

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	M16C/60
Core Size	16-Bit
Speed	16MHz
Connectivity	I ² C, IEBus, UART/USART
Peripherals	DMA, POR, PWM, WDT
Number of I/O	85
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 18x10b
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LFQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/m30302fepgp-u3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Product Code

U1	Lead-free	-20°C to 85°C
U4		-40°C to 85°C
PRQP0100J	JB-A (100P6S-A)	
1. Standard	Renesas Mark	
M3 0 3	302MDP-X>	X X F P Part No. (See Figure 1.2 Part No., Memory Size, and Package)
A	AU1 XXXX	X X X Chip version, product code and date code
		Henceforth, whenever it changes a version, it continues with A B and C
0		U1 : Shows Product code. (See table 1.3 Product Code) XXXXXXX : Seven digits
2. Custome	er's Parts Number +	Renesas catalog name
M2.0.2		X X E D Port No. (See Figure 1.2 Part No. Memory Size and Package)
1013 0 3	502 IVI D F - X /	A U 1 —— Chip version and product code
N	M16C XXXX	X X X X A Shows chip version. Henceforth, whenever it changes a version,
0		U1 : Shows Product code. (See table 1.3 Product Code)
		Date code seven digits
PLQP0100k	(B-A (100P6Q-A)	
1 Standard		
	MAGO	
M	30302MDP	- Part No. (See Figure 1.2 Part No., Memory Size, and Package)
		- Chin version, product code and date code
		A : Shows chip version.
0		it continues with A, B, and C.
		XXXXXXX : Seven digits
2. Custome	er's Parts Number +	Renesas catalog name
	30302000	— Part No. (See Figure 1.2 Part No., Memory Size and Package)
A U 1	- XXXGP	- Chip version and product code
M 1 6 C	xxxxxx	A : Shows chip version. Henceforth, whenever it changes a version, it continues with A B and C
0		U1 : Shows Product code. (See table 1.3 Product Code)
·		— Date code seven digits
NOTES:		
1. Refer	r to the mark specif	ication form for details of the Mask ROM version marking.
ure 1 3	Marking Diagra	am of Mask ROM Version for M16C/30P (Top View)

Table 1.4	Product Code of MASK ROM version for M16C/30P

Operating Ambient Temperature

Package

PIN	No.	Control	Port	Interrunt Pin	Timer Pin		Analog Pin	Bus Control
FP	GP	Pin	1 OIL	Interrupt i in		UARTIN	Analog I III	Pin
1	99		P9_6				ANEX1	
2	100		P9_5				ANEX0	
3	1		P9_4					
4	2		P9_3					
5	3		P9_2		TB2IN			
6	4		P9_1		TB1IN			
7	5		P9_0		TB0IN			
8	6	BYTE						
9	7	CNVSS						
10	8	XCIN	P8_7					
11	9	XCOUT	P8_6					
12	10	RESET						
13	11	XOUT						
14	12	VSS						
15	13	XIN						
16	14	VCC1						
17	15		P8_5	NMI				
18	16		P8_4	INT2				
19	17		P8_3	INT1				
20	18		P8_2	INTO				
21	19		 P8_1					
22	20		P8_0					
23	21		P7_7					
24	22		P7_6					
25	23		P7_5		TA2IN			
26	24		P7_4		TA2OUT			
27	25		P7_3		TA1IN	CTS2/RTS2		
28	26		P7_2		TA1OUT	CLK2		
29	27		P7_1		TAOIN	RXD2/SCL2		
30	28		P7_0		TA0OUT	TXD2/SDA2		
31	29		P6_7			TXD1/SDA1		
32	30		P6_6			RXD1/SCL1		
33	31		P6_5			CLK1		
34	32		P6 4			CTS1/RTS1/CTS0/CLKS1		
35	33		P6_3			TXD0/SDA0		
36	34		P6 2			RXD0/SCL0		
37	35		P6 1			CLK0		
38	36		 P6_0			CTS0/RTS0		
39	37		P5 7					RDY/CLKOUT
40	38		P5 6					ALE
41	39		P5 5					HOLD
42	40		P5 4					HLDA
43	41		P5_3					BCLK
44	42		P5_2					RD
45	43		P5 1					WRH/BHE
46	44		 P5_0					WRL/WR
47	45		P4_7					CS3
48	46		P4_6					CS2
49	47		P4_5					CS1
50	48		P4_4					CS0

Table 1.6Pin Characteristics (1)

RENESAS

Signal Name	Pin Name	I/O Type	Description
Main clock	XIN	I	I/O pins for the main clock generation circuit. Connect a ceramic
input			resonator or crystal oscillator between XIN and XOUT. To use the
Main clock	XOUT	0	external clock, input the clock from XIN and leave XOUT open.
output			
Sub clock	XCIN	I	I/O pins for a sub clock oscillation circuit. Connect a crystal oscillator
input			between XCIN and XCOUT. To use the external clock, input the clock
Sub clock	XCOUT	0	from XCIN and leave XCOUT open.
output			
Clock output	CLKOUT	0	The clock of the same cycle as fC, f8, or f32 is outputted.
INT interrunt	INTO to INTA	1	Input pips for the INT interrupt
input			
NINAL Sector and the	NINAL	1	langest and familie to an ent
input	INIVII	I	input pin for the NMI Interrupt.
Kaulianut		1	lanut ning for the local insult interview
key input	KI0 to KI3	I	input pins for the key input interrupt.
		1/0	These are time a AO to time AO 1/O mine (the survey of the surtex) of
Timer A		1/0	These are timer AU to timer A2 I/O pins. (nowever, the output of
			These are times 40 to times 40 input size
T : D	TAUIN to TAZIN		These are timer AU to timer A2 input pins.
Timer B	TBOIN to TB2IN	I	These are timer B0 to timer B2 input pins.
Serial	CTS0 to CTS2	I	These are send control input pins.
intenace	RTS0 to RTS2	0	These are receive control output pins.
	CLK0 to CLK2	I/O	These are transfer clock I/O pins.
	RXD0 to RXD2	I	These are serial data input pins.
	TXD0 to TXD2	0	These are serial data output pins. (however, TXD2 for the N-channel
			open drain output.)
	CLKS1	0	This is output pin for transfer clock output from multiple pins function.
I ² C mode	SDA0 to SDA2	I/O	These are serial data I/O pins. (however, SDA2 for the N-channel
			open drain output.)
	SCL0 to SCL2	I/O	These are transfer clock I/O pins. (however, SCL2 for the N-channel
			open drain output.)
Reference	VREF	I	Applies the reference voltage for the A/D converter.
voltage input			
A/D converter	AN0 to AN7,	I	Analog input pins for the A/D converter.
	AN0_0 to AN0_7		
	ADTRG	I	This is an A/D trigger input pin.
	ANEX0	I/O	This is the extended analog input pin for the A/D converter, and is the
			output in external op-amp connection mode.
	ANEX1		This is the extended analog input pin for the A/D converter.
I/O port	P0_0 to P0_7,	I/O	8-bit I/O ports in CMOS, having a direction register to select an input
-	P1_0 to P1_7,		or output.
	P2_0 to P2_7,		Each pin is set as an input port or output port. An input port can be set
	P3_0 to P3_7,		for a pull-up or for no pull-up in 4-bit unit by program. (however, P7_0
	P4_0 to P4_7,		and P7_1 for the N-channel open drain output.)
	P5_0 to P5_7,		
	P6_0 to P6_7,		
	P_{-0} to P_{-7} ,		
	$F_{9}UUF_{9}I,$ P10 0 to P10 7		
		1/0	1/O ports having aguivalant functions to PO
	P8 6 P8 7	1/0	ivo porto naving equivalent functions to FU.
Input port	P8 5	I	Input his for the NMI interrupt. Dis states can be read builty DO. 5 bit
		1	input pin for the NWI Interrupt. Pin states can be read by the P8_5 bit in the P8 register

Table 1.9Pin Description (2)

I : Input O : Output I/O : Input and output

Special Function Register (SFR) 4.

SFR(Special Function Register) is the control register of peripheral functions. Tables 4.1 to 4.5 list the SFR information.

Addrooo	Degister	Cumphial	After Deest
Address	Register	Symbol	Aller Resel
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0 (2)	PMO	0000000b(CNIVSS pip is "I ")
000411		FIVIO	00000000000(CNV33 pin is "H")
000Eb	Dragonar Mada Dagiatar 1	DM4	007770705
00050		PIVII	duxuxxuu
0006h	System Clock Control Register 0	CM0	01001000b
0007h	System Clock Control Register 1	CM1	0010000b
0008h	Chip Select Control Register	CSR	0000001b
0009h	Address Match Interrupt Enable Register	AIFR	XXXXXX00b
0000h	Protocol Register	DRCP	XX000000b
000A11		FRUK	2000000
000Bh			
000Ch			
000Dh			
000Eh	Watchdog Timer Start Register	WDTS	XXh
000Eb	Watchdog Timer Control Register	WDC	00XXXXXX
0010h	Address Match Interrupt Degister 0	PMAD0	00h
00101	Address Match Interrupt Register 0	RIVIADO	0011
0011h			UUn
0012h			X0h
0013h			
0014h	Address Match Interrupt Register 1	RMAD1	00h
0015h	· · · · · · · · · · · · · · · · · · ·		00h
00101			Xoh
00160			XUN
0017h			
0018h			
0019h			
001Ah			
001Bh			
001Dh			
001Ch			
001Dh			
001Eh			
001Fh			
0020h	DMA0 Source Pointer	SAR0	XXh
0021h		0.1 10	YYh
002111			
0022h			XXh
0023h			
0024h	DMA0 Destination Pointer	DAR0	XXh
0025h			XXh
0026b			XXh
0020h			7001
002711		7000	200
0028n	DiviAu Transfer Counter	TCRU	XXN
0029h			XXh
002Ah			
002Bh			1
002Ch	DMA0 Control Register	DMOCON	000000000
00206		51100011	00000000
002011			
002En			
002Fh			
0030h	DMA1 Source Pointer	SAR1	XXh
0031h			XXh
0032h			XXh
00325			7931
003311		DAD4	
0034n	DiviAT Destination Pointer	DAR1	XXN
0035h			XXh
0036h			XXh
0037h		1	
00385	DMA1 Transfer Counter	TCP1	XXP
00301		IUNI	
00390			^^!!
003Ah			
003Bh			
003Ch	DMA1 Control Register	DM1CON	00000X00b
003Db			
003Eh			
003EN			Į
003Fn			1

SFR Information (1)⁽¹⁾ Table 4.1

NOTES:

The blank areas are reserved and cannot be accessed by users.
 The PM00 and PM01 bits do not change at software reset.

Address	Register	Symbol	After Reset
0340h			
0341h			
0342h			
0343h			
0344h			
0345h			
0346h			
0347h			
0348h			
0349h			
034Ah			
034Bh			
034Ch			
034Dh			
034En			
034FN			
0350h			
0352h			
0352h			
0354h			
0355h			
0356h			
0357h			
0358h			
0359h			
035Ah			
035Bh			
035Ch			
035Dh			
035Eh	Interrupt Factor Select Register 2	IFSR2A	00XXXXXXb
035Fh	Interrupt Factor Select Register	IFSR	00h
0360h			
0361h			
0362h			
0363h			
03040			
0366h			
0367h			
0368h			
0369h			
036Ah			
036Bh			
036Ch	UART0 Special Mode Register 4	U0SMR4	00h
036Dh	UART0 Special Mode Register 3	U0SMR3	000X0X0Xb
036Eh	UART0 Special Mode Register 2	U0SMR2	X000000b
036Fh	UART0 Special Mode Register	U0SMR	X000000b
0370h	UART1 Special Mode Register 4	U1SMR4	00h
0371h	UART1 Special Mode Register 3	U1SMR3	000X0X0Xb
0372h	UART1 Special Mode Register 2	U1SMR2	X000000b
0373h	UART1 Special Mode Register	U1SMR	X000000b
0374h	UART2 Special Mode Register 4	U2SMR4	00h
0375h	UAR 12 Special Mode Register 3	U2SMR3	UUUXUXUXb
03760	UAK 12 Special Mode Register 2	U2SMR2	XUUUUUUD
03770	UAR 12 Special Mode Register		
0378h	UAR 12 Transmit/Keceive Mode Kegister		
03746	UAN 12 DII NALE GEHEIAIUI TIART2 Transmit Ruffer Register		
037Bh	UTITE Handlin Duller Neyloler	0210	XXh
037Ch	LIART2 Transmit/Receive Control Register 0	11200	00001000b
037Dh	UART2 Transmit/Receive Control Register 1	U2C1	0000010b
037Eh	UART2 Receive Buffer Register	U2RB	XXh
037Fh			XXh

Table 4.3SFR Information (3) (1)

NOTES:

1. The blank areas are reserved and cannot be accessed by users.

Address	Register	Symbol	After Reset
0380h	Count Start Flag	TABSR	000XX000b
0381h	Clock Prescaler Reset Fag	CPSRF	0XXXXXXXb
0382h	One-Shot Start Flag	ONSF	00XXX000b
0383h	Trigger Select Register	TRGSR	XXXX0000b
0384h	Un-Down Flag	UDF	XX0XX000b (2)
0385h	op Bomining	001	
030511	Timer A0 Register	TAO	V V h
030011	Timer Au Register	TAU	
0387h			XXN
0388h	Limer A1 Register	IA1	XXh
0389h			XXh
038Ah	Timer A2 Register	TA2	XXh
038Bh			XXh
038Ch			
038Dh			
038Eh			
038Fh			
0390h	Timer B0 Register	TB0	XXh
0391h	······		XXh
0392h	Timer B1 Register	TB1	XXh
03936			XXh
030/h	Timer B2 Register	TB2	XXh
0005411	TITICE DE TEGISIEI	102	
03950	Times AQ Mada Davistan	TAOMO	
0396N		TAUMR	
0397h	Limer A1 Mode Register	IA1MK	UUN
0398h	Timer A2 Mode Register	TA2MR	00h
0399h			
039Ah			
039Bh	Timer B0 Mode Register	TB0MR	00XX0000b
039Ch	Timer B1 Mode Register	TB1MR	00XX0000b
039Dh	Timer B2 Mode Register	TB2MR	00XX0000b
039Eh			
039Eh			
0340h	UARTO Transmit/Receive Mode Register	LIOMR	00b
03/101	UARTO Rit Pata Concrator		VYh
03426	UIARTO Dir Nate Generator		XXII XXb
03A211	OARTO Hanshill Buller Register	0016	
03A3h		110.00	XXN
03A4h	UARIO Transmit/Receive Control Register 0	0000	000010006
03A5h	UARIO Iransmit/Receive Control Register 1	U0C1	00000106
03A6h	UART0 Receive Buffer Register	UORB	XXh
03A7h			XXh
03A8h	UART1 Transmit/Receive Mode Register	U1MR	00h
03A9h	UART1 Bit Rate Generator	U1BRG	XXh
03AAh	UART1 Transmit Buffer Register	U1TB	XXh
03ABh			XXh
03ACh	UART1 Transmit/Receive Control Register 0	U1C0	00001000b
03ADh	UART1 Transmit/Receive Control Register 1	U1C1	00000010b
03AEh	UART1 Receive Buffer Register	U1RB	XXh
03AFh			XXh
03B0h	UART Transmit/Receive Control Register 2	UCON	X000000b
03B1b			
03B2h			
030211			
030311			
030411			
USBON			
03B6h			
03B7h			
03B8h	DMA0 Request Factor Select Register	DMOSL	00h
03B9h			
03BAh	DMA1 Request Factor Select Register	DM1SL	00h
03BBh			
03BCh	CRC Data Register	CRCD	XXh
03BDh	, , , , , , , , , , , , , , , , , , ,		XXh
03BEh	CRC Input Register	CRCIN	XXh
03BFh			-
000111		1	

SFR Information (4)⁽¹⁾ Table 4.4

NOTES:

The blank areas are reserved and cannot be accessed by users.
 Bit 5 in the Up-down flag is "0" by reset. However, The values in these bits when read are indeterminate.

Address	Register	Symbol	After Reset
03C0h	A/D Register 0	AD0	XXh
03C1h			XXh
03C2h	A/D Register 1	AD1	XXh
03C3h			XXh
03C4h	A/D Register 2	AD2	XXh
03C5h			XXh
03C6h	A/D Register 3	403	XXh
03001	AD Register 5	AD0	XXh
03071			
03080	A/D Register 4	AD4	XXN
03C9h			XXh
03CAh	A/D Register 5	AD5	XXh
03CBh			XXh
03CCh	A/D Register 6	AD6	XXh
03CDh			XXh
03CEh	A/D Register 7	AD7	XXh
03CFh			XXh
03D0h			
03D1h			
03D2h			
03D3h			
03D4h	A/D Control Register 2		XXX000X0b
03D5h		71000112	70000000
03050	A/D Control Register 0		000202225
03060	A/D Control Register 0	ADCONU	
03D7h	A/D Control Register 1	ADCONT	UUUUUXXXD
03D8h			
03D9h			
03DAh			
03DBh			
03DCh			
03DDh			
03DEh			
03DFh			
03E0h	Port P0 Register	P0	XXh
03E1h	Port P1 Register	P1	XXh
03E2h	Port P0 Direction Register	PD0	00h
03E3h	Port P1 Direction Register	PD1	00h
03E4h	Port P2 Register	P2	XXh
03E5h	Port P3 Register	P3	XXh
03E6h	Port P2 Direction Register	PD2	00h
03E01	Port P2 Direction Register		00h
032711	Port P3 Direction Register	FD3	
03E01	Port PE De sister	F4	
03E90	Port P5 Register	P0	AAN
03EAh	Port P4 Direction Register	PD4	00n
03EBh	Port P5 Direction Register	PD5	UUN
03ECh	Port Po Register	Рб	XXN
03EDh	Port P7 Register	P7	XXh
03EEh	Port P6 Direction Register	PD6	00h
03EFh	Port P7 Direction Register	PD7	00h
03F0h	Port P8 Register	P8	XXh
03F1h	Port P9 Register	P9	XXh
03F2h	Port P8 Direction Register	PD8	00X00000b
03F3h	Port P9 Direction Register	PD9	00h
03F4h	Port P10 Register	P10	XXh
03F5h			
03E6h	Port P10 Direction Register	PD10	00h
03F7h		1 0 10	
03F8h			
02E0h			
035 31			
USFAN			
U3FBh		BUBA	
03FCh	Pull-Up Control Register 0	PUR0	UUN
U3FDh	Pull-Up Control Register 1	PUR1	0000000b (2)
			0000010b (2)
03FEh	Pull-Up Control Register 2	PUR2	UUh
03FFh	Port Control Register	PCR	00h

SFR Information (5)⁽¹⁾ Table 4.5

NOTES:

1. The blank areas are reserved and cannot be accessed by users.

2. At hardware reset, the register is as follows:

"00000000b" where "L" is inputted to the CNVSS pin
"00000010b" where "H" is inputted to the CNVSS pin

At software reset, the register is as follows:

"00000000b" where the PM01 to PM00 bits in the PM0 register are "00b" (single-chip mode).
"00000010b" where the PM01 to PM00 bits in the PM0 register are "01b" (memory expansion mode) or "11b" (microprocessor mode).

5. Electrical Characteristics

Symbol		Parameter	Condition	Rated Value	Unit
Vcc	Supply Voltage	e(VCC1=VCC2)	Vcc1=Vcc2=AVcc	-0.3 to 6.5	V
AVcc	Analog Supply	Voltage	Vcc1=Vcc2=AVcc	-0.3 to 6.5	V
Vı	Input Voltage	RESET, CNVSS, BYTE, P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_7, P9_0 to P9_7, P10_0 to P10_7, VREF, XIN		–0.3 to Vcc+0.3	V
		P7_0, P7_1		-0.3 to 6.5	V
Vo	Output Voltage	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0 to P3_7, P4_0 to P4_7, P5_0 to P5_7, P6_0 to P6_7, P7_2 to P7_7, P8_0 to P8_4, P8_6, P8_7, P9_0 to P9_7, P10_0 to P10_7, XOUT		–0.3 to Vcc+0.3	V
		P7_0, P7_1		-0.3 to 6.5	V
Pd	Power Dissipat	tion	–40°C <topr≦85°c< td=""><td>300</td><td>mW</td></topr≦85°c<>	300	mW
Topr	Operating Ambient	When the Microcomputer is Operating		-20 to 85 / -40 to 85	°C
	Temperature	One Time Flash Program Erase		0 to 60	
		Flash Program Erase		0 to 60	
Tstg	Storage Tempe	erature		-65 to 150	°C

Symbol	Parameter		Measuring Condition		Standard			Unit
Cymbol	T arame			vicasuling condition	Min.	Тур.	Max.	0
_	Resolution	Resolution		VREF=VCC			10	Bits
INL	Integral Non-Linearity Error	10bit	VREF= VCC= 5V	AN0 to AN7 input, AN0_0 to AN0_7 input, ANEX0, ANEX1 input			±5	LSB
			VREF= VCC= 3.3V	AN0 to AN7 input, AN0_0 to AN0_7 input, ANEX0, ANEX1 input			±7	LSB
		8bit	Vref=V	/cc=5V, 3.3V			±2	LSB
-	Absolute Accuracy	10bit	VREF= VCC= 5V	AN0 to AN7 input, AN0_0 to AN0_7 input, ANEX0, ANEX1 input			±5	LSB
			VREF= VCC =3.3V	AN0 to AN7 input, AN0_0 to AN0_7 input, ANEX0, ANEX1 input			±7	LSB
		8bit	Vref=V	/cc=5V, 3.3V			±2	LSB
-	Tolerance Level Imped	ance				3		kΩ
DNL	Differential Non-Lineari	ty Error					±2	LSB
_	Offset Error						±5	LSB
-	Gain Error						±5	LSB
RLADDER	Ladder Resistance		Vref=V	/cc	10		40	kΩ
tCONV	10-bit Conversion Time Function Available	, Sample & Hold	Vref=V	∕cc=5V, φAD=10MHz	3.3			μs
tCONV	8-bit Conversion Time, Sample & Hold Function Available		Vref=V	/cc=5V,	2.8			μs
tSAMP	Sampling Time				0.3			μS
VREF	Reference Voltage				3.0		Vcc	V
VIA	Analog Input Voltage				0		VREF	V

Table 5.3	A/D Conversion Characteristics (1)
-----------	-----------------------------------	---

NOTES:

1. Referenced to Vcc=AVcc=VREF=3.3 to 5.5V, Vss=AVss=0V at Topr = -20 to 85°C / -40 to 85°C unless otherwise specified.

2. ϕAD frequency must be 10 MHz or less.

3. When sample & hold function is disabled, ϕ AD frequency must be 250 kHz or more, in addition to the limitation in Note 2.

4. When sample & hold function is enabled, ϕ AD frequency must be 1MHz or more, in addition to the limitation in Note 2.

Symbol	Parameter		Standard			Linit
Symbol	Falanetei		Min.	Тур.	Max.	Unit
-	Program and Erase Endurance (2)		100 ⁽³⁾			cycle
-	Word Program Time (Vcc1=5.0V)			25	200	μs
-	Lock Bit Program Time			25	200	μs
—	Block Erase Time	4-Kbyte block		0.3	4	S
-	(Vcc1=5.0V)	8-Kbyte block		0.3	4	S
-		32-Kbyte block		0.5	4	S
-		64-Kbyte block		0.8	4	S
tPS	Flash Memory Circuit Stabilization Wait Time				15	μS
—	Data Hold Time ⁽⁴⁾		10			year

Table 5.4 Flash Memory Version Electrical Characteristics (1)

NOTES:

1. Referenced to Vcc1=4.5 to 5.5V, 3.0 to 3.6V at Topr = 0 to 60 °C (U3, U5) unless otherwise specified.

2. Program and Erase Endurance refers to the number of times a block erase can be performed.

If the program and erase endurance is 100, each block can be erased 100 times. For example, if a 4 Kbytes block A is erased after writing 1 word data 2,048 times, each to a different address, this counts as one program and erase endurance. Data cannot be written to the same address more than once without erasing the block.

(Rewrite prohibited)3. Maximum number of E/W cycles for which operation is guaranteed.

4. Topr = -40 to 85 °C (U3) / -20 to 85 °C (U5).

Table 5.5Flash Memory Version Program / Erase Voltage and Read Operation Voltage
Characteristics

Flash Program, Erase Voltage	Flash Read Operation Voltage
VCC1 = 3.3 ± 0.3 V or 5.0 ± 0.5 (Topr = 0°C to 60°C)	VCC1=2.7 to 5.5 V (Topr = -40°C to 85°C (U3)
	-20°C to 85°C (U5))

VCC1=VCC2=5V

Symbol		Dorom	otor	Measuring Condition	Standard		Unit	
Symbol		Falalli	elei	Measuring Condition	Min.	Тур.	Max.	Unit
Vон	HIGH Output Voltage	P0_0 to P0_7, P1_0 P3_0 to P3_7, P4_0 P6_0 to P6_7, P7_2 P8_7, P9_0 to P9_	to P1_7, P2_0 to P2_7, to P4_7, P5_0 to P5_7, to P7_7, P8_0 to P8_4, P8_6, 7, P10_0 to P10_7	IOH=-5mA	Vcc-2.0		Vcc	V
Vон	HIGH Output Voltage	P0_0 to P0_7, P1_0 P3_0 to P3_7, P4_0 P6_0 to P6_7, P7_2 P8_7, P9_0 to P9_	0 to P1_7, P2_0 to P2_7, 1 to P4_7, P5_0 to P5_7, 1 to P7_7, P8_0 to P8_4, P8_6, 7, P10_0 to P10_7	ІОН=-200μА	Vcc-0.3		Vcc	V
Vон	HIGH Outpu	t Voltage XOUT	HIGHPOWER	IOH=-1mA	Vcc-2.0		Vcc	V
			LOWPOWER	IOH=-0.5mA	Vcc-2.0		Vcc	v
	HIGH Outpu	t Voltage XCOUT	HIGHPOWER	With no load applied		2.5		V
			LOWPOWER	With no load applied		1.6		v
Vol	LOW Output Voltage	P0_0 to P0_7, P1_0 P3_0 to P3_7, P4_0 P6_0 to P6_7, P7_0 P8_6, P8_7, P9_0 to	0 to P1_7, P2_0 to P2_7, 0 to P4_7, P5_0 to P5_7, 0 to P7_7, P8_0 to P8_4, to P9_7, P10_0 to P10_7	IOL=5mA			2.0	V
Vol	LOW Output Voltage	P0_0 to P0_7, P1_0 P3_0 to P3_7, P4_0 P6_0 to P6_7, P7_0 P8_6, P8_7, P9_0 to	to P1_7, P2_0 to P2_7, to P4_7, P5_0 to P5_7, to P7_7, P8_0 to P8_4, to P9_7, P10_0 to P10_7	IOL=200μA			0.45	V
Vol	LOW Output	Voltage XOUT	HIGHPOWER	IOL=1mA			2.0	V
			LOWPOWER	IOL=0.5mA			2.0	v
	LOW Output	Voltage XCOUT	HIGHPOWER	With no load applied		0		v
			LOWPOWER	With no load applied		0		•
Vt+-Vt-	Hysteresis	TAOIN to TA2IN, TB INTO to INT4, NMI, A CLK0 to CLK2, TA0 RXD0 to RXD2, SCI	0IN to TB2IN, ADTRG, CTS0 to CTS2, OUT to TA2OUT, KI0 to KI3, L0 to SCL2, SDA0 to SDA2		0.2		1.0	V
VT+-VT-	Hysteresis	RESET			0.2		2.5	V
Ін	HIGH Input Current	P0_0 to P0_7, P1_0 P3_0 to P3_7, P4_0 P6_0 to P6_7, P7_0 P9_0 to P9_7, P10_ XIN, RESET, CNVS	to P1_7, P2_0 to P2_7, to P4_7, P5_0 to P5_7, to P7_7, P8_0 to P8_7, 0 to P10_7, S, BYTE	VI=5V			5.0	μΑ
lı.	LOW Input Current	P0_0 to P0_7, P1_0 P3_0 to P3_7, P4_0 P6_0 to P6_7, P7_0 P9_0 to P9_7, P10_ XIN, RESET, CNVS	to P1_7, P2_0 to P2_7, to P4_7, P5_0 to P5_7, to P7_7, P8_0 to P8_7, 0 to P10_7, S, BYTE	VI=0V			-5.0	μΑ
Rpullup	Pull-Up Resistance	P0_0 to P0_7, P1_0 P3_0 to P3_7, P4_0 P6_0 to P6_7, P7_0 P8_7, P9_0 to P9_	to P1_7, P2_0 to P2_7, to P4_7, P5_0 to P5_7, to P7_7, P8_0 to P8_4, P8_6, 7, P10_0 to P10_7	VI=0V	30	50	170	kΩ
RfXIN	Feedback R	esistance XIN				1.5		MΩ
RfxCIN	Feedback R	esistance XCIN				15		MΩ
VRAM	RAM Retent	ion Voltage		At stop mode	2.0			V

Electrical Characteristics(1) (1) Table 5.9

NOTES: 1. Referenced to Vcc1=Vcc2=4.2 to 5.5V, Vss = 0V at Topr = -20 to 85°C / -40 to 85°C, f(XIN) =16MHz unless otherwise specified.

VCC1=VCC2=3V

Timing Requirements

(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Table 5.37 Timer B Input (Counter Input in Event Counter Mode)

Symbol	Parameter	Standard	Idard	Llpit
	Falanetei	Min.	Max.	Offic
tc(TB)	TBilN Input Cycle Time (counted on one edge)	150		ns
tw(TBH)	TBiIN Input HIGH Pulse Width (counted on one edge)	60		ns
tw(TBL)	TBilN Input LOW Pulse Width (counted on one edge)	60		ns
tc(TB)	TBilN Input Cycle Time (counted on both edges)	300		ns
tw(TBH)	TBilN Input HIGH Pulse Width (counted on both edges)	120		ns
tw(TBL)	TBilN Input LOW Pulse Width (counted on both edges)	120		ns

Table 5.38 Timer B Input (Pulse Period Measurement Mode)

Symbol	Parameter	Standard		Llnit	
	Falameter	Min.	Max.	Onit	
tc(TB)	TBiIN Input Cycle Time	600		ns	
tw(TBH)	TBilN Input HIGH Pulse Width	300		ns	
tw(TBL)	TBiIN Input LOW Pulse Width	300		ns	

Table 5.39 Timer B Input (Pulse Width Measurement Mode)

Symbol	Baramatar	Stan	Linit	
	Farameter	Min.	Max.	Onit
tc(TB)	TBiIN Input Cycle Time	600		ns
tw(TBH)	TBiIN Input HIGH Pulse Width	300		ns
tw(TBL)	TBiIN Input LOW Pulse Width	300		ns

Table 5.40 A/D Trigger Input

Symbol	Parameter	Stan	dard	Linit	
	Farameter	Min.	Max.	Onit	
tc(AD)	ADTRG Input Cycle Time	1500		ns	
tw(ADL)	ADTRG Input LOW Pulse Width	200		ns	

Table 5.41 Serial Interface

Symbol	Parameter	Stan	dard	Unit	
	Farameter	Min.	Max.	Offic	
tc(CK)	CLKi Input Cycle Time	300		ns	
tw(CKH)	CLKi Input HIGH Pulse Width	150		ns	
tw(CKL)	CLKi Input LOW Pulse Width	150		ns	
td(C-Q)	TXDi Output Delay Time		160	ns	
th(C-Q)	TXDi Hold Time	0		ns	
tsu(D-C)	RXDi Input Setup Time	100		ns	
th(C-D)	RXDi Input Hold Time	90		ns	

Table 5.42 External Interrupt INTi Input

Symbol	Parameter	Stan	Linit	
Symbol	Falantelei	Min.	Max.	Offic
tw(INH)	INTi Input HIGH Pulse Width	380		ns
tw(INL)	INTi Input LOW Pulse Width	380		ns

VCC1=VCC2=3V

Switching Characteristics

(VCC1 = VCC2 = 3V, VSS = 0V, at Topr = -20 to 85° C / -40 to 85° C unless otherwise specified)

Symbol	Barametar		Stan	dard	Lipit
Symbol	Farameter		Min.	Max.	Unit
td(BCLK-AD)	Address Output Delay Time			30	ns
th(BCLK-AD)	Address Output Hold Time (in relation to BCLK)		0		ns
th(RD-AD)	Address Output Hold Time (in relation to RD)		0		ns
th(WR-AD)	Address Output Hold Time (in relation to WR)		(NOTE 2)		ns
td(BCLK-CS)	Chip Select Output Delay Time			30	ns
th(BCLK-CS)	Chip Select Output Hold Time (in relation to BCLK)		0		ns
td(BCLK-ALE)	ALE Signal Output Delay Time			25	ns
th(BCLK-ALE)	ALE Signal Output Hold Time	0	-4		ns
td(BCLK-RD)	RD Signal Output Delay Time	See Figure 5.8		30	ns
th(BCLK-RD)	RD Signal Output Hold Time	rigure 5.0	0		ns
td(BCLK-WR)	WR Signal Output Delay Time			30	ns
th(BCLK-WR)	WR Signal Output Hold Time		0		ns
td(BCLK-DB)	Data Output Delay Time (in relation to BCLK)			40	ns
th(BCLK-DB)	Data Output Hold Time (in relation to BCLK) ⁽³⁾		4		ns
td(DB-WR)	Data Output Delay Time (in relation to WR)		(NOTE 1)		ns
th(WR-DB)	Data Output Hold Time (in relation to WR) ⁽³⁾]	(NOTE 2)		ns
td(BCLK-HLDA)	HLDA Output Delay Time]		40	ns

NOTES:

1. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} - 40[ns] \qquad \qquad f(BCLK) \text{ is } 12.5 \text{MHz or less.}$$

2. Calculated according to the BCLK frequency as follows:

$$\frac{0.5 \times 10^9}{f(BCLK)} = 10[ns]$$

3. This standard value shows the timing when the output is off, and does not show hold time of data bus. Hold time of data bus varies with capacitor volume and pull-up (pull-down) resistance value. Hold time of data bus is expressed in $t = -CR X \ln (1-VoL / VCc1)$ by a circuit of the right figure. For example, when VoL = 0.2Vcc1, C = 30pF, R = 1k\Omega, hold time of output "L" level is

Figure 5.8 Ports P0 to P10 Measurement Circuit

Appendix 1. Package Dimensions

Diagrams showing the latest package dimensions and mounting information are available in the "Packages" section of the Renesas Technology website.

Rev.1.22 Mar 30, 2007 Page 53 of 53 REJ03B0088-0122

RENESAS

REVISION HISTORY

M16C/30P Group Datasheet

Rev.	Date	Description	
		Page	Summary
0.70	Aug 26, 2004	-	First Edition issued
0.80	Mar 18, 2005	-	development support tools -> development tools
		-	BCLK -> CPU clock
		2	Table 1.1 Performance Outline of M16C/30P GroupSerial interface is revised.
		4	Figure 1.2 Type., Memory Size, and Package is partly revised.
		8	Table 1.4 Pin Detection (2) is partly revised.
		20	Note 2 Table 5.3 A/D Conversion Characteristics is partly revised.
		21	Symbol of Table 5.4 Power Supply Circuit Timing Characteristics is partly revised.
		22	Table 5.5 Electrical Characteristics is revised.
		28	Table 5.19 Electrical Characteristics is revised.
1.00	Sep 01, 2005	2	Table 1.1 Performance Outline of M16C/30P Group is partly revised.
		4	Table 1.2 Product List is partly revised.
			Figure 1.2 Type No., Memory Size, and Package is partly revised.
		5	Figure 1.3 Pin Configuration is partly revised.
		6	Figure 1.4 Pin Configuration is partly revised.
		7-8	Tables 1.3 to 1.4 Pin Characteristics are added.
		9	Table 1.5 Pin Description is revised.
		14	3. Memory is partly revised.
		15	Table 4.1 SFR Information is partly revised.
		19	Table 4.5 SFR Information is partly revised
		21	Table 5.2 Recommended Operating Conditions is partly revised.
		22	Table 5.3 A/D Conversion Characteristics is partly revised.
		25	Note 1 is added in Table 5.6 External Clock Input (XIN input)
			Table 5.7 Memory Expansion Mode and Microprocessor Mode is added.
		28	Table 5.20 Memory Expansion Mode and Microprocessor Modes (for setting with no wait) is added.
			Figure 5.2 Ports P0 to P10 Measurement Circuit is added.
		29	Table 5.21 Memory Expansion Mode and Microprocessor Modes (for 1- to 3-wait setting and external area access) is added.
		32	Figure 5.5 Timing Diagram (3) is added.
		33	Figure 5.6 Timing Diagram (4) is added.
		34	Figure 5.7 Timing Diagram (5) is added.
		36	Note 1 to 4 are added in Table 5.23 External Clock Input (XIN input)
			Table 5.24 Memory Expansion Mode and Microprocessor Mode is added.
		39	Table 5.37 Memory Expansion Mode and Microprocessor Modes (for setting with no wait) is added.
			Figure 5.8 Ports P0 to P10 Measurement Circuit is added.
		40	Table 5.38 Memory Expansion Mode and Microprocessor Modes (for 1- to 3-wait setting and external area access) is added.
		43	Figure 5.11 Timing Diagram (3) is added.

REVISION HISTORY

M16C/30P Group Datasheet

Rev.	Date	Description		
		Page	Summary	
		44	Figure 5.12 Timing Diagram (4) is added.	
		45	Figure 5.13 Timing Diagram (5) is added.	
1.10	Oct 01, 2005	2	Table 1.1 Performance Outline of M16C/30P Group is partly revised.	
		4	Table 1.2 Product List is partly revised.	
			Figure 1.2 Type No., Memory Size, and Package is partly revised.	
		5	Table 1.3 Product Code of Mask ROM version Version for M16C/30P is added.	
			Figure 1.3 Marking Diagram of Mask ROM Version for M16C/30P is added.	
		6	Figure 1.4 Marking Diagram of ROM -less Version for M16C/30P is added.	
		6	Table 1.4 Product Code of ROM-less version for M16C/30P is added.	
		16	Figure 3.1 Memory Map is partly added.	
		23	Table 5.2 information is revised.	
1.11	May 31, 2006	4	1.4 Product List information is revised.	
	-		Table 1.2 Product List is partly revised.	
		5	Figure 1.2 Type No., Memory Size, and Package is partly added.	
		7	Table 1.4 Product Code of Flash Memory version and ROM-less version for M16C/30P is partly revised.	
			Figure 1.4 Marking Diagram of Flash Memory version and ROM-less Version for M16C/30P (Top View) is partly added.	
		17	3. Memory information is revised.	
			Figure 3.1 Memory Map is partly revised.	
		18	Table 4.1 SFR Information(1) is partly revised.	
		19	Table 4.2 SFR Information(2) is partly added.	
		23	Table 5.1 Absolute Maximum Ratings information is revised.	
		26	Table 5.4 Flash Memory Version Electrical Characteristics is added.	
			Table 5.5 Flash Memory Version Program / Erase Voltage and Read	
		28	Table 5.7 Electrical Characteristics(1) is partly deleted.	
		29	Table 5.8 Electrical Characteristics (2) is partly revised.	
		33	Table 5.23 Memory Expansion and Microprocessor Modes NOTES 3 is partly revised.	
		34	Table 5.24 Memory Expansion and Microprocessor Modes	
		40	Table 5.25 Electrical Characteristics (1) is partly deleted.	
		41	Table 5.26 Electrical Characteristics (2) is partly revised.	
		45	Table 5.41 Memory Expansion and Microprocessor Modes NOTES 3 is partly revised.	
		46	Table 5.42 Memory Expansion and Microprocessor Modes NOTES 3 is partly revised.	