

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	20 MIPS
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, QEI, POR, PWM, WDT
Number of I/O	30
Program Memory Size	48KB (16K x 24)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f4011-20e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Special Digital Signal Controller Features:

- Enhanced Flash program memory:
 - 10,000 erase/write cycle (min.) for industrial temperature range, 100K (typical)
- Data EEPROM memory:
- 100,000 erase/write cycle (min.) for industrial temperature range, 1M (typical)
- Self-reprogrammable under software control
- Power-on Reset (POR), Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Flexible Watchdog Timer (WDT) with on-chip, low-power RC oscillator for reliable operation
- Fail-Safe Clock Monitor operation detects clock failure and switches to on-chip, low-power RC oscillator
- Programmable code protection
- In-Circuit Serial Programming[™] (ICSP[™])
- Selectable Power Management modes:
 - Sleep, Idle and Alternate Clock modes

CMOS Technology:

- · Low-power, high-speed Flash technology
- Wide operating voltage range (2.5V to 5.5V)
- Industrial and Extended temperature ranges
- Low-power consumption

dsPIC30F Motor Control and Power Conversion Family

Device	Pins	Program Mem. Bytes/ Instructions	SRAM Bytes	EEPROM Bytes	Timer 16-bit	Input Cap	Output Comp/Std PWM	Motor Control PWM	10-bit A/D 1 Msps	Quad Enc	UART	SPI	I²C [™]	CAN
dsPIC30F4012	28	48K/16K	2048	1024	5	4	2	6 ch	6 ch	Yes	1	1	1	1
dsPIC30F4011	40/44	48K/16K	2048	1024	5	4	4	6 ch	9 ch	Yes	2	1	1	1

Table 1-1 provides a brief description of the device I/O pinout and the functions that are multiplexed to a port pin. Multiple functions may exist on one port pin. When multiplexing occurs, the peripheral module's functional requirements may force an override of the data direction of the port pin.

Pin Name	Pin Type	Buffer Type	Description										
AN0-AN8	I	Analog	Analog input channels. AN0 and AN1 are also used for device programming data and clock inputs, respectively.										
AVDD	Р	Р	Positive supply for analog module. This pin must be connected at all times.										
AVss	Р	Р	Ground reference for analog module. This pin must be connected at all times.										
CLKI	I	ST/CMOS	External clock source input. Always associated with OSC1 pin function.										
CLKO	0	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.										
CN0-CN7 CN17-CN18	I	ST	Input change notification inputs. Can be software programmed for internal weak pull-ups on all inputs.										
C1RX	I	ST	CAN1 bus receive pin.										
C1TX	0	—	CAN1 bus transmit pin.										
EMUD	I/O	ST	ICD Primary Communication Channel data input/output pin.										
EMUC	I/O	ST	ICD Primary Communication Channel clock input/output pin.										
EMUD1	I/O	ST	ICD Secondary Communication Channel data input/output pin.										
EMUC1	I/O	ST	ICD Secondary Communication Channel clock input/output pin.										
EMUD2	I/O	ST	ICD Tertiary Communication Channel data input/output pin.										
EMUC2	I/O	ST	ICD Tertiary Communication Channel clock input/output pin.										
EMUD3	I/O	ST	CD Quaternary Communication Channel data input/output pin.										
EMUC3	I/O	ST	ICD Quaternary Communication Channel clock input/output pin.										
IC1, IC2, IC7, IC8	I	ST	Capture inputs 1, 2, 7 and 8.										
INDX	I	ST	Quadrature Encoder Index Pulse input.										
QEA	I	ST	Quadrature Encoder Phase A input in QEI mode.										
			Auxiliary Timer External Clock/Gate input in Timer mode.										
QEB		SI	Quadrature Encoder Phase B input in QEI mode.										
INTO		SI	External interrupt 0.										
IN I 1		SI	External interrupt 1.										
IN 12		SI	External interrupt 2.										
FLTA	I	ST	PWM Fault A input.										
PWM1L	0	—	PWM1 low output.										
PWM1H	0	—	PWM1 high output.										
PWM2L	0	—	PWM2 low output.										
PWM2H	0	—	PWM2 high output.										
PWM3L	0	—	PWM3 low output.										
PWM3H	0		PWM3 high output.										
MCLR	I/P	ST	Master Clear (Reset) input or programming voltage input. This pin is an active-low Reset to the device.										
OCFA	I	ST	Compare Fault A input (for Compare channels 1, 2, 3 and 4).										
OC1-OC4	0	-	Compare outputs 1 through 4.										
Legend: CM	OS = CI	MOS compati	tible input or output Analog = Analog input										
ST	= So	chmitt Trigge	r input with CMOS levels O = Output										
I	= In	put	P = Power										

TABLE 1-1: dsPIC30F4011 I/O PIN DESCRIPTIONS

5.4 Interrupt Sequence

All interrupt event flags are sampled in the beginning of each instruction cycle by the IFSx registers. A pending interrupt request (IRQ) is indicated by the flag bit being equal to a '1' in an IFSx register. The IRQ will cause an interrupt to occur if the corresponding bit in the interrupt enable (IECx) register is set. For the remainder of the instruction cycle, the priorities of all pending interrupt requests are evaluated.

If there is a pending IRQ with a priority level greater than the current processor priority level in the IPL bits, the processor will be interrupted.

The processor then stacks the current program counter and the low byte of the processor STATUS register (SRL), as shown in Figure 5-2. The low byte of the STATUS register contains the processor priority level at the time prior to the beginning of the interrupt cycle. The processor then loads the priority level for this interrupt into the STATUS register. This action will disable all lower priority interrupts until the completion of the Interrupt Service Routine (ISR).

FIGURE 5-2: INTERRUPT STACK FRAME

- Note 1: The user can always lower the priority level by writing a new value into SR. The Interrupt Service Routine must clear the interrupt flag bits in the IFSx register before lowering the processor interrupt priority in order to avoid recursive interrupts.
 - The IPL3 bit (CORCON<3>) is always clear when interrupts are being processed. It is set only during execution of traps.

The RETFIE (return from interrupt) instruction will unstack the program counter and STATUS registers to return the processor to its state prior to the interrupt sequence.

5.5 Alternate Interrupt Vector Table

In program memory, the Interrupt Vector Table (IVT) is followed by the Alternate Interrupt Vector Table (AIVT), as shown in Figure 5-1. Access to the Alternate Interrupt Vector Table is provided by the ALTIVT bit in the INTCON2 register. If the ALTIVT bit is set, all interrupt and exception processes will use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors. The AIVT supports emulation and debugging efforts by providing a means to switch between an application and a support environment, without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time.

If the AIVT is not required, the program memory allocated to the AIVT may be used for other purposes. AIVT is not a protected section and may be freely programmed by the user.

5.6 Fast Context Saving

A context saving option is available using shadow registers. Shadow registers are provided for the DC, N, OV, Z and C bits in SR, and the registers W0 through W3. The shadows are only one-level deep. The shadow registers are accessible using the PUSH.S and POP.S instructions only.

When the processor vectors to an interrupt, the PUSH.S instruction can be used to store the current value of the aforementioned registers into their respective shadow registers.

If an ISR of a certain priority uses the PUSH.S and POP.S instructions for fast context saving, then a higher priority ISR should not include the same instructions. Users must save the key registers in software during a lower priority interrupt if the higher priority ISR uses fast context saving.

5.7 External Interrupt Requests

The interrupt controller supports three external interrupt request signals, INT0-INT2. These inputs are edge sensitive; they require a low-to-high, or a high-to-low transition, to generate an interrupt request. The INTCON2 register has three bits, INT0EP-INT2EP, that select the polarity of the edge detection circuitry.

5.8 Wake-up from Sleep and Idle

The interrupt controller may be used to wake-up the processor from either Sleep or Idle modes if Sleep or Idle modes are active when the interrupt is generated.

If an enabled interrupt request of sufficient priority is received by the interrupt controller, then the standard interrupt request is presented to the processor. At the same time, the processor will wake-up from Sleep or Idle and begin execution of the ISR needed to process the interrupt request.

dsPIC30F4011/4012

TABLE 8-2: dsPIC30F4012 PORT REGISTER MAP⁽¹⁾

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
TRISB	02C6		_			—		_	_	_	-	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	0000 0000 0011 1111
PORTB	02C8	_	_	_	_	_	_	_	_	_	_	RB5	RB4	RB3	RB2	RB1	RB0	0000 0000 0000 0000
LATB	02CB	_	_	_	_	_	_	_	_	_	_	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	0000 0000 0000 0000
TRISC	02CC	TRISC15	TRISC14	TRISC13	_	_	_	_	_	_	_	—	_	_	_	_	_	1110 0000 0000 0000
PORTC	02CE	RC15	RC14	RC13	_	_	_	_	_	_	_	—	_	_	_	_	_	0000 0000 0000 0000
LATC	02D0	LATC15	LATC14	LATC13	_	_	_	_	_	_	_	—	_	_	_	_	_	0000 0000 0000 0000
TRISD	02D2	_	_	_	_	_	_	_	_	_	_	—	_	_	_	TRISD1	TRISD0	0000 0000 0000 0011
PORTD	02D4	_	_	_	_	_	_	_	_	_	_	—	_	_	_	RD1	RD0	0000 0000 0000 0000
LATD	02D6	_	_		_	—	_	—	—	_		—	—	—	_	LATD1	LATD0	0000 0000 0000 0000
TRISE	02D8	_	_	_	_	_	_	_	TRISE8	_	_	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	0000 0001 0011 1111
PORTE	02DA	_	_	_	_	_	_	_	RE8	_	_	RE5	RE4	RE3	RE2	RE1	RE0	0000 0000 0000 0000
LATE	02DC	_	_	_	_	_	_	_	LATE8	_	_	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	0000 0000 0000 0000
TRISF	02EE	_	_	_	_	_	_	_	_	_	_	—	_	TRISF3	TRISF2	_	_	0000 0000 0000 1100
PORTF	02E0	_	_		_	_	_	_	_	_	_	_	_	RF3	RF2	_	_	0000 0000 0000 0000
LATF	02E2	_	_	_	_	_	_	_	_	_	_	_		LATF3	LATF2	_	_	0000 0000 0000 0000

Legend: — = unimplemented bit, read as '0'

Note 1: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

dsPIC30F4011/4012

NOTES:

13.4.2 PWM PERIOD

The PWM period is specified by writing to the PRx register. The PWM period can be calculated using Equation 13-1.

EQUATION 13-1: PWM PERIOD

 $PWM \ period = [(PRx) + 1] \cdot 4 \cdot Tosc \cdot$ $(TMRx \ prescale \ value)$

PWM frequency is defined as 1/[PWM period].

When the selected TMRx is equal to its respective Period register, PRx, the following four events occur on the next increment cycle:

- TMRx is cleared
- The OCx pin is set
 - Exception 1: If PWM duty cycle is 0x0000, the OCx pin will remain low.
 - Exception 2: If duty cycle is greater than PRx, the pin will remain high.
- The PWM duty cycle is latched from OCxRS into OCxR
- The corresponding timer interrupt flag is set

See Figure 13-1 for key PWM period comparisons. Timer3 is referred to in the figure for clarity.

15.0 MOTOR CONTROL PWM MODULE

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the *dsPIC30F Family Reference Manual* (DS70046). For more information on the device instruction set and programming, refer to the *"16-bit MCU and DSC Reference Manual"* (DS70157).

This module simplifies the task of generating multiple, synchronized Pulse-Width Modulated (PWM) outputs. In particular, the following power and motion control applications are supported by the PWM module:

- Three-Phase AC Induction Motor
- Switched Reluctance (SR) Motor
- Brushless DC (BLDC) Motor
- Uninterruptible Power Supply (UPS)

The PWM module has the following features:

- 6 PWM I/O pins with 3 duty cycle generators
- Up to 16-bit resolution
- 'On-the-Fly' PWM frequency changes
- Edge and Center-Aligned Output modes
- Single Pulse Generation mode
- Interrupt support for asymmetrical updates in Center-Aligned mode
- Output override control for Electrically Commutative Motor (ECM) operation
- 'Special Event' comparator for scheduling other peripheral events
- Fault pins to optionally drive each of the PWM output pins to a defined state

This module contains 3 duty cycle generators, numbered 1 through 3. The module has 6 PWM output pins, numbered PWM1H/PWM1L through PWM3H/PWM3L. The six I/O pins are grouped into high/low numbered pairs, denoted by the suffix H or L, respectively. For complementary loads, the low PWM pins are always the complement of the corresponding high I/O pin.

The PWM module allows several modes of operation which are beneficial for specific power control applications.

15.13 PWM Update Lockout

For a complex PWM application, the user may need to write up to three duty cycle registers and the Time Base Period register, PTPER, at a given time. In some applications, it is important that all buffer registers be written before the new duty cycle and period values are loaded for use by the module.

The PWM update lockout feature is enabled by setting the UDIS control bit in the PWMCON2 SFR. The UDIS bit affects all duty cycle buffer registers and the PWM Time Base Period buffer, PTPER. No duty cycle changes or period value changes will have effect while UDIS = 1.

15.14 PWM Special Event Trigger

The PWM module has a special event trigger that allows A/D conversions to be synchronized to the PWM time base. The A/D sampling and conversion time may be programmed to occur at any point within the PWM period. The special event trigger allows the user to minimize the delay between the time when A/D conversion results are acquired and the time when the duty cycle value is updated.

The PWM special event trigger has an SFR named SEVTCMP and five control bits to control its operation. The PTMR value for which a special event trigger should occur is loaded into the SEVTCMP register. When the PWM time base is in a Continuous Up/Down Count mode, an additional control bit is required to specify the counting phase for the special event trigger. The count phase is selected using the SEVTDIR control bit in the SEVTCMP SFR. If the SEVTDIR bit is cleared, the special event trigger will occur on the upward counting cycle of the PWM time base. If the SEVTDIR bit is set, the special event trigger will occur on the downward count cycle of the PWM time base. The SEVTDIR control bit has no effect unless the PWM time base is configured for a Continuous Up/Down Count mode.

15.14.1 SPECIAL EVENT TRIGGER POSTSCALER

The PWM special event trigger has a postscaler that allows a 1:1 to 1:16 postscale ratio. The postscaler is configured by writing the SEVOPS<3:0> control bits in the PWMCON2 SFR.

The special event output postscaler is cleared on the following events:

- Any write to the SEVTCMP register
- · Any device Reset

15.15 PWM Operation During CPU Sleep Mode

The Fault A input pin has the ability to wake the CPU from Sleep mode. The PWM module generates an interrupt if the Fault pin is driven low while in Sleep.

15.16 PWM Operation During CPU Idle Mode

The PTCON SFR contains a PTSIDL control bit. This bit determines if the PWM module will continue to operate or stop when the device enters Idle mode. If PTSIDL = 0, the module will continue to operate. If PTSIDL = 1, the module will stop operation as long as the CPU remains in Idle mode.

18.5.2 FRAMING ERROR (FERR)

The FERR bit (UxSTA<2>) is set if a '0' is detected instead of a Stop bit. If two Stop bits are selected, both Stop bits must be '1', otherwise FERR will be set. The read-only FERR bit is buffered along with the received data; it is cleared on any Reset.

18.5.3 PARITY ERROR (PERR)

The PERR bit (UxSTA<3>) is set if the parity of the received word is incorrect. This error bit is applicable only if a Parity mode (odd or even) is selected. The read-only PERR bit is buffered along with the received data bytes; it is cleared on any Reset.

18.5.4 IDLE STATUS

When the receiver is active (i.e., between the initial detection of the Start bit and the completion of the Stop bit), the RIDLE bit (UxSTA<4>) is '0'. Between the completion of the Stop bit and detection of the next Start bit, the RIDLE bit is '1', indicating that the UART is Idle.

18.5.5 RECEIVE BREAK

The receiver will count and expect a certain number of bit times based on the values programmed in the PDSEL<1:0> (UxMODE<2:1>) and STSEL (UxMODE<0>) bits.

If the Break is longer than 13 bit times, the reception is considered complete after the number of bit times specified by PDSEL and STSEL. The URXDA bit is set, FERR is set, zeros are loaded into the receive FIFO, interrupts are generated, if appropriate and the RIDLE bit is set.

When the module receives a long Break signal and the receiver has detected the Start bit, the data bits and the invalid Stop bit (which sets the FERR), the receiver must wait for a valid Stop bit before looking for the next Start bit. It cannot assume that the Break condition on the line is the next Start bit.

Break is regarded as a character containing all '0's, with the FERR bit set. The Break character is loaded into the buffer. No further reception can occur until a Stop bit is received. Note that RIDLE goes high when the Stop bit has not been received yet.

18.6 Address Detect Mode

Setting the ADDEN bit (UxSTA<5>) enables this special mode in which a 9th bit (URX8) value of '1' identifies the received word as an address, rather than data. This mode is only applicable for 9-bit data communication. The URXISELx control bit does not have any impact on interrupt generation in this mode, since an interrupt (if enabled) will be generated every time the received word has the 9th bit set.

18.7 Loopback Mode

Setting the LPBACK bit enables this special mode in which the UxTX pin is internally connected to the UxRX pin. When configured for the Loopback mode, the UxRX pin is disconnected from the internal UART receive logic. However, the UxTX pin still functions as in a normal operation.

To select this mode:

- a) Configure UART for desired mode of operation.
- b) Set LPBACK = 1 to enable Loopback mode.
- c) Enable transmission as defined in **Section 18.3** "**Transmitting Data**".

18.8 Baud Rate Generator

The UART has a 16-bit Baud Rate Generator to allow maximum flexibility in baud rate generation. The Baud Rate Generator register (UxBRG) is readable and writable. The baud rate is computed as follows:

- BRG = 16-bit value held in UxBRG register (0 through 65535)
- FCY = Instruction Clock Rate (1/TCY)

The baud rate is given by Equation 18-1.

EQUATION 18-1: BAUD RATE

Baud Rate = FCY/(16 * (BRG + 1))

Therefore, maximum baud rate possible is:

FCY/16 (if BRG = 0),

and the minimum baud rate possible is:

FCY/(16 * 65536).

With a full, 16-bit Baud Rate Generator, at 30 MIPS operation, the minimum baud rate achievable is 28.5 bps.

TABLE 19-1: CAN1 REGISTER MAP⁽¹⁾

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
C1RXF0SID	0300	_	_	_			F	Receive A	cceptance	Filter 0 Stan	dard Iden	tifier<10:0	>			—	EXIDE	000u uuuu uuuu uu0u
C1RXF0EIDH	0302	—	—	—	_				Receiv	ve Acceptanc	e Filter 0	Extended	Identifier	<17:6>				0000 uuuu uuuu uuuu
C1RXF0EIDL	0304	Rece	ive Accepta	nce Filter 0	Extended	dentifier<5	5:0>	—	_	_	—	—	—	_	—	—	—	uuuu uu00 0000 0000
C1RXF1SID	0308	—	—	—			F	Receive A	cceptance	Filter 1 Stan	dard Iden	tifier<10:0	>			—	EXIDE	000u uuuu uuuu uu0u
C1RXF1EIDH	030A	—	—	—	_				Receiv	e Acceptanc	e Filter 1	Extended	Identifier.	<17:6>				0000 uuuu uuuu uuuu
C1RXF1EIDL	030C	Rece	ive Accepta	nce Filter 1	Extended	dentifier<5	5:0>	—	—	—	—	—	—	—	—	—	—	uuuu uu00 0000 0000
C1RXF2SID	0310		_				F	Receive A	cceptance	Filter 2 Stan	dard Iden	tifier<10:0	>			—	EXIDE	000u uuuu uuuu uu0u
C1RXF2EIDH	0312		_	-				_	Receiv	e Acceptanc	e Filter 2	Extended	Identifier-	<17:6>		-	_	0000 uuuu uuuu uuuu
C1RXF2EIDL	0314	Rece	ive Accepta	nce Filter 2	Extended	dentifier<5	5:0>	—	—	—	—		—	-	_	—	—	uuuu uu00 0000 0000
C1RXF3SID	0318		_				F	Receive A	cceptance	Filter 3 Stan	dard Iden	tifier<10:0	>			—	EXIDE	000u uuuu uuuu uu0u
C1RXF3EIDH	031A		_	-				_	Receiv	e Acceptanc	e Filter 3	Extended	Identifier-	<17:6>		-	_	0000 uuuu uuuu uuuu
C1RXF3EIDL	031C	Rece	ive Accepta	nce Filter 3	Extended	dentifier<5	5:0>	—	—	—	—		—	—	-	—	—	uuuu uu00 0000 0000
C1RXF4SID	0320		_				F	Receive A	cceptance	Filter 4 Stan	dard Iden	tifier<10:0	>			—	EXIDE	000u uuuu uuuu uu0u
C1RXF4EIDH	0322	Ι	_		_				Receiv	e Acceptanc	e Filter 4	Extended	Identifier	<17:6>	-			0000 uuuu uuuu uuuu
C1RXF4EIDL	0324	Rece	ive Accepta	nce Filter 4	Extended	dentifier<5	5:0>	_	_	—	—		—	—	-	—	—	uuuu uu00 0000 0000
C1RXF5SID	0328		_				F	Receive A	cceptance	Filter 5 Stan	dard Iden	tifier<10:0	>			—	EXIDE	000u uuuu uuuu uu0u
C1RXF5EIDH	032A		_	-				_	Receiv	e Acceptanc	e Filter 5	Extended	Identifier-	<17:6>		-	_	0000 uuuu uuuu uuuu
C1RXF5EIDL	032C	Rece	ive Accepta	nce Filter 5	Extended	dentifier<5	5:0>	_	_	—	—		—	—	-	—	—	uuuu uu00 0000 0000
C1RXM0SID	0330		_				F	Receive Ad	cceptance	Mask 0 Stan	dard Iden	tifier<10:0	>			—	MIDE	000u uuuu uuuu uu0u
C1RXM0EIDH	0332		_	-				_	Receiv	e Acceptanc	e Mask 0	Extended	Identifier	<17:6>		-	_	0000 uuuu uuuu uuuu
C1RXM0EIDL	0334	Recei	ive Accepta	nce Mask 0	Extended	Identifier<	5:0>	—	—	—	—		—	—	-	—	—	uuuu uu00 0000 0000
C1RXM1SID	0338	_	—	_			F	Receive Ac	cceptance	Mask 1 Stan	dard Iden	tifier<10:0	>			—	MIDE	000u uuuu uuuu uu0u
C1RXM1EIDH	033A	—	—	—	—			_	Receiv	e Acceptanc	e Mask 1	Extended	Identifier	<17:6>				0000 uuuu uuuu uuuu
C1RXM1EIDL	033C	Recei	ive Accepta	nce Mask 1	Extended	Identifier<	5:0>	—		—	—	—	—	_	—		—	uuuu uu00 0000 0000
C1TX2SID	0340	Trans	smit Buffer 2	2 Standard I	dentifier<1	0:6>	—	—	—	Tra	ansmit Bu	ffer 2 Star	ndard Ider	ntifier<5:0>		SRR	TXIDE	uuuu u000 uuuu uuuu
C1TX2EID	0342	Transmit B	Buffer 2 Exte	nded Identifi	er<17:14>	—	—	-	—		Trar	nsmit Buffe	er 2 Exter	ded Identifie	r<13:6>			uuuu 0000 uuuu uuuu
C1TX2DLC	0344		Transmit Bu	uffer 2 Exter	nded Identi	fier<5:0>		TXRTR	TXRB1	TXRB0		DLO	C<3:0>		—	—	—	uuuu uuuu uuuu u000
C1TX2B1	0346			Tran	smit Buffer	2 Byte 1						Trar	nsmit Buff	er 2 Byte 0				uuuu uuuu uuuu uuuu
C1TX2B2	0348			Tran	smit Buffei	2 Byte 3						Trar	nsmit Buff	er 2 Byte 2				uuuu uuuu uuuu uuuu
C1TX2B3	034A			Tran	smit Buffe	2 Byte 5						Trar	nsmit Buff	er 2 Byte 4				uuuu uuuu uuuu uuuu
C1TX2B4	034C			Tran	smit Buffe	2 Byte 7					_	Trar	nsmit Buff	er 2 Byte 6				uuuu uuuu uuuu uuuu
C1TX2CON	034E		_	-			—	-	_	—	TXABT	TXLARB	TXERR	TXREQ		TXPF	RI<1:0>	0000 0000 0000 0000
C1TX1SID	0350	Trans	smit Buffer '	1 Standard I	dentifier<1	0:6>	—	-	_	Tra	ansmit Bu	ffer 1 Star	ndard Ider	ntifier<5:0>		SRR	TXIDE	uuuu u000 uuuu uuuu
C1TX1EID	0352	Transmit B	nsmit Buffer 1 Extended Identifier<17:14> — — —						_	Transmit Buffer 1 Extended Identifier<13:6>						uuuu 0000 uuuu uuuu		
C1TX1DLC	0354		Transmit Bu	uffer 1 Exter	nded Identi	fier<5:0>		TXRTR	TXRB1	TXRB0		DLO	C<3:0>		—	_	—	uuuu uuuu uuuu u000
C1TX1B1	0356			Tran	smit Buffer	1 Byte 1						Trar	nsmit Buff	er 1 Byte 0				uuuu uuuu uuuu uuuu

dsPIC30F4011/4012

u = uninitialized bit; — = unimplemented bit, read as '0' Legend:

Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields. Note 1:

20.7 A/D Conversion Speeds

The dsPIC30F 10-bit ADC specifications permit a maximum 1 Msps sampling rate. Table 20-1 summarizes the conversion speeds for the dsPIC30F 10-bit ADC and the required operating conditions.

		dsP	PIC30F 10-I	bit A/D	Converter Conver	rsion Rates
A/D Speed	TAD Minimum	Sampling Time Min.	Rs Max.	Vdd	Temperature	A/D Channels Configuration
Up to 1 Msps ⁽¹⁾	83.33 ns	12 Tad	500Ω	4.5V to 5.5V	-40°C to +85°C	ANX CH1, 2 or 3 S/H ADC S/H ADC
Up to 750 ksps ⁽¹⁾	95.24 ns	2 Tad	500Ω	4.5V to 5.5V	-40°C to +85°C	ANX CHX ADC
Up to 600 ksps ⁽¹⁾	138.89 ns	12 Tad	500Ω	3.0V to 5.5V	-40°C to +125°C	ANX ANX CH1, 2 or 3 S/H CH0 ADC ADC
Up to 500 ksps	153.85 ns	1 Tad	5.0 kΩ	4.5V to 5.5V	-40°C to +125°C	ANX ANX ANX ANX ANX or VREF-
Up to 300 ksps	256.41 ns	1 Tad	5.0 kΩ	3.0V to 5.5V	-40°C to +125°C	ANX ANX ANX ANX ANX or VREF- ANX or VREF-

TABLE 20-1: 10-BIT A/D CONVERSION RATE PARAMETERS

Note 1: External VREF- and VREF+ pins must be used for correct operation. See Figure 20-2 for recommended circuit.

21.2.7 FAIL-SAFE CLOCK MONITOR

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by appropriately programming the FCKSM<1:0> Configuration bits (Clock Switch and Monitor Selection bits) in the Fosc device Configuration register. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the SWDTEN bit.

In the event of an oscillator failure, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. The user then has the option to either attempt to restart the oscillator or execute a controlled shutdown. The user may decide to treat the trap as a warm Reset by simply loading the Reset address into the oscillator fail trap vector. In this event, the CF (Clock Fail) status bit (OSCCON<3>) is also set whenever a clock failure is recognized.

In the event of a clock failure, the WDT is unaffected and continues to run on the LPRC clock.

If the oscillator has a very slow start-up time coming out of POR, BOR or Sleep, it is possible that the PWRT timer will expire before the oscillator has started. In such cases, the FSCM is activated. The FSCM initiates a clock failure trap, and the COSC<1:0> bits are loaded with the Fast RC (FRC) oscillator selection. This effectively shuts off the original oscillator that was trying to start.

The user may detect this situation and restart the oscillator in the clock fail trap Interrupt Service Routine (ISR).

Upon a clock failure detection, the FSCM module initiates a clock switch to the FRC oscillator as follows:

- 1. The COSC<1:0> bits (OSCCON<13:12>) are loaded with the FRC oscillator selection value.
- 2. CF bit is set (OSCCON<3>).
- 3. OSWEN control bit (OSCCON<0>) is cleared.

For the purpose of clock switching, the clock sources are sectioned into four groups:

- Primary
- Secondary
- Internal FRC
- Internal LPRC

The user can switch between these functional groups but cannot switch between options within a group. If the primary group is selected, then the choice within the group is always determined by the FPR<3:0> Configuration bits. The OSCCON register holds the control and status bits related to clock switching.

- COSC<1:0>: Read-only status bits always reflect the current oscillator group in effect.
- NOSC<1:0>: Control bits which are written to indicate the new oscillator group of choice.
 - On POR and BOR, COSC<1:0> and NOSC<1:0> are both loaded with the Configuration bit values, FOS<1:0>.
- LOCK: The LOCK status bit indicates a PLL lock.
- CF: Read-only status bit indicating if a clock fail detect has occurred.
- OSWEN: Control bit changes from a '0' to a '1' when a clock transition sequence is initiated. Clearing the OSWEN control bit aborts a clock transition in progress (used for hang-up situations).

If Configuration bits, FCKSM<1:0> = 1x, then the clock switching and Fail-Safe Clock Monitor functions are disabled. This is the default Configuration bit setting.

If clock switching is disabled, then the FOS<1:0> and FPR<3:0> bits directly control the oscillator selection, and the COSC<1:0> bits do not control the clock selection. However, these bits do reflect the clock source selection.

Note: The application should not attempt to switch to a clock of frequency lower than 100 kHz when the Fail-Safe Clock Monitor is enabled. If such clock switching is performed, the device may generate an oscillator fail trap and switch to the Fast RC (FRC) oscillator.

21.2.8 PROTECTION AGAINST ACCIDENTAL WRITES TO OSCCON

A write to the OSCCON register is intentionally made difficult because it controls clock switching and clock scaling.

To write to the OSCCON low byte, the following code sequence must be executed without any other instructions in between:

Byte Write 0x46 to OSCCON low Byte Write 0x57 to OSCCON low

Byte Write is allowed for one instruction cycle. Write the desired value or use bit manipulation instruction.

To write to the OSCCON high byte, the following instructions must be executed without any other instructions in between:

Byte Write 0x78 to OSCCON high Byte Write 0x9A to OSCCON high

Byte Write is allowed for one instruction cycle. Write the desired value or use bit manipulation instruction.

21.3.1.1 POR with Long Crystal Start-up Time (with FSCM Enabled)

The oscillator start-up circuitry is not linked to the POR circuitry. Some crystal circuits (especially low-frequency crystals) have a relatively long start-up time. Therefore, one or more of the following conditions is possible after the POR timer and the PWRT have expired:

- The oscillator circuit has not begun to oscillate.
- The Oscillator Start-up Timer has not expired (if a crystal oscillator is used).
- The PLL has not achieved a lock (if PLL is used).

If the FSCM is enabled and one of the above conditions is true, then a clock failure trap occurs. The device automatically switches to the FRC oscillator and the user can switch to the desired crystal oscillator in the trap ISR.

21.3.1.2 Operating without FSCM and PWRT

If the FSCM is disabled and the Power-up Timer (PWRT) is also disabled, then the device exits rapidly from Reset on power-up. If the clock source is FRC, LPRC, ERC or EC, it will be active immediately.

If the FSCM is disabled and the system clock has not started, the device will be in a frozen state at the Reset vector until the system clock starts. From the user's perspective, the device will appear to be in Reset until a system clock is available.

21.3.2 BOR: PROGRAMMABLE BROWN-OUT RESET

The BOR (Brown-out Reset) module is based on an internal voltage reference circuit. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (i.e., missing portions of the AC cycle waveform due to bad power transmission lines, or voltage sags due to excessive current draw when a large inductive load is turned on).

The BOR module allows selection of one of the following voltage trip points (see Table 24-10):

- 2.6V-2.71V
- 4.1V-4.4V
- 4.58V-4.73V

Note: The BOR voltage trip points indicated here are nominal values provided for design guidance only.

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FOS<1:0> and FPR<3:0>). Furthermore, if an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, then the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the POR time-out (TPOR) and the PWRT time-out (TPWRT) are applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM = 100 μ s is applied. The total delay in this case is (TPOR + TFSCM).

The BOR status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit, if enabled, continues to operate while in Sleep or Idle modes and resets the device if VDD falls below the BOR threshold voltage.

FIGURE 21-6: EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)

- only if the VDD power-up slope is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
 - 2: R should be suitably chosen so as to make sure that the voltage drop across R does not violate the device's electrical specification.
 - **3:** R1 should be suitably chosen so as to limit any current flowing into MCLR from external capacitor C, in the event of MCLR pin breakdown, due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

Note: Dedicated supervisory devices, such as the MCP1XX and MCP8XX, may also be used as an external Power-on Reset circuit.

Field	Description
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor working register pair (Direct Addressing)
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions \in {W4*W4, W5*W5, W6*W6, W7*W7}
Wm*Wn	Multiplicand and Multiplier working register pair for DSP instructions ∈ {W4*W5, W4*W6, W4*W7, W5*W6, W5*W7, W6*W7}
Wn	One of 16 working registers ∈ {W0W15}
Wnd	One of 16 destination working registers ∈ {W0W15}
Wns	One of 16 source working registers ∈ {W0W15}
WREG	W0 (working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }
Wx	X Data Space Prefetch Address register for DSP instructions ∈ {[W8]+=6, [W8]+=4, [W8]+=2, [W8], [W8]-=6, [W8]-=4, [W8]-=2, [W9]+=6, [W9]+=4, [W9]+=2, [W9], [W9]-=6, [W9]-=4, [W9]-=2, [W9+W12],none}
Wxd	X Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}
WУ	Y Data Space Prefetch Address register for DSP instructions ∈ {[W10]+=6, [W10]+=4, [W10]+=2, [W10], [W10]-=6, [W10]-=4, [W10]-=2, [W11]+=6, [W11]+=4, [W11]+=2, [W11], [W11]-=6, [W11]-=4, [W11]-=2, [W11+W12], none}
Wyd	Y Data Space Prefetch Destination register for DSP instructions ∈ {W4W7}

TABLE 22-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of words	# of cycles	Status Flags Affected
9	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	2	None
		CALL	Wn	Call indirect subroutine	1	2	None
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc,Wx,Wxd,Wy,Wyd,AWB	Clear Accumulator	1	1	OA, OB, SA, SB
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO, Sleep
17	COM	COM	f	$f = \overline{f}$	1	1	N, Z
		COM	f,WREG	WREG = \overline{f}	1	1	N, Z
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N, Z
18	CP	CP	f	Compare f with WREG	1	1	C, DC, N, OV, Z
		CP	Wb,#lit5	Compare Wb with lit5	1	1	C, DC, N, OV, Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C, DC, N, OV, Z
19	CP0	CP0	f	Compare f with 0x0000	1	1	C, DC, N, OV, Z
		CP0	Ws	Compare Ws with 0x0000	1	1	C, DC, N, OV, Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C, DC, N, OV, Z
		CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C, DC, N, OV, Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$	1	1	C, DC, N, OV, Z
21	CPSEQ	CPSEQ	Wb, Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None
25	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	С
26	DEC	DEC	f	f = f -1	1	1	C, DC, N, OV, Z
		DEC	f,WREG	WREG = $f - 1$	1	1	C, DC, N, OV, Z
L		DEC	Ws,Wd	Wd = Ws - 1	1	1	C, DC, N, OV, Z
27	DEC2	DEC2	f	f = f - 2	1	1	C, DC, N, OV, Z
		DEC2	f,WREG	WREG = $f - 2$	1	1	C, DC, N, OV, Z
L		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C, DC, N, OV, Z
28	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of words	# of cycles	Status Flags Affected
48	MPY	MPY	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd	Multiply Wm by Wn to Accumulator	1	1	OA, OB, OAB, SA, SB, SAB
		MPY	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square Wm to Accumulator	1	1	OA, OB, OAB, SA, SB, SAB
49	MPY.N	MPY.N	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd	-(Multiply Wm by Wn) to Accumulator	1	1	None
50	MSC	MSC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd, AWB	Multiply and Subtract from Accumulator	1	1	OA, OB, OAB, SA, SB, SAB
51	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd+1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd+1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd+1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd+1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd+1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
52	NEG	NEG	Acc	Negate Accumulator	1	1	OA, OB, OAB, SA, SB, SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C, DC, N, OV, Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C, DC, N, OV, Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C, DC, N, OV, Z
53	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
54	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd +1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
55	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
56	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO, Sleep
57	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Wn	Computed Call	1	2	None
58	REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 time	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 time	1	1	None
59	RESET	RESET		Software device Reset	1	1	None
60	RETFIE	RETFIE			1	3 (2)	None
61	RETLW	RETLW	#litl0,Wn		1	3 (2)	None
62	RETURN	RETURN	c		1	3 (2)	
63	RLC	RLC	I Suppo	f = Rotate Left through Carry f	1	1	C, N, Z
		RLC	L, WKEG	Wid - Rotate Left through Carry Wa	1	1	C N 7
64	PLNC	RLNC	rs,wu	f - Rotate Left (No Carry) f	1	1	N 7
04	ICTINC	RLNC	f WREG	WREG = Rotate Left (No Carry) f	1	1	N 7
		RLNC	WS.Wd	Wd = Rotate eft (No Carry) Ws	1	1	N Z
65	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C. N. Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C. N. Z
		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C, N, Z

TABLE 22-2: INSTRUCTION SET OVERVIEW (CONTINUED)

23.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit[™] 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

23.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

dsPIC30F4011/4012

FIGURE 24-5: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING CHARACTERISTICS

TABLE 24-34: SPI MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

АС СНА	RACTERIS	TICS	Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended								
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions				
SP70	TscL	SCK1 Input Low Time	30	—	_	ns					
SP71	TscH	SCK1 Input High Time	30	—	_	ns					
SP72	TscF	SCK1 Input Fall Time ⁽³⁾	—	10	25	ns					
SP73	TscR	SCK1 Input Rise Time ⁽³⁾	—	10	25	ns					
SP30	TdoF	SDO1 Data Output Fall Time ⁽³⁾	—		_	ns	See parameter DO32				
SP31	TdoR	SDO1 Data Output Rise Time ⁽³⁾			_	ns	See parameter DO31				
SP35	TscH2doV, TscL2doV	SDO1 Data Output Valid after SCK1 Edge	—	_	30	ns					
SP40	TdiV2scH, TdiV2scL	Setup Time of SDI1 Data Input to SCK1 Edge	20	—	—	ns					
SP41	TscH2diL, TscL2diL	Hold Time of SDI1 Data Input to SCK1 Edge	20	_	—	ns					
SP50	TssL2scH, TssL2scL	SS1↓to SCK1↑ or SCK1↓Input	120		—	ns					
SP51	TssH2doZ	SS1↑ to SDO1 Output High-Impedance ⁽³⁾	10	—	50	ns					
SP52	TscH2ssH TscL2ssH	SS1 after SCK1 Edge	1.5 TCY + 40	—	_	ns					

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: Assumes 50 pF load on all SPI pins.

TABLE 24-39: 10-BIT HIGH-SPEED A/D MODULE SPECIFICATIONS

АС СН	ARACTER	RISTICS	Standard ((unless ot Operating	Operatin herwise tempera	g Condition stated) ture -40°C -40°C	s: 2.5V ≤Ta ≤+8 ≤Ta ≤+1	to 5.5V 35°C for Industrial 25°C for Extended
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions
Device	Supply						
AD01	AVDD	Module VDD Supply	Greater of VDD – 0.3 or 2.7	_	Lesser of VDD + 0.3 or 5.5	V	
AD02	AVss	Module Vss Supply	Vss-0.3	_	Vss + 0.3	V	
Refere	nce Inputs	3					
AD05	Vrefh	Reference Voltage High	AVss + 2.7		AVdd	V	
AD06	Vrefl	Reference Voltage Low	AVss	_	AVDD – 2.7	V	
AD07	Vref	Absolute Reference Voltage	AVss - 0.3	_	AVDD + 0.3	V	
AD08	IREF	Current Drain	_	200 .001	300 3	μΑ μΑ	A/D operating A/D off
Analog	Input						
AD10	VINH-VINL	Full-Scale Input Span	Vrefl	_	Vrefh	V	
AD11	Vin	Absolute Input Voltage	AVss - 0.3	_	AVDD + 0.3	V	
AD12	_	Leakage Current	_	±0.001	±0.244	μA	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V, Source Impedance = 5 k Ω
AD13	—	Leakage Current	—	±0.001	±0.244	μA	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V, Source Impedance = 5 k Ω
AD17	Rin	Recommended Impedance of Analog Voltage Source	—	—	5K	Ω	
DC Acc	curacy						•
AD20	Nr	Resolution	1	0 data b	its	bits	
AD21	INL	Integral Nonlinearity ⁽³⁾	—	±1	±1	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 5V
AD21A	INL	Integral Nonlinearity ⁽³⁾	—	±1	±1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V
AD22	DNL	Differential Nonlinearity ⁽³⁾	—	±1	±1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V
AD22A	DNL	Differential Nonlinearity ⁽³⁾	—	±1	±1	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3V
AD23	Gerr	Gain Error ⁽³⁾	±1	±5	±6	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 5V
AD23A	Gerr	Gain Error ⁽³⁾	±1	±5	±6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V
AD24	EOFF	Offset Error	±1	±2	±3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 5V
AD24A	EOFF	Offset Error	±1	<u>+</u> 2	±3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3V
AD25	—	Monotonicity ⁽²⁾	—	—	—	—	Guaranteed

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

2: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

3: Measurements taken with external VREF+ and VREF- used as the ADC voltage references.