output Delay Time			25	ns
th(BCLK-AD)	Address Output Hold Time (in relation to BCLK)		-3		ns
th(RD-AD)	Address Output Hold Time (in relation to RD)		0		ns
th(WR-AD)	Address Output Hold Time (in relation to WR)		(NOTE 2)		ns
td(BCLK-CS)	Chip Select Output Delay Time			25	ns
th(BCLK-CS)	Chip Select Output Hold Time (in relation to BCLK)		-3		ns
td(BCLK-ALE)	ALE Signal Output Delay Time			15	ns
th(BCLK-ALE)	ALE Signal Output Hold Time		-4		ns
td(BCLK-RD)	RD Signal Output Delay Time	See Figure 5.2		25	ns
th(BCLK-RD)	RD Signal Output Hold Time	i igure 5.2	0		ns
td(BCLK-WR)	WR Signal Output Delay Time			25	ns
th(BCLK-WR)	WR Signal Output Hold Time		0		ns
td(BCLK-DB)	Data Output Delay Time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data Output Hold Time (in relation to BCLK) ⁽³⁾		4		ns
td(DB-WR)	Data Output Delay Time (in relation to WR)		(NOTE 1)		ns
th(WR-DB)	Data Output Hold Time (in relation to WR) ⁽³⁾		(NOTE 2)		ns
td(BCLK-HLDA)	HLDA Output Delay Time			40	ns

NOTES:

1. Calculated according to the BCLK frequency as follows:


 $\frac{(n-0.5)x10^9}{f(BCLK)} - 40[ns] \qquad n \text{ is ``1'' for 1-wait setting, } f(BCLK) \text{ is 12.5MHz or less.}$

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10[ns]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in t = -CR X ln (1-VoL / Vcc1) by a circuit of the right figure. For example, when VoL = 0.2Vcc1, C = 30pF, R = 1kΩ, hold time of output "L" level is t = -30pF X 1kΩ X ln(1-0.2Vcc1 / Vcc1)

= 6.7ns.

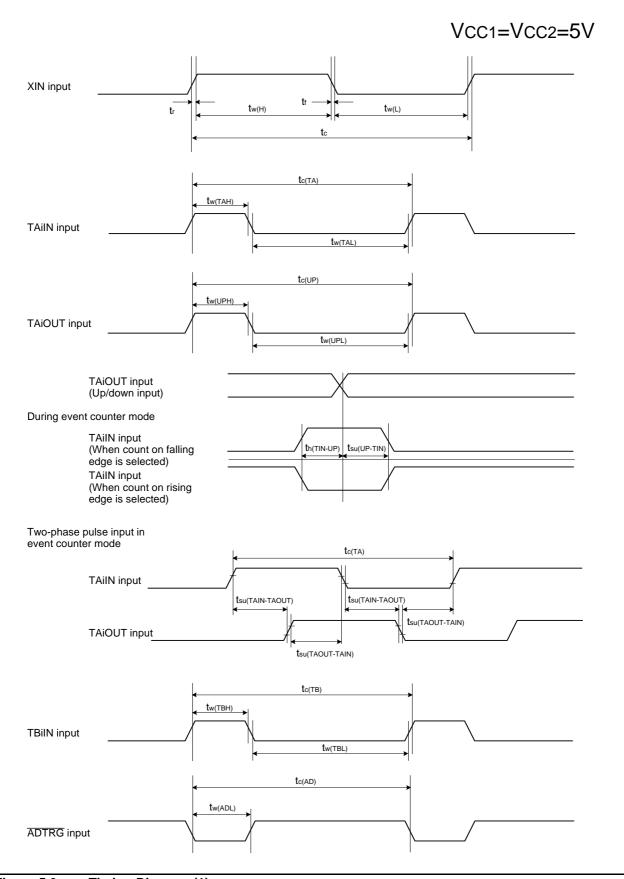
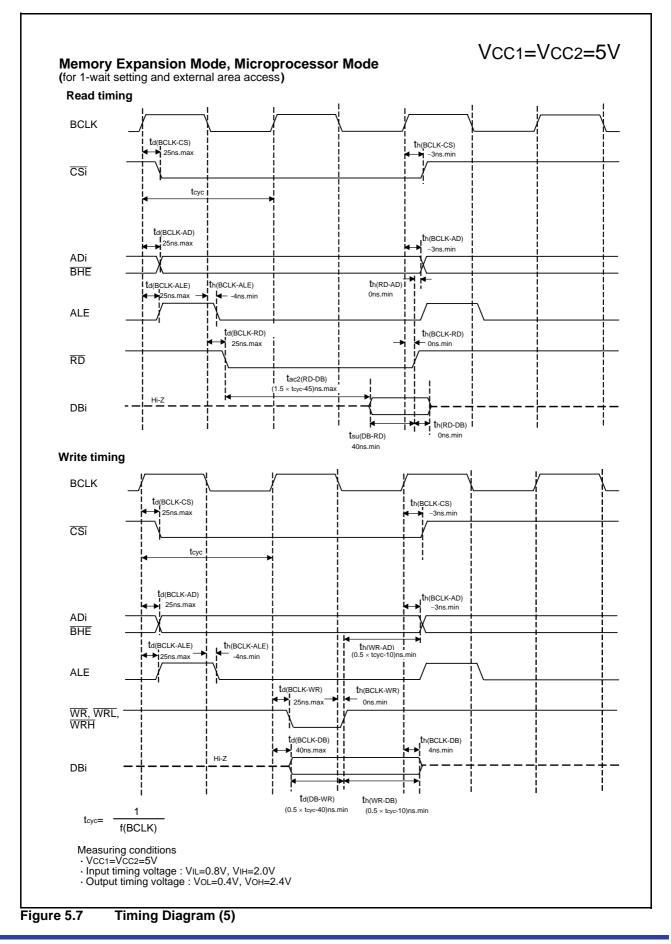



Figure 5.3 Timing Diagram (1)

VCC1=VCC2=3V

Timing Requirements

(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = -20 to 85°C / -40 to 85°C unless otherwise specified)

Table 5.29 External Clock Input (XIN input)

Symbol	Parameter	Standard		Unit
	Falameter	Min.	Max.	Onit
tc	External Clock Input Cycle Time	(NOTE 2)		ns
ťw(H)	External Clock Input HIGH Pulse Width	(NOTE 3)		ns
tw(L)	External Clock Input LOW Pulse Width	(NOTE 3)		ns
tr	External Clock Rise Time		(NOTE 4)	ns
tr	External Clock Fall Time		(NOTE 4)	ns

NOTES:

- 1. The condition is Vcc1=Vcc2=2.7 to 3.0V.
- 2. Calculated according to the Vcc1 voltage as follows:

$$\frac{10^{-6}}{20 \times Vcc_{1} - 44}$$
 [ns]

3. Calculated according to the Vcc1 voltage as follows:

$$\frac{10^{-6}}{20 \times Vcc_{1}-44} \times 0.4$$
 [ns]

4. Calculated according to the VCC1 voltage as follows: $-10 \times Vcc1 + 45$ [ns]

Table 5.30 Memory Expansion Mode and Microprocessor Mode

Symbol	Parameter	Stan	dard	Unit
Symbol	Farameter	Min.	Max.	Unit
tac1(RD-DB)	Data Input Access Time (for setting with no wait)		(NOTE 1)	ns
tac2(RD-DB)	Data Input Access Time (for setting with wait)		(NOTE 2)	ns
tsu(DB-RD)	Data Input Setup Time	50		ns
tsu(RDY-BCLK)	RDY Input Setup Time	40		ns
tsu(HOLD-BCLK)	HOLD Input Setup Time	50		ns
th(RD-DB)	Data Input Hold Time	0		ns
th(BCLK-RDY)	RDY Input Hold Time	0		ns
th(BCLK-HOLD)	HOLD Input Hold Time	0		ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

2. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5)x10^9}{f(BCLK)} - 60[ns]$$
 n is "2" for 1-wait setting

VCC1=VCC2=3V

Switching Characteristics

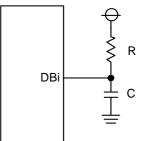
(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 5.43	Memory Ex	pansion and	Microprocessor	Modes (fo	or setting with	n no wait)
		Juli Sloll ullu	10100100003301	1110405 (10	n setting with	i no many

Cumbal	Deremeter		Stan	Standard	
Symbol	Parameter		Min.	Max.	Unit
td(BCLK-AD)	Address Output Delay Time			30	ns
th(BCLK-AD)	Address Output Hold Time (in relation to BCLK)		0		ns
th(RD-AD)	Address Output Hold Time (in relation to RD)		0		ns
th(WR-AD)	Address Output Hold Time (in relation to WR)		(NOTE 2)		ns
td(BCLK-CS)	Chip Select Output Delay Time			30	ns
th(BCLK-CS)	Chip Select Output Hold Time (in relation to BCLK)		0		ns
td(BCLK-ALE)	ALE Signal Output Delay Time			25	ns
th(BCLK-ALE)	ALE Signal Output Hold Time		-4		ns
td(BCLK-RD)	RD Signal Output Delay Time	See Figure 5.8		30	ns
th(BCLK-RD)	RD Signal Output Hold Time	Figure 5.6	0		ns
td(BCLK-WR)	WR Signal Output Delay Time			30	ns
th(BCLK-WR)	WR Signal Output Hold Time		0		ns
td(BCLK-DB)	Data Output Delay Time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data Output Hold Time (in relation to BCLK) ⁽³⁾		4		ns
td(DB-WR)	Data Output Delay Time (in relation to WR)		(NOTE 1)		ns
th(WR-DB)	Data Output Hold Time (in relation to WR) (3)		(NOTE 2)		ns
td(BCLK-HLDA)	HLDA Output Delay Time			40	ns

NOTES:

1. Calculated according to the BCLK frequency as follows:


$$\frac{0.5 \times 10^9}{f(BCLK)} - 40[ns] \qquad \qquad f(BCLK) \text{ is } 12.5 \text{MHz or less.}$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10[ns]$$

= 6.7ns.

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in t = -CR X ln (1-VoL / Vcc1) by a circuit of the right figure. For example, when VoL = 0.2Vcc1, C = 30pF, R = 1kΩ, hold time of output "L" level is t = -30pF X 1k Ω X ln(1-0.2Vcc1 / Vcc1)

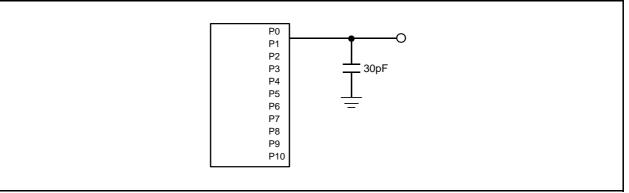
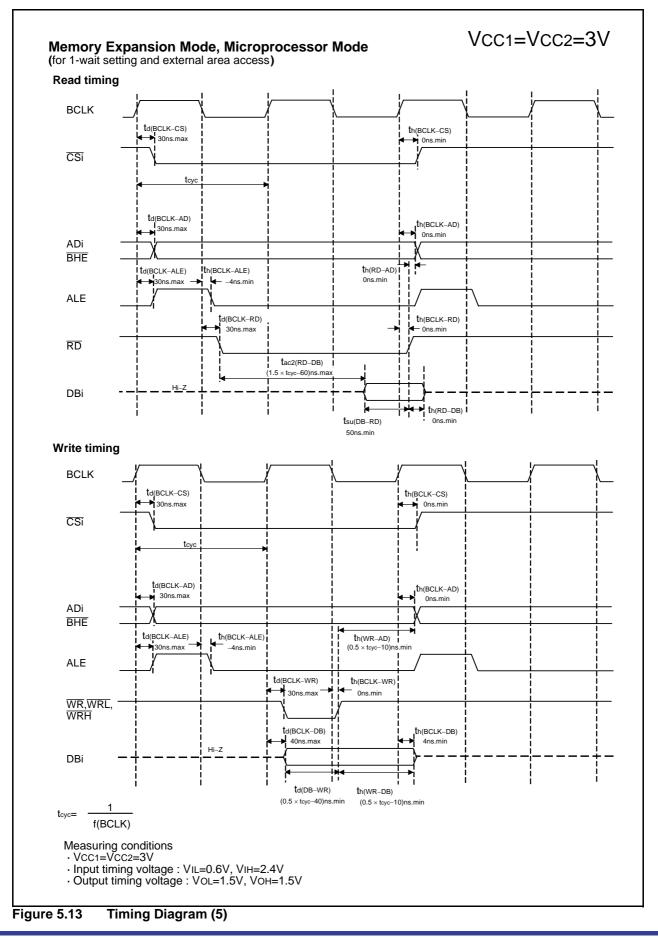



Figure 5.8 Ports P0 to P10 Measurement Circuit

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 But not infinited to, product data. diagrams, charts, programs, algorithms, and application scule as the development of weapons of mass and regulations, and proceedures required by such laws and regulation.
 All information in this document, included in this document for the purpose of military application scuch as the development of weapons of mass and regulations, and proceedures required by such laws and regulations.
 All information included in this document, such as product data, diagrams, charts, programs, algorithms, and application carcuit examples, is current as of the date this document, when exporting the products or the technology described herein, you should follow the applicable export control laws and regulations, and proceedures required by such laws and regulations.
 Renesas has used reasonable care in compiling the information in this document, but Renesas assumes no liability whatsoever for any damages incurred as a fast and the internation included in this document. Dut Renesas asproaces are not essigned not the subceever on y damages incurred as a damage incurred as a disclosed by Renesas states and splications, and processes as and splication splication splication and application and application and application and application and and the second to a state of the date this document.
 Renesas hall have the product specified by Renesas as subcervices in the date this document. Dut Renesas as subcervices are not designed applications, and processes in the another application and application and application and application and applic

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com