

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	M16C/60
Core Size	16-Bit
Speed	16MHz
Connectivity	I ² C, IEBus, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	6K × 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 18x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-BQFP
Supplier Device Package	100-QFP (14x20)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m30302fepfp-u3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

M16C/30P Group

SINGLE-CHIP 16-BIT CMOS MICROCOMPUTER

1. Overview

The M16C/30P Group of single-chip microcomputers is built using the high-performance silicon gate CMOS process using a M16C/60 Series CPU core and is packaged in a 100-pin plastic molded QFP.

These single-chip microcomputers operate using sophisticated instructions featuring a high level of instruction efficiency. With 1 Mbyte of address space, they are capable of executing instructions at high speed. In addition, these microcomputers contain a multiplier and DMAC which combined with fast instruction processing capability, make it suitable for control of various OA, communication, and industrial equipment which requires high-speed arithmetic/ logic operations.

1.1 Applications

Audio, cameras, TV, home appliance, office/communications/portable/industrial equipment, etc.

1.4 **Product List**

Table 1.2 lists the M16C/30P group products and Figure 1.2 shows the Part No., Memory Size, and Package. Table 1.4 lists Product Code of MASK ROM version for M16C/30P. Figure 1.3 shows the Marking Diagram of Mask ROM Version for M16C/30P (Top View). Table 1.5 lists Product Code of One Time Flash version, Flash Memory version, and ROM-less version for M16C/30P. Figure 1.4 shows the Marking Diagram of One Time Flash version, Flash Memory version, and ROM-less Version for M16C/30P (Top View). Please specify the marking for M16C30P (MASK ROM version) when placing an order for ROM.

Table 1.2 Proc		. (1)			AS OF March 2007
Part No.		ROM Capacity	RAM Capacity	package code (1)	Remarks
M30302MAP-XXXFF	C	96 Kbytes	5 Kbytes	PRQP0100JB-A	Mask ROM version
M30302MAP-XXXG	Р			PLQP0100KB-A	
M30302MCP-XXXF	C	128 Kbytes		PRQP0100JB-A	
M30302MCP-XXXG	Р			PLQP0100KB-A	
M30302MDP-XXXF	C	160 Kbytes	6 Kbytes	PRQP0100JB-A	
M30302MDP-XXXG	P			PLQP0100KB-A	
M30302MEP-XXXFF	C	192 Kbytes	_	PRQP0100JB-A	
M30302MEP-XXXG	Ρ			PLQP0100KB-A	
M30302GAPFP		96 Kbytes	5 Kbytes	PRQP0100JB-A	One Time Flash
M30302GAPGP	(D)			PLQP0100KB-A	version (blank product)
M30302GCPFP		128 Kbytes		PRQP0100JB-A	
M30302GCPGP	(D)			PLQP0100KB-A	
M30302GDPFP		160 Kbytes	6 Kbytes	PRQP0100JB-A	
M30302GDPGP	(D)			PLQP0100KB-A	
M30304GDPFP	(D)		12 Kbytes	PRQP0100JB-A	
M30304GDPGP	(D)			PLQP0100KB-A	
M30302GEPFP		192 Kbytes	6 Kbytes	PRQP0100JB-A	
M30302GEPGP	(D)			PLQP0100KB-A	
M30304GEPFP	(D)		12 Kbytes	PRQP0100JB-A	
M30304GEPGP	(D)			PLQP0100KB-A	
M30302GGPFP	(D)	256 Kbytes	12 Kbytes	PRQP0100JB-A	
M30302GGPGP	(D)			PLQP0100KB-A	
M30302GAP-XXXFF)	96 Kbytes	5 Kbytes	PRQP0100JB-A	One Time Flash
M30302GAPvGP	(D)			PLQP0100KB-A	version (factory programmed
M30302GCP-XXXFF	2	128 Kbytes		PRQP0100JB-A	product)
M30302GCP-XXXG	P (D)	-		PLQP0100KB-A	
M30302GDP-XXXFF	2	160 Kbytes	6 Kbytes	PRQP0100JB-A	
M30302GDP-XXXG	P (D)			PLQP0100KB-A	
M30304GDP-XXXFF	р (D)		12 Kbytes	PRQP0100JB-A	
M30304GDP-XXXG	P (D)			PLQP0100KB-A	
M30302GEP-XXXFF)	192 Kbytes	6 Kbytes	PRQP0100JB-A	
M30302GEP-XXXG	- (D)			PLQP0100KB-A	1
M30304GEP-XXXFF	P (D)		12 Kbytes	PRQP0100JB-A	1
M30304GEP-XXXG	> (D)			PLQP0100KB-A	1
M30302GGP-XXXF	P (D)	256 Kbytes	12 Kbytes	PRQP0100JB-A	1
M30302GGP-XXXG	P (D)			PLQP0100KB-A	1

Table 1.2 **Product List (1)**

As of March 2007

(D): Under development

(P): Under planning

NOTES:

1. Previous package codes are as follows.

PRQP0100JB-A : 100P6S-A, PLQP0100KB-A : 100P6Q-A

2. Block A (4-Kbytes space) is available in flash memory version.

Product Code

	гаскауе	
U1	Lead-free	-20°C to 85°C
U4		-40°C to 85°C
	3-A (100P6S-A)	
1. Standard R	Renesas Mark	
	N A	1 6 C
M3030)2MDP-XX	
A	U 1 X X X X	X X X — Chip version, product code and date code
		A : Shows chip version. Henceforth, whenever it changes a version,
0		it continues with A, B, and C. U1 : Shows Product code. (See table 1.3 Product Code)
		XXXXXXX : Seven digits
2. Customer's	s Parts Number + F	Renesas catalog name
M3.0.3(02MDP - XX	X F P Part No. (See Figure 1.2 Part No., Memory Size, and Package)
	-	U 1 ——— Chip version and product code
M ¹	16C XXXX	Henceforth, whenever it changes a version,
0		it continues with A, B, and C. U1 : Shows Product code. (See table 1.3 Product Code)
L		Date code seven digits
PLQP0100KE	3-A (100P6Q-A)	
1. Standard F	Renesas Mark	
	M16C	
M 3	0 3 0 2 MD P	Part No. (See Figure 1.2 Part No., Memory Size, and Package)
A U 1	- XXXGP XXXXXXX	- Chip version, product code and date code
		A : Shows chip version. Henceforth, whenever it changes a version,
0		it continues with A, B, and C.
		U1 : Shows Product code. (See table 1.3 Product Code) XXXXXXX : Seven digits
2. Customer'	's Parts Number + I	Renesas catalog name
М 3	0 3 0 2 M D P	— Part No. (See Figure 1.2 Part No., Memory Size, and Package)
A U 1	- XXXGP	Chip version and product code A : Shows chip version.
		Henceforth, whenever it changes a version, it continues with A, B, and C.
0		U1 : Shows Product code. (See table 1.3 Product Code)
L		— Date code seven digits
NOTES: 1. Refer to	o the mark specific	cation form for details of the Mask ROM version marking.
ure 1.3 N	larking Diagra	m of Mask ROM Version for M16C/30P (Top View)

Package

Operating Ambient Temperature

Pin	No.	Control	Port	Interrupt Pin	Timer Pin	UART Pin	Analog Pin	Bus Control
FP	GP	Pin				UART FIII		Pin
1	99		P9_6				ANEX1	
2	100		P9_5				ANEX0	
3	1		P9_4					
4	2		P9_3					
5	3		P9_2		TB2IN			
6	4		P9_1		TB1IN		_	
7	5		P9_0		TB0IN			
8	6	BYTE						
9	7	CNVSS	D 0 -					
10	8	XCIN	P8_7					
11	9	XCOUT	P8_6					
12	10	RESET						
13	11	XOUT						
14	12	VSS						
15	13	XIN						
16	14	VCC1						
17	15		P8_5	NMI				
18	16		P8_4	INT2				
19	17		P8_3	INT1				
20	18		P8_2	INT0				
21	19		P8_1					
22	20		P8_0					
23	21		P7_7					
24	22		P7_6					
25	23		P7_5		TA2IN			
26	24		P7_4		TA2OUT			
27	25		P7_3		TA1IN	CTS2/RTS2		
28	26		P7_2		TA1OUT	CLK2		
29	27		P7_1		TAOIN	RXD2/SCL2		
30	28		P7_0		TA0OUT	TXD2/SDA2		
31	29		P6_7			TXD1/SDA1		
32	30		P6_6			RXD1/SCL1		
33	31		P6_5			CLK1		
34	32		P6_4			CTS1/RTS1/CTS0/CLKS1		
35	33		P6_3			TXD0/SDA0		
36	34		P6_2			RXD0/SCL0		
37	35		P6_1			CLK0		
38	36		P6_0			CTS0/RTS0		
39	37		P5_7					RDY/CLKOUT
40	38		P5_6					ALE
41	39		P5_5					HOLD
42	40		P5_4					HLDA
43	41		P5_3					BCLK
44	42		P5_2					RD
45	43		P5_1					WRH/BHE
46	44		P5_0					WRL/WR
47	45		P4_7					CS3
48	46		P4_6					CS2
49	47		P4_5					CS1
50	48		P4_4					CS0

Table 1.6Pin Characteristics (1)

Pin	No.							
FP	GP	Control Pin	Port	Interrupt Pin	Timer Pin	UART Pin	Analog Pin	Bus Control Pin
51	49		P4_3					A19
52	50		P4_2					A18
53	51		P4_1					A17
54	52		P4_0					A16
55	53		P3_7					A15
56	54		P3_6					A14
57	55		P3_5					A13
58	56		P3_4					A12
59	57		P3_3					A11
60	58		P3_2					A10
61	59		P3_1					A9
62	60	VCC2						
63	61		P3_0					A8
64	62	VSS	_					
65	63		P2_7					A7
66	64		P2_6					A6
67	65		P2_5					A5
68	66		P2_4					A4
69 70	67 68		P2_3 P2_2					A3 A2
70	69		P2_2 P2_1					A2 A1
72	70		P2_1					A0
73	71		P1_7					D15
74	72		P1_6	INT4				D14
75	73		P1_5	INT3				D13
76	74		P1_4					D12
77	75		P1_3					D11
78	76		P1_2					D10
79	77		P1_1					D9
80	78		P1_0					D8
81	79		P0_7				AN0_7	D7
82	80		P0_6				AN0_6	D6
83	81		P0_5				AN0_5	D5
84	82		P0_4				AN0_4	D4
85	83		P0_3				AN0_3	D3
86	84		P0_2				AN0_2	D2
87	85		P0_1				AN0_1	D1
88	86		P0_0				AN0_0	D0
89	87		P10_7	KI3			AN7	
90	88		P10_6	KI2			AN6	
91	89		P10_5	KI1			AN5	
92	90		P10_4	KI0			AN4	
93	91		P10_3				AN3	
94	92		P10_2				AN2	
95	93		P10_1				AN1	
96	94	AVSS					_	
97	95		P10_0				AN0	
98		VREF						
99	97	AVCC						
100	98		P9_7				ADTRG	

Table 1.7Pin Characteristics (2)

5. Electrical Characteristics

Table 5.1 Absolute Maximum Ratin	gs
----------------------------------	----

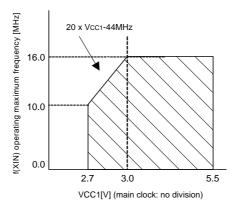
Symbol		Parameter	Condition	Rated Value	Unit
Vcc	Supply Voltage	e(Vcc1=Vcc2)	Vcc1=Vcc2=AVcc	-0.3 to 6.5	V
AVcc	Analog Supply	Voltage	Vcc1=Vcc2=AVcc	-0.3 to 6.5	V
Vı	Input Voltage	RESET, CNVSS, BYTE, P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, VREF, XIN		–0.3 to Vcc+0.3	V
		P7_0, P7_1		-0.3 to 6.5	V
Vo	Output Voltage	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, XOUT		–0.3 to Vcc+0.3	V
		P7_0, P7_1		-0.3 to 6.5	V
Pd	Power Dissipa	tion	–40°C <topr≤85°c< td=""><td>300</td><td>mW</td></topr≤85°c<>	300	mW
Topr	Operating Ambient	When the Microcomputer is Operating		-20 to 85 / -40 to 85	°C
	Temperature	One Time Flash Program Erase		0 to 60	
		Flash Program Erase		0 to 60	
Tstg	Storage Temp	erature		-65 to 150	°C

O wash a l	Deventer			1.1		
Symbol		Parameter			Max.	Unit
Vcc	Supply Voltage (\	/cc1=Vcc2)	2.7	5.0	5.5	V
AVcc	Analog Supply Vo	bltage		Vcc		V
Vss	Supply Voltage			0		V
AVss	Analog Supply Vo	bltage		0		V
Viн	HIGH Input	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7	0.8Vcc		Vcc	V
	Voltage	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (during single-chip mode)	0.8Vcc		Vcc	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (data input during memory expansion and microprocessor mode)	0.5Vcc		Vcc	V
		P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, XIN, RESET, CNVSS, BYTE	0.8Vcc		Vcc	V
		P7_0, P7_1	0.8Vcc		6.5	V
VIL	LOW Input	P3_1 to P3_7, P4_0 to P4_7, P5_0 to P5_7	0		0.2Vcc	V
	Voltage	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (during single-chip mode)	0		0.2Vcc	V
		P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 (data input during memory expansion and microprocessor mode)	0		0.16Vcc	V
		P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_7, P9_0 to P9_7, XIN, RESET, CNVSS, BYTE	0		0.2Vcc	V
IOH(peak)	HIGH Peak Output Current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7			-10.0	mA
IOH(avg)	HIGH Average Output Current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7			-5.0	mA
IOL(peak)	LOW Peak Output Current	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_0 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7			10.0	mA
IOL(avg)	LOW Average Output Current				5.0	mA
f(XIN)	Main Clock Input	VCC=3.0V to 5.5V	0		16	MHz
	Oscillation Frequency ⁽⁴⁾	VCC=2.7V to 3.0V	0		20×Vcc1-44	MHz
f(XCIN)	Sub-Clock Oscilla	ation Frequency		32.768	50	kHz
f(BCLK)	CPU Operation C	lock	0		16	MHz

Table 5.2	Recommended Operating Conditions (1)
-----------	--------------------------------------

NOTES:

1. Referenced to Vcc1 = Vcc2 = 2.7 to 5.5V at Topr = -20 to 85°C / -40 to 85°C unless otherwise specified.


2. The Average Output Current is the mean value within 100ms.

The total IoL(peak) for ports P0, P1, P2, P8_6, P8_7, P9 and P10 must be 80mA max. The total IoL(peak) for ports P3, P4, P5, P6, P7 and P8_0 to P8_4 must be 80mA max. The total IOH(peak) for ports P0, P1, and P2 must be -40mA max. The total IOH(peak) for ports P3, P4 and P5 must be -40mA max. The total IOH(peak) for ports P6, P7, and P8_0 to P8_4 must be -40mA max.

The total IOH(peak) for ports P8_6, P8_7 and P9 must be -40mA max. Set Average Output Current to 1/2 of peak.

4. Relationship between main clock oscillation frequency, and supply voltage.

Main clock input oscillation frequency

Symbol	Parameter		Measuring Condition		Standard			Unit
Symbol	Falallie	i ulunoloi		Measuring Condition		Тур.	Max.	Onit
1	Resolution		Vref=V	/cc	10		10	Bits
INL	Integral Non-Linearity Error	10bit	VREF= VCC= 5V	AN0 to AN7 input, AN0_0 to AN0_7 input, ANEX0, ANEX1 input			±5	LSB
			VREF= VCC= 3.3V	AN0 to AN7 input, AN0_0 to AN0_7 input, ANEX0, ANEX1 input			±7	LSB
		8bit	Vref=V	/cc=5V, 3.3V			±2	LSB
-	Absolute Accuracy	10bit	VREF= VCC= 5V	AN0 to AN7 input, AN0_0 to AN0_7 input, ANEX0, ANEX1 input			±5	LSB
			VREF= VCC =3.3V	AN0 to AN7 input, AN0_0 to AN0_7 input, ANEX0, ANEX1 input			±7	LSB
		8bit	VREF=V	/cc=5V, 3.3V			±2	LSB
-	Tolerance Level Imped	ance				3		kΩ
DNL	Differential Non-Lineari	ty Error					±2	LSB
-	Offset Error						±5	LSB
-	Gain Error						±5	LSB
RLADDER	Ladder Resistance		Vref=V	/cc	10		40	kΩ
t CONV	10-bit Conversion Time, Sample & Hold Function Available		Vref=V	/cc=5V,	3.3			μS
t CONV	8-bit Conversion Time, Sample & Hold Function Available		Vref=V	/cc=5V,	2.8			μS
t SAMP	Sampling Time	Sampling Time			0.3			μS
Vref	Reference Voltage				3.0		Vcc	V
VIA	Analog Input Voltage				0		Vref	V

Table 5.3	A/D Conversion	Characteristics (1)
-----------	-----------------------	---------------------

NOTES:

1. Referenced to Vcc=AVcc=VREF=3.3 to 5.5V, Vss=AVss=0V at Topr = -20 to 85°C / -40 to 85°C unless otherwise specified.

2. ϕAD frequency must be 10 MHz or less.

3. When sample & hold function is disabled, ϕ AD frequency must be 250 kHz or more, in addition to the limitation in Note 2.

4. When sample & hold function is enabled, ϕ AD frequency must be 1MHz or more, in addition to the limitation in Note 2.

VCC1=VCC2=5V

Timing Requirements

(VCC1 = VCC2 = 5V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 5.11 External Clock Input (XIN input) (1)

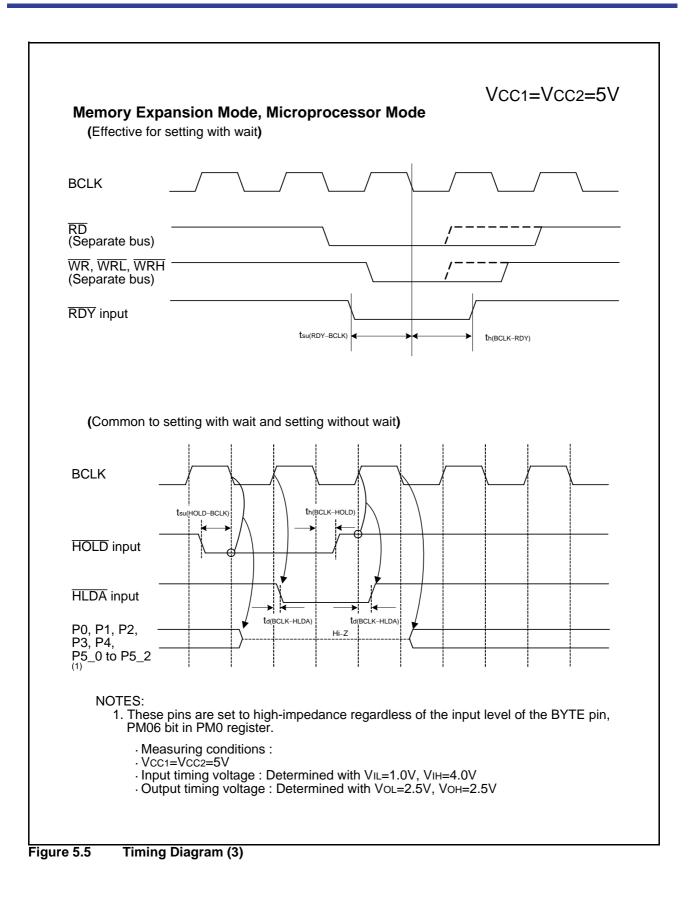
Symbol	Parameter	Stan	Unit	
Symbol		Min.	Max.	Offic
tc	External Clock Input Cycle Time 62.5			ns
tw(H)	External Clock Input HIGH Pulse Width	25		ns
tw(L)	External Clock Input LOW Pulse Width	25		ns
tr	External Clock Rise Time		15	ns
tf	External Clock Fall Time		15	ns

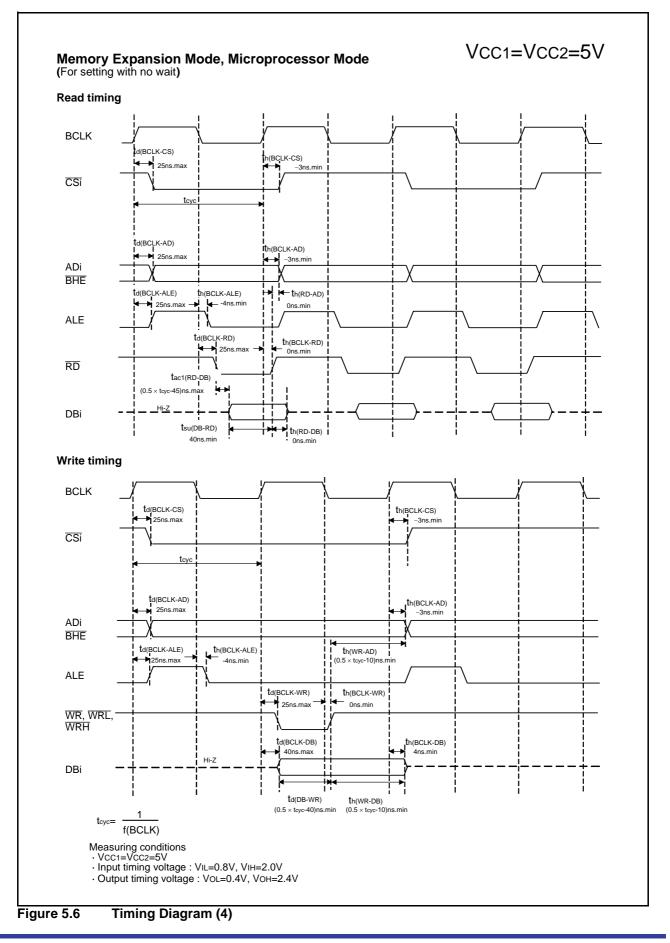
NOTES:

1. The condition is Vcc1=Vcc2=3.0 to 5.0V.

Table 5.12 Memory Expansion Mode and Microprocessor Mode

Symbol	Parameter	Stan	Unit	
Symbol	Falameter	Min.	Max.	Offic
tac1(RD-DB)	Data Input Access Time (for setting with no wait)		(NOTE 1)	ns
tac2(RD-DB)	Data Input Access Time (for setting with wait)		(NOTE 2)	ns
tsu(DB-RD)	Data Input Setup Time	40		ns
tsu(RDY-BCLK)	RDY Input Setup Time	30		ns
tsu(HOLD-BCLK)	HOLD Input Setup Time	40		ns
th(RD-DB)	Data Input Hold Time	0		ns
th(BCLK-RDY)	RDY Input Hold Time	0		ns
th(BCLK-HOLD)	HOLD Input Hold Time	0		ns


NOTES:


1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 45[ns]$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{(n-0.5)X10^9}{f(BCLK)} - 45[ns] \qquad n \text{ is "2" for 1-wait setting.}$$

Symbol	Paramet	or	Mea	suring Condition		Standar		Unit
Symbol	i didilici		wied.		Min.	Тур.	Max.	Onit
Icc	Power Supply Current (Vcc1=Vcc2=2.7V to 3.6V)	In single-chip mode, the output	Mask ROM	f(XIN)=10MHz No division		8	11	mA
		pins are open and other pins are Vss	One Time Flash	f(XIN)=10MHz, No division		8	13	mA
			Flash Memory	f(XIN)=10MHz, No division		8	13	mA
			Flash Memory Program	f(XIN)=10MHz, VCC1=3.0V		12		mA
			One Time Flash Program	f(XIN)=10MHz, VCC1=3.0V		12		mA
			Flash Memory Erase	f(XIN)=10MHz, VCC1=3.0V		22		mA
			Mask ROM	f(XCIN)=32kHz Low power dissipation mode, ROM ⁽³⁾		25		μΑ
			One Time Flash	f(XCIN)=32kHz Low power dissipation mode, RAM ⁽³⁾		25		μΑ
				f(XCIN)=32kHz Low power dissipation mode, Flash Memory ⁽³⁾		350		μΑ
			Flash Memory	f(XCIN)=32kHz Low power dissipation mode, RAM ⁽³⁾		25		μΑ
				f(XCIN)=32kHz Low power dissipation mode, Flash Memory ⁽³⁾		420		μA
			Mask ROM One Time Flash Flash Memory	f(XCIN)=32kHz Wait mode ⁽²⁾ , Oscillation capability High		6.0		μΑ
				f(XCIN)=32kHz Wait mode ⁽²⁾ , Oscillation capability Low		1.8		μΑ
				Stop mode Topr =25°C		0.7	3.0	μΑ

Table 5.28	Electrical Characteristic	s (2) ⁽¹⁾
------------	---------------------------	----------------------

NOTES:

1. Referenced to Vcc1=Vcc2=2.7 to 3.3V, Vss = 0V at Topr = -20 to 85°C / -40 to 85°C, f(XIN)=10MHz unless otherwise Specified.
 With one timer operated using fC32.
 This indicates the memory in which the program to be executed exists.

VCC1=VCC2=3V

Timing Requirements

(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 5.31 Timer A Input (Counter Input in Event Counter Mode)

Symbol	Parameter		Standard		
Symbol	Falanetei	Min.	Max.	Unit	
tc(TA)	TAilN Input Cycle Time			ns	
tw(TAH)	TAiIN Input HIGH Pulse Width			ns	
tw(TAL)	TAIIN Input LOW Pulse Width	60		ns	

Table 5.32 Timer A Input (Gating Input in Timer Mode)

Symbol	Parameter	Stan	Unit	
Symbol	Farameter	Min.	Max.	Unit
tc(TA)	TAilN Input Cycle Time	600		ns
tw(TAH)	TAilN Input HIGH Pulse Width	300		ns
tw(TAL)	TAilN Input LOW Pulse Width	300		ns

Table 5.33 Timer A Input (External Trigger Input in One-shot Timer Mode)

Symbol	Parameter	Stan	Unit		
Symbol	Farameter	Min.	Max.	Unit	
tc(TA)	TAiIN Input Cycle Time	300		ns	
tw(TAH)	TAilN Input HIGH Pulse Width	150		ns	
tw(TAL)	TAilN Input LOW Pulse Width	150		ns	

Table 5.34 Timer A Input (External Trigger Input in Pulse Width Modulation Mode)

Symbol	Parameter	Stan	Unit	
Symbol	Farameter	Min.	Max.	Unit
tw(TAH)	TAiIN Input HIGH Pulse Width			ns
tw(TAL)	TAilN Input LOW Pulse Width			ns

Table 5.35 Timer A Input (Counter Increment/Decrement Input in Event Counter Mode)

Symbol	Parameter	Stan	Unit	
Symbol		Min.	Max.	Unit
tc(UP)	TAiOUT Input Cycle Time	3000		ns
tw(UPH)	TAiOUT Input HIGH Pulse Width	1500		ns
tw(UPL)	TAiOUT Input LOW Pulse Width			ns
tsu(UP-TIN)	TAiOUT Input Setup Time 600		ns	
th(TIN-UP)	TAiOUT Input Hold Time			ns

Table 5.36 Timer A Input (Two-phase Pulse Input in Event Counter Mode)

Symbol	Parameter	Stan	Unit		
Symbol	Falanielei	Min.	Max.	Unit	
tc(TA)	TAiIN Input Cycle Time	2		μs	
tsu(TAIN-TAOUT)	TAiOUT Input Setup Time	500		ns	
tsu(TAOUT-TAIN)	TAiIN Input Setup Time	500		ns	

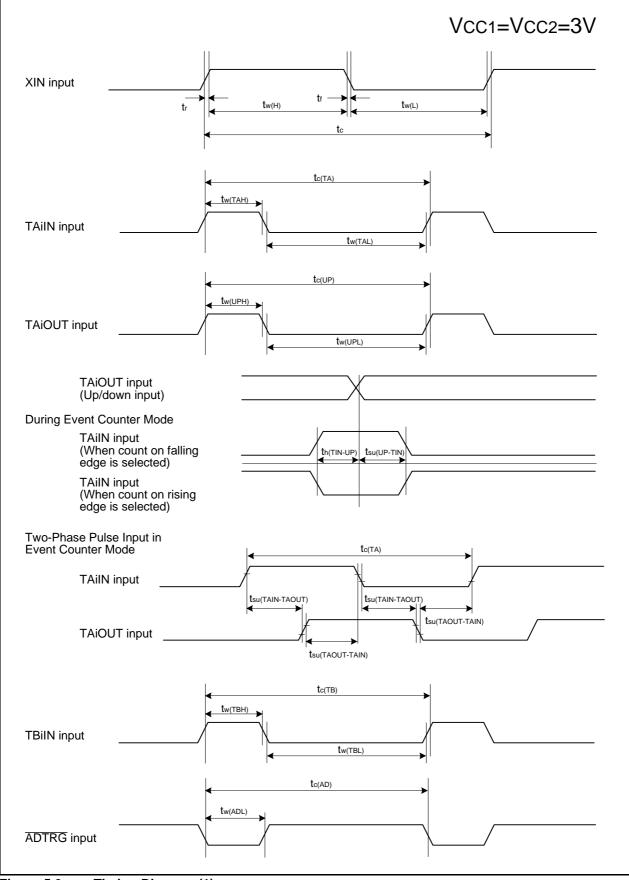
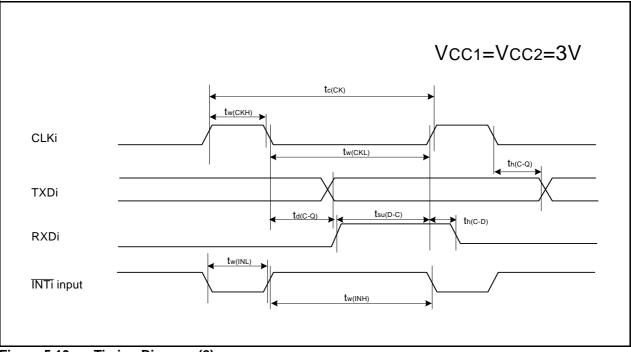
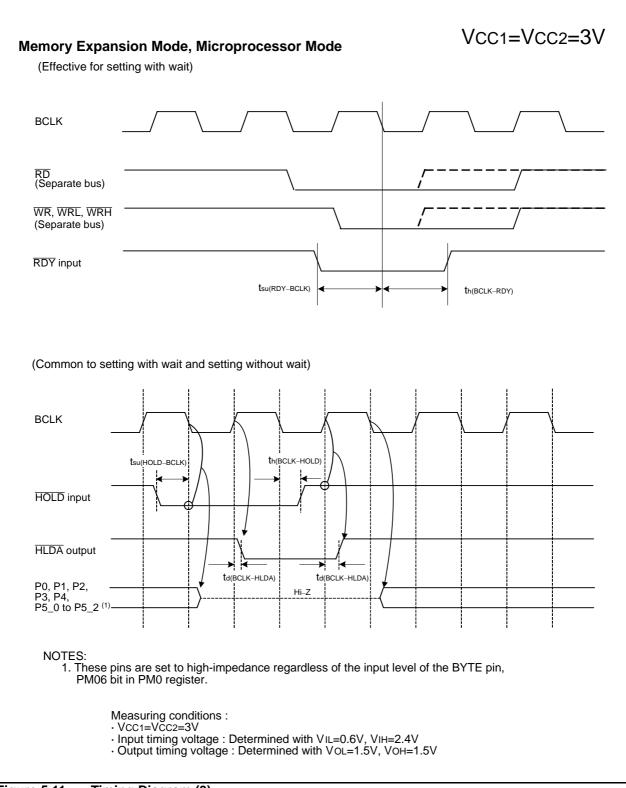
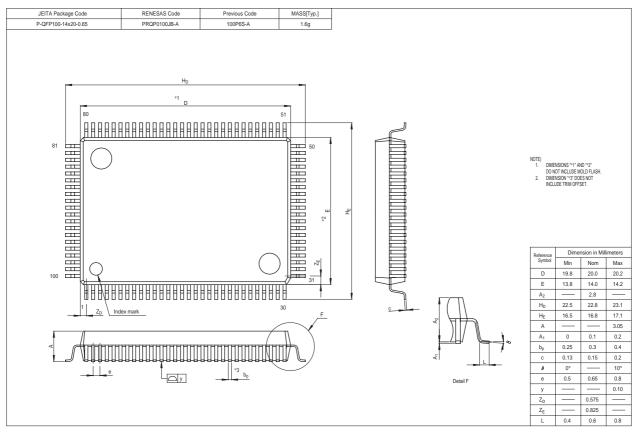
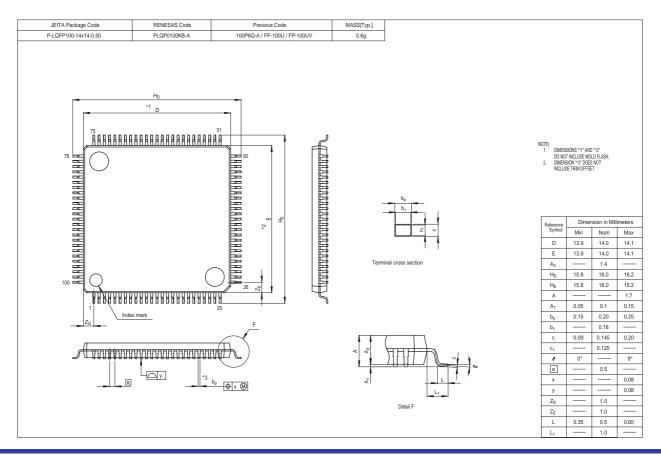


Figure 5.9 Timing Diagram (1)


Figure 5.10 Timing Diagram (2)



Appendix 1. Package Dimensions

Diagrams showing the latest package dimensions and mounting information are available in the "Packages" section of the Renesas Technology website.

Rev.1.22 Mar 30, 2007 Page 53 of 53 REJ03B0088-0122

REVISION HISTORY

M16C/30P Group Datasheet

Dav	Rev. Date		Description
Rev.	Dale	Page	Summary
0.70	Aug 26, 2004	1	First Edition issued
0.80	Mar 18, 2005	-	development support tools -> development tools
		-	BCLK -> CPU clock
		2	Table 1.1 Performance Outline of M16C/30P GroupSerial interface is revised.
		4	Figure 1.2 Type., Memory Size, and Package is partly revised.
		8	Table 1.4 Pin Detection (2) is partly revised.
		20	Note 2 Table 5.3 A/D Conversion Characteristics is partly revised.
		21	Symbol of Table 5.4 Power Supply Circuit Timing Characteristics is partly revised.
		22	Table 5.5 Electrical Characteristics is revised.
		28	Table 5.19 Electrical Characteristics is revised.
1.00	Sep 01, 2005	2	Table 1.1 Performance Outline of M16C/30P Group is partly revised.
		4	Table 1.2 Product List is partly revised.
			Figure 1.2 Type No., Memory Size, and Package is partly revised.
		5	Figure 1.3 Pin Configuration is partly revised.
		6	Figure 1.4 Pin Configuration is partly revised.
		7-8	Tables 1.3 to 1.4 Pin Characteristics are added.
		9	Table 1.5 Pin Description is revised.
		14	3. Memory is partly revised.
		15	Table 4.1 SFR Information is partly revised.
		19	Table 4.5 SFR Information is partly revised
		21	Table 5.2 Recommended Operating Conditions is partly revised.
		22	Table 5.3 A/D Conversion Characteristics is partly revised.
		25	Note 1 is added in Table 5.6 External Clock Input (XIN input)
			Table 5.7 Memory Expansion Mode and Microprocessor Mode is added.
		28	Table 5.20 Memory Expansion Mode and Microprocessor Modes (for setting with no wait) is added.
			Figure 5.2 Ports P0 to P10 Measurement Circuit is added.
		29	Table 5.21 Memory Expansion Mode and Microprocessor Modes (for 1- to3-wait setting and external area access) is added.
		32	Figure 5.5 Timing Diagram (3) is added.
		33	Figure 5.6 Timing Diagram (4) is added.
		34	Figure 5.7 Timing Diagram (5) is added.
		36	Note 1 to 4 are added in Table 5.23 External Clock Input (XIN input)
			Table 5.24 Memory Expansion Mode and Microprocessor Mode is added.
		39	Table 5.37 Memory Expansion Mode and Microprocessor Modes (for setting with no wait) is added.
			Figure 5.8 Ports P0 to P10 Measurement Circuit is added.
		40	Table 5.38 Memory Expansion Mode and Microprocessor Modes (for 1- to 3-wait setting and external area access) is added.
		43	Figure 5.11 Timing Diagram (3) is added.

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 But not infinited to, product data. diagrams, charts, programs, algorithms, and application scule as the development of weapons of mass and regulations, and proceedures required by such laws and regulation.
 All information in this document, included in this document for the purpose of military application scuch as the development of weapons of mass and regulations, and proceedures required by such laws and regulations.
 All information included in this document, such as product data, diagrams, charts, programs, algorithms, and application carcuit examples, is current as of the date this document, when exporting the products or the technology described herein, you should follow the applicable export control laws and regulations, and proceedures required by such laws and regulations.
 Renesas has used reasonable care in compiling the information in this document, but Renesas assumes no liability whatsoever for any damages incurred as a fast of the integet of their document.
 When using or otherwise regulation singling the information in this document.
 When using or otherwise regulations in the failure of the weapons of miles applications.
 Weapons of the total system before deciding about the applicability of a strategic or any damages incurred as a strategic or their weapons of miles applications.
 Weapons and subat disclosed through the disclosed through or the propersonation included in this document.
 Weapons and subat disclosed through the disclosed through the disolation.
 Weapons and subat disclosed throu

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com