

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	M16C/60
Core Size	16-Bit
Speed	16MHz
Connectivity	I ² C, IEBus, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	5K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 18x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m30302fcpgp-u3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Table 1.3 **Product List (2)**

As of March 2007

Part No.	ROM Capacity	RAM Capacity	package code ⁽¹⁾	Remarks
M30302FAPFP	96 K + 4 Kbytes	5 Kbytes	PRQP0100JB-A	Flash memory
M30302FAPGP			PLQP0100KB-A	version ⁽²⁾
M30302FCPFP	128 K + 4 Kbytes		PRQP0100JB-A	
M30302FCPGP			PLQP0100KB-A	
M30302FEPFP	192 K + 4 Kbytes	6 Kbytes	PRQP0100JB-A	
M30302FEPGP			PLQP0100KB-A	
M30302SPFP	-	6 Kbytes	PRQP0100JB-A	ROM-less version
M30302SPGP			PLQP0100KB-A	

(D): Under development

(P): Under planning

NOTES:

1. Previous package codes are as follows.

PRQP0100JB-Ă : 100P6S-A, PLQP0100KB-A : 100P6Q-A

- 2. Block A (4-Kbytes space) is available in flash memory version.

Figure 1.2 Part No., Memory Size, and Package

1.5 Pin Configuration

Figures 1.5 to 1.6 show the pin configurations (top view).

Figure 1.5 Pin Configuration (Top View)

RENESAS

PIN	No.	Control	Port	Interrunt Pin	Timer Pin		Analog Pin	Bus Control
FP	GP	Pin	1 OIL	Interrupt i in		UARTIN	Analog I III	Pin
1	99		P9_6				ANEX1	
2	100		P9_5				ANEX0	
3	1		P9_4					
4	2		P9_3					
5	3		P9_2		TB2IN			
6	4		P9_1		TB1IN			
7	5		P9_0		TB0IN			
8	6	BYTE						
9	7	CNVSS						
10	8	XCIN	P8_7					
11	9	XCOUT	P8_6					
12	10	RESET						
13	11	XOUT						
14	12	VSS						
15	13	XIN						
16	14	VCC1						
17	15		P8_5	NMI				
18	16		P8_4	INT2				
19	17		P8_3	INT1				
20	18		P8_2	INTO				
21	19		 P8_1					
22	20		P8_0					
23	21		P7_7					
24	22		P7_6					
25	23		P7_5		TA2IN			
26	24		P7_4		TA2OUT			
27	25		P7_3		TA1IN	CTS2/RTS2		
28	26		P7_2		TA1OUT	CLK2		
29	27		P7_1		TAOIN	RXD2/SCL2		
30	28		P7_0		TA0OUT	TXD2/SDA2		
31	29		P6_7			TXD1/SDA1		
32	30		P6_6			RXD1/SCL1		
33	31		P6_5			CLK1		
34	32		P6 4			CTS1/RTS1/CTS0/CLKS1		
35	33		P6_3			TXD0/SDA0		
36	34		P6 2			RXD0/SCL0		
37	35		P6 1			CLK0		
38	36		 P6_0			CTS0/RTS0		
39	37		P5 7					RDY/CLKOUT
40	38		P5 6					ALE
41	39		P5 5					HOLD
42	40		P5 4					HLDA
43	41		P5_3					BCLK
44	42		P5_2					RD
45	43		P5 1					WRH/BHE
46	44		 P5_0					WRL/WR
47	45		P4_7					CS3
48	46		P4_6					CS2
49	47		P4_5					CS1
50	48		P4_4					CS0

Table 1.6Pin Characteristics (1)

RENESAS

Pin	No.	Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Analog Pin	Bus Control Pin
FP	GP	20.001111						
51	49		P4_3					A19
52	50		P4_2					A18
53	51		P4_1					A17
54	52		P4_0					A16
55	53		P3_7					A15
56	54		P3_6					A14
57	55		P3_5					A13
58	56		P3_4					A12
59	57		P3_3					A11
60	58		P3_2					A10
61	59		P3_1					A9
62	60	VCC2						
63	61		P3_0					A8
64	62	VSS						
65	63		P2_7					A7
66	64		P2_6					A6
67	65		P2_5					A5
68	66		P2_4					A4
69	67		P2_3					A3
70	68		P2_2					A2
71	69		P2_1					A1
72	70		P2_0					A0
73	71		P1_7					D15
74	72		P1_6	INT4				D14
75	73		P1_5	INT3				D13
76	74		P1_4					D12
77	75		P1_3					D11
78	76		P1_2					D10
79	77		P1_1					D9
80	78		P1 0					D8
81	79		P0 7				ANO 7	D7
82	80		P0_6				ANO 6	D6
83	81		P0 5				AN0 5	D5
84	82		P0 4				AN0 4	D4
85	83		P0 3				ANO 3	D3
86	84		_ P0_2				AN0 2	D2
87	85		P0_1				ANO 1	D1
88	86		P0 0				ANO 0	 D0
89	87		P10 7	KI3				-
00	80		D10_0					
30	00		PIU_0					
91	89		P10_5	KI1			AN5	
92	90		P10_4	KI0			AN4	
93	91		P10_3				AN3	
94	92		P10_2				AN2	
95	93		P10_1				AN1	
96	94	AVSS					 	
97	95		P10_0				ANO	
98	96	VREF						
99	97	AVCC						
100	98		P9 7				ADTRG	

Table 1.7Pin Characteristics (2)

RENESAS

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU registers. The CPU has 13 registers. Of these, R0, R1, R2, R3, A0, A1 and FB comprise a register bank. There are two register banks.

2.1 Data Registers (R0, R1, R2 and R3)

The R0 register consists of 16 bits, and is used mainly for transfers and arithmetic/logic operations. R1 to R3 are the same as R0.

The R0 register can be separated between high (R0H) and low (R0L) for use as two 8-bit data registers.

R1H and R1L are the same as R0H and R0L. Conversely, R2 and R0 can be combined for use as a 32-bit data register (R2R0). R3R1 is the same as R2R0.

2.2 Address Registers (A0 and A1)

The register A0 consists of 16 bits, and is used for address register indirect addressing and address register relative addressing. They also are used for transfers and logic/logic operations. A1 is the same as A0. In some instructions, registers A1 and A0 can be combined for use as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is configured with 16 bits, and is used for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is configured with 20 bits, indicating the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is configured with 20 bits, indicating the address of an instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

Stack pointer (SP) comes in two types: USP and ISP, each configured with 16 bits. Your desired type of stack pointer (USP or ISP) can be selected by the U flag of FLG.

2.7 Static Base Register (SB)

SB is configured with 16 bits, and is used for SB relative addressing.

2.8 Flag Register (FLG)

FLG consists of 11 bits, indicating the CPU status.

2.8.1 Carry Flag (C Flag)

This flag retains a carry, borrow, or shift-out bit that has occurred in the arithmetic/logic unit.

2.8.2 Debug Flag (D Flag)

The D flag is used exclusively for debugging purpose. During normal use, it must be set to "0".

2.8.3 Zero Flag (Z Flag)

This flag is set to "1" when an arithmetic operation resulted in 0; otherwise, it is "0".

2.8.4 Sign Flag (S Flag)

This flag is set to "1" when an arithmetic operation resulted in a negative value; otherwise, it is "0".

2.8.5 Register Bank Select Flag (B Flag)

Register bank 0 is selected when this flag is "0"; register bank 1 is selected when this flag is "1".

2.8.6 Overflow Flag (O Flag)

This flag is set to "1" when the operation resulted in an overflow; otherwise, it is "0".

2.8.7 Interrupt Enable Flag (I Flag)

This flag enables a maskable interrupt.

Maskable interrupts are disabled when the I flag is "0", and are enabled when the I flag is "1". The I flag is cleared to "0" when the interrupt request is accepted.

Address	Register	Symbol	After Reset
0340h			
0341h			
0342h			
0343h			
0344h			
0345h			
0346h			
0347h			
0348h			
0349h			
034Ah			
034Bh			
034Ch			
034Dh			
034En			
034FN			
0350h			
0352h			
0352h			
0354h			
0355h			
0356h			
0357h			
0358h			
0359h			
035Ah			
035Bh			
035Ch			
035Dh			
035Eh	Interrupt Factor Select Register 2	IFSR2A	00XXXXXXb
035Fh	Interrupt Factor Select Register	IFSR	00h
0360h			
0361h			
0362h			
0363h			
03040			
0366h			
0367h			
0368h			
0369h			
036Ah			
036Bh			
036Ch	UART0 Special Mode Register 4	U0SMR4	00h
036Dh	UART0 Special Mode Register 3	U0SMR3	000X0X0Xb
036Eh	UART0 Special Mode Register 2	U0SMR2	X000000b
036Fh	UART0 Special Mode Register	U0SMR	X000000b
0370h	UART1 Special Mode Register 4	U1SMR4	00h
0371h	UART1 Special Mode Register 3	U1SMR3	000X0X0Xb
0372h	UART1 Special Mode Register 2	U1SMR2	X000000b
0373h	UART1 Special Mode Register	U1SMR	X000000b
0374h	UART2 Special Mode Register 4	U2SMR4	00h
0375h	UAR 12 Special Mode Register 3	U2SMR3	UUUXUXUXb
03760	UAK 12 Special Mode Register 2	U2SMR2	XUUUUUUD
03770	UAR 12 Special Mode Register		
0378h	UAR 12 Transmit/Keceive Mode Kegister		
03746	UAN 12 DII NALE GEHEIAIUI TIART2 Transmit Ruffer Register		
037Bh	UTITE Handlin Duller Neyloler	0210	XXh
037Ch	LIART2 Transmit/Receive Control Register 0	11200	00001000b
037Dh	UART2 Transmit/Receive Control Register 1	U2C1	0000010b
037Eh	UART2 Receive Buffer Register	U2RB	XXh
037Fh			XXh

Table 4.3SFR Information (3) (1)

NOTES:

1. The blank areas are reserved and cannot be accessed by users.

X : Nothing is mapped to this bit

Address	Register	Symbol	After Reset
03C0h	A/D Register 0	AD0	XXh
03C1h			XXh
03C2h	A/D Register 1	AD1	XXh
03C3h			XXh
03C4h	A/D Register 2	AD2	XXh
03C5h			XXh
03C6h	A/D Register 3	403	XXh
03001	AD Register 5	AD0	XXh
03071			
03080	A/D Register 4	AD4	XXN
03C9h			XXh
03CAh	A/D Register 5	AD5	XXh
03CBh			XXh
03CCh	A/D Register 6	AD6	XXh
03CDh			XXh
03CEh	A/D Register 7	AD7	XXh
03CFh			XXh
03D0h			
03D1h			
03D2h			
03D3h			
03D4h	A/D Control Register 2		XXX000X0b
03D5h		71000112	70000000
03050	A/D Control Register 0		000202225
03060	A/D Control Register 0	ADCONU	
03D7h	A/D Control Register 1	ADCONT	UUUUUXXXD
03D8h			
03D9h			
03DAh			
03DBh			
03DCh			
03DDh			
03DEh			
03DFh			
03E0h	Port P0 Register	P0	XXh
03E1h	Port P1 Register	P1	XXh
03E2h	Port P0 Direction Register	PD0	00h
03E3h	Port P1 Direction Register	PD1	00h
03E4h	Port P2 Register	P2	XXh
03E5h	Port P3 Register	P3	XXh
03E6h	Port P2 Direction Register	PD2	00h
03E01	Port P2 Direction Register		00h
032711	Port P3 Direction Register	FD3	
03E01	Port PE De vieter	F4	
03E90	Port P5 Register	P0	AAN
03EAh	Port P4 Direction Register	PD4	00n
03EBh	Port P5 Direction Register	PD5	UUN
03ECh	Port Po Register	Рб	XXN
03EDh	Port P7 Register	P7	XXh
03EEh	Port P6 Direction Register	PD6	00h
03EFh	Port P7 Direction Register	PD7	00h
03F0h	Port P8 Register	P8	XXh
03F1h	Port P9 Register	P9	XXh
03F2h	Port P8 Direction Register	PD8	00X00000b
03F3h	Port P9 Direction Register	PD9	00h
03F4h	Port P10 Register	P10	XXh
03F5h			
03E6h	Port P10 Direction Register	PD10	00h
03F7h		1 0 10	
03F8h			
02E0h			
035 31			
USFAN			
U3FBh		BUB A	
03FCh	Pull-Up Control Register 0	PUR0	UUN
U3FDh	Pull-Up Control Register 1	PUR1	0000000b (2)
			0000010b (2)
03FEh	Pull-Up Control Register 2	PUR2	UUh
03FFh	Port Control Register	PCR	00h

SFR Information (5)⁽¹⁾ Table 4.5

NOTES:

1. The blank areas are reserved and cannot be accessed by users.

2. At hardware reset, the register is as follows:

"00000000b" where "L" is inputted to the CNVSS pin
"00000010b" where "H" is inputted to the CNVSS pin

At software reset, the register is as follows:

"00000000b" where the PM01 to PM00 bits in the PM0 register are "00b" (single-chip mode).
"00000010b" where the PM01 to PM00 bits in the PM0 register are "01b" (memory expansion mode) or "11b" (microprocessor mode).

X : Nothing is mapped to this bit

5. Electrical Characteristics

Symbol		Parameter	Condition	Rated Value	Unit
Vcc	Supply Voltage	e(VCC1=VCC2)	Vcc1=Vcc2=AVcc	-0.3 to 6.5	V
AVcc	Analog Supply	Voltage	Vcc1=Vcc2=AVcc	-0.3 to 6.5	V
Vı	Input Voltage	RESET, CNVSS, BYTE, P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, VREF, XIN		–0.3 to Vcc+0.3	V
		P7_0, P7_1		-0.3 to 6.5	V
Vo	Output Voltage	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, XOUT		–0.3 to Vcc+0.3	V
		P7_0, P7_1		-0.3 to 6.5	V
Pd	Power Dissipat	tion	–40°C <topr≦85°c< td=""><td>300</td><td>mW</td></topr≦85°c<>	300	mW
Topr	Operating Ambient	When the Microcomputer is Operating		-20 to 85 / -40 to 85	°C
	Temperature	One Time Flash Program Erase		0 to 60	
		Flash Program Erase		0 to 60	
Tstg	Storage Tempe	erature		-65 to 150	°C

Symbol	Parameter		Standard			Linit
Symbol			Min.	Тур.	Max.	Unit
Vcc	Supply Voltage (V	/cc1=Vcc2)	2.7	5.0	5.5	V
AVcc	Analog Supply Vo	Analog Supply Voltage		Vcc		V
Vss	Supply Voltage			0		V
AVss	Analog Supply Vo	oltage		0		V
Viн	HIGH Input	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7	0.8Vcc		Vcc	V
	Voltage	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (during single-chip mode)	0.8Vcc		Vcc	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (data input during memory expansion and microprocessor mode)	0.5Vcc		Vcc	V
		P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, XIN, RESET, CNVSS, BYTE	0.8Vcc		Vcc	V
		P7_0, P7_1	0.8Vcc		6.5	V
VIL	LOW Input	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7	0		0.2Vcc	V
	Voltage	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (during single-chip mode)	0		0.2Vcc	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (data input during memory expansion and microprocessor mode)	0		0.16Vcc	V
		P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, XIN, RESET, CNVSS, BYTE	0		0.2Vcc	V
IOH(peak)	HIGH Peak Output Current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7			-10.0	mA
IOH(avg)	HIGH Average Output Current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7			-5.0	mA
IOL(peak)	LOW Peak Output Current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7			10.0	mA
IOL(avg)	LOW Average Output Current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7			5.0	mA
f(XIN)	Main Clock Input	VCC=3.0V to 5.5V	0		16	MHz
	Oscillation Frequency ⁽⁴⁾	VCC=2.7V to 3.0V	0		20×Vcc1-44	MHz
f(XCIN)	Sub-Clock Oscilla	tion Frequency		32.768	50	kHz
f(BCLK)	CPU Operation C	lock	0		16	MHz

Table 5.2	Recommended	Operating	Conditions	(1)

NOTES:

1. Referenced to Vcc1 = Vcc2 = 2.7 to 5.5V at Topr = -20 to 85°C / -40 to 85°C unless otherwise specified.

2. The Average Output Current is the mean value within 100ms.

The total IoL(peak) for ports P0, P1, P2, P8_6, P8_7, P9 and P10 must be 80mA max. The total IoL(peak) for ports P3, P4, P5, P6, P7 and P8_0 to P8_4 must be 80mA max. The total IOH(peak) for ports P0, P1, and P2 must be -40mA max. The total IOH(peak) for ports P3, P4 and P5 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max.

The total IOH(peak) for ports P8_6, P8_7 and P9 must be -40mA max. Set Average Output Current to 1/2 of peak.

4. Relationship between main clock oscillation frequency, and supply voltage.

Main clock input oscillation frequency

Symbol	Parameter		Linit		
Symbol	Falameter	Min.	Тур.	Max.	Offic
-	Program Endurance			1	cycle
-	Word Program Time (Vcc1=5.0V)		50	500	μs
tPS	One Time Flash Memory Circuit Stabilization Wait Time			15	μs
-	Data Hold Time ⁽⁴⁾	10			year

Table 5.6 One Time Flash Version Electrical Characteristics (1)

NOTES:

1. Referenced to Vcc1=4.5 to 5.5V, 3.0 to 3.6V at Topr = 0 to 60 $^{\circ}$ C (U3, U5) unless otherwise specified.

2. Topr = -40 to 85 °C (U3) / -20 to 85 °C (U5).

Table 5.7 One Time Flash Version Program Voltage and Read Operation Voltage Characteristics

Flash Program Voltage	Flash Read Operation Voltage
VCC1 = 3.3 ± 0.3 V or 5.0 ± 0.5 (Topr = 0°C to 60°C)	VCC1=2.7 to 5.5 V (Topr = -40°C to 85°C (U3)
	-20°C to 85°C (U5))

VCC1=VCC2=5V

Switching Characteristics

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 5.26	Memory Expansion and Microprocessor Modes (for 1 wait setting and external area
	access)

Symbol	Decemptor		Stan	Standard	
Symbol	Farameter		Min.	Max.	Unit
td(BCLK-AD)	Address Output Delay Time			25	ns
th(BCLK-AD)	Address Output Hold Time (in relation to BCLK)		-3		ns
th(RD-AD)	Address Output Hold Time (in relation to RD)		0		ns
th(WR-AD)	Address Output Hold Time (in relation to WR)		(NOTE 2)		ns
td(BCLK-CS)	Chip Select Output Delay Time			25	ns
th(BCLK-CS)	Chip Select Output Hold Time (in relation to BCLK)		-3		ns
td(BCLK-ALE)	ALE Signal Output Delay Time			15	ns
th(BCLK-ALE)	ALE Signal Output Hold Time	0	-4		ns
td(BCLK-RD)	RD Signal Output Delay Time	See Figure 5.2		25	ns
th(BCLK-RD)	RD Signal Output Hold Time	r igure o.z	0		ns
td(BCLK-WR)	WR Signal Output Delay Time		25	ns	
th(BCLK-WR)	WR Signal Output Hold Time		0		ns
td(BCLK-DB)	Data Output Delay Time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data Output Hold Time (in relation to BCLK) ⁽³⁾		4		ns
td(DB-WR)	Data Output Delay Time (in relation to WR)	(NOTE 1)		ns	
th(WR-DB)	Data Output Hold Time (in relation to WR) ⁽³⁾		(NOTE 2)		ns
td(BCLK-HLDA)	HLDA Output Delay Time			40	ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

 $\frac{(n-0.5)x10^9}{f(BCLK)} - 40[ns] \qquad n \text{ is ``1'' for 1-wait setting, } f(BCLK) \text{ is 12.5MHz or less.}$

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10[ns]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in t = -CR X ln (1-VoL / Vcc1) by a circuit of the right figure. For example, when VoL = 0.2Vcc1, C = 30pF, R = 1kΩ, hold time of output "L" level is t = -30pF X 1kΩ X ln(1-0.2Vcc1 / Vcc1)

= 6.7ns.

VCC1=VCC2=3V

Timing Requirements

(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = -20 to 85°C / -40 to 85°C unless otherwise specified)

Table 5.31 Timer A Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Stan	Lipit	
		Min.	Max.	Unit
tc(TA)	TAilN Input Cycle Time	150		ns
tw(TAH)	TAilN Input HIGH Pulse Width	60		ns
tw(TAL)	TAIIN Input LOW Pulse Width	60		ns

Table 5.32 Timer A Input (Gating Input in Timer Mode)

Symbol	Parameter	Stan	Linit	
		Min.	Max.	Unit
tc(TA)	TAiIN Input Cycle Time	600		ns
tw(TAH)	TAIIN Input HIGH Pulse Width	300		ns
tw(TAL)	TAIIN Input LOW Pulse Width	300		ns

Table 5.33 Timer A Input (External Trigger Input in One-shot Timer Mode)

Symbol	Parameter	Stan	Linit		
Symbol	Falameter	Min.	Max.	Onit	
tc(TA)	TAilN Input Cycle Time	300		ns	
tw(TAH)	TAilN Input HIGH Pulse Width	150		ns	
tw(TAL)	TAilN Input LOW Pulse Width	150		ns	

Table 5.34 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Baramatar	Stan	Linit	
Symbol	Farameter	Min.	Max.	Onit
tw(TAH)	TAilN Input HIGH Pulse Width	150		ns
tw(TAL)	TAIIN Input LOW Pulse Width	150		ns

Table 5.35 Timer A Input (Counter Increment/Decrement Input in Event Counter Mode)

Symbol	Parameter	Stan	Lipit	
		Min.	Max.	Offic
tc(UP)	TAiOUT Input Cycle Time	3000		ns
tw(UPH)	TAiOUT Input HIGH Pulse Width	1500		ns
tw(UPL)	TAiOUT Input LOW Pulse Width	1500		ns
tsu(UP-TIN)	TAiOUT Input Setup Time	600		ns
th(TIN-UP)	TAiOUT Input Hold Time	600		ns

Table 5.36 Timer A Input (Two-phase Pulse Input in Event Counter Mode)

Symbol	Parameter	Stan	Unit	
		Min.	Max.	Offic
tc(TA)	TAiIN Input Cycle Time	2		μs
tsu(TAIN-TAOUT)	TAiOUT Input Setup Time	500		ns
tsu(TAOUT-TAIN)	TAiIN Input Setup Time	500		ns

VCC1=VCC2=3V

Switching Characteristics

(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 5.44	Memory Expansion and Microprocessor Modes (for 1 wait setting and external area
	access)

Symbol	Parameter		Standard		Llnit
Symbol	Farameter		Min.	Max.	Unit
td(BCLK-AD)	Address Output Delay Time			30	ns
th(BCLK-AD)	Address Output Hold Time (in relation to BCLK)		0		ns
th(RD-AD)	Address Output Hold Time (in relation to RD)		0		ns
th(WR-AD)	Address Output Hold Time (in relation to WR)		(NOTE 2)		ns
td(BCLK-CS)	Chip Select Output Delay Time			30	ns
th(BCLK-CS)	Chip Select Output Hold Time (in relation to BCLK)		0		ns
td(BCLK-ALE)	ALE Signal Output Delay Time			25	ns
th(BCLK-ALE)	ALE Signal Output Hold Time	C • •	-4		ns
td(BCLK-RD)	RD Signal Output Delay Time	See Figure 5.8		30	ns
th(BCLK-RD)	RD Signal Output Hold Time	rigure o.o	0		ns
td(BCLK-WR)	WR Signal Output Delay Time	30	ns		
th(BCLK-WR)	WR Signal Output Hold Time		0		ns
td(BCLK-DB)	Data Output Delay Time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data Output Hold Time (in relation to BCLK) ⁽³⁾		4		ns
td(DB-WR)	Data Output Delay Time (in relation to WR)		ns		
th(WR-DB)	Data Output Hold Time (in relation to WR) ⁽³⁾		(NOTE 2)		ns
td(BCLK-HLDA)	HLDA Output Delay Time			40	ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

 $\frac{(n-0.5)x10^9}{f(BCLK)} - 40[ns]$ n is "1" for 1-wait setting, f(BCLK) is 12.5MHz or less.

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 10[ns]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in t = -CR X ln (1-VoL / Vcc1) by a circuit of the right figure. For example, when VoL = 0.2Vcc1, C = 30pF, R = 1kΩ, hold time of output "L" level is t = -30pF X 1kΩ X ln(1-0.2Vcc1 / Vcc1)

Figure 5.10 Timing Diagram (2)

REVISION HISTORY			RY	M16C/30P Group Datasheet	
Boy	Data	Date		Description	
Rev.	Dale			Summary	
1.20	Oct 17, 2006	1	Note is partly deleted.		
		2	Table 1.1	Performance Outline of M16C/30P Group is partly added.	
		4	Table 1.2	Product List is partly revised.	
		5	Figure 1.2	2 Type No., Memory Size, and Package is added.	
		7	Table 1.4 sion, and	Product Code of One Time Flash version, Flash Memory ver- ROM-less version for M16C/30P is partly added.	
		17	Figure 3.1	Memory Map is partly added.	
		19	Table 4.2	SFR Information (2) is partly added.	
		23	Table 5.1	Absolute Maximum Ratings is partly added.	
		27	Table 5.6 One Time Flash Version Electrical Characteristics and Table 5.7 One Time Flash Version Program Voltage and Read Operation Voltage Characteristics is added.		
		30	Table 5.10	D Electrical Characteristics (2) is partly added.	
		42	Table 5.28	8 Electrical Characteristics (2) is partly added.	
1.21	Nov 02 2006	7	Table 1.4 Product Code of One Time Flash version, Flash Memory version, and ROM-less version for M16C/30P is partly revised.		
1.22	Mar 30, 2007	4	Table 1.2	Product List (1) is partly revised.	
		5	Table 1.3	Product List (2) is partly revised.	
		19	Table 4.2	SFR Information (2) is partly revised.	