

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	20 MIPS
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, QEI, POR, PWM, WDT
Number of I/O	30
Program Memory Size	48KB (16K x 24)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f4011-20i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

Table 1-2 provides a brief description of the device I/O pinout and the functions that are multiplexed to a port pin. Multiple functions may exist on one port pin. When multiplexing occurs, the peripheral module's functional requirements may force an override of the data direction of the port pin.

Pin Name	Pin Type	Buffer Type	Description						
AN0-AN5	I	Analog	Analog input channels. AN0 and AN1 are also used for device programming data and clock inputs, respectively.						
AVDD	Р	Р	Positive supply for analog module. This pin must be connected at all times.						
AVss	Р	Р	Ground reference for analog module. This pin must be connected at all times.						
CLKI	1	ST/CMOS	External clock source input. Always associated with OSC1 pin function.						
СLКО	0	_	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.						
CN0-CN7	I	ST	Input change notification inputs. Can be software programmed for internal weak pull-ups on all inputs.						
C1RX	I	ST	CAN1 bus receive pin.						
C1TX	0	—	CAN1 bus transmit pin.						
EMUD	I/O	ST	ICD Primary Communication Channel data input/output pin.						
EMUC	I/O	ST	ICD Primary Communication Channel clock input/output pin.						
EMUD1	I/O	ST	ICD Secondary Communication Channel data input/output pin.						
EMUC1	I/O	ST	ICD Secondary Communication Channel clock input/output pin.						
EMUD2	I/O	ST	ICD Tertiary Communication Channel data input/output pin.						
EMUC2	I/O	ST	ICD Tertiary Communication Channel clock input/output pin.						
EMUD3	I/O	SI	ICD Quaternary Communication Channel data input/output pin.						
EMUC3	1/0	SI	ICD Quaternary Communication Channel clock input/output pin.						
IC1, IC2, IC7, IC8	I	ST	Capture inputs 1, 2, 7 and 8.						
INDX	1	ST	Quadrature Encoder Index Pulse input.						
QEA	I	ST	Quadrature Encoder Phase A input in QEI mode.						
			Auxiliary Timer External Clock/Gate input in Timer mode.						
QEB	I	SI	Quadrature Encoder Phase B input in QEI mode.						
			Auxiliary Timer External Clock/Gate input in Timer mode.						
INT0	I	ST	External interrupt 0.						
INT1	I	ST	External interrupt 1.						
INT2	I	ST	External interrupt 2.						
FLTA	1	ST	PWM Fault A input.						
PWM1L	0		PWM1 low output.						
PWM1H	0	—	PWM1 high output.						
PWM2L	0	—	PWM2 low output.						
PWM2H	0	—	PWM2 high output.						
PWM3L	0		PWM3 low output.						
PWM3H	0		PWM3 high output.						
MCLR	I/P	ST	Master Clear (Reset) input or programming voltage input. This pin is an active-low Reset to the device.						
OCFA	I	ST	Compare Fault A input (for Compare channels 1, 2, 3 and 4).						
OC1, OC2	0	—	Compare outputs 1 and 2.						
Legend: CM	IOS = CI	MOS compat	tible input or output Analog = Analog input						
ST	= Sc	hmitt Trigge	r input with CMOS levels O = Output						
I	= Inj	put	P = Power						

TABLE 1-2: dsPIC30F4012 I/O PIN DESCRIPTIONS

NOTES:

3.1.2 DATA ACCESS FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into any 16K word program space page. This provides transparent access of stored constant data from X data space without the need to use special instructions (i.e., TBLRDL/H, TBLWTL/H instructions).

Program space access through the data space occurs if the MSb of the data space EA is set and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON). The functions of CORCON are discussed in **Section 2.4** "**DSP Engine**".

Data accesses to this area add an additional cycle to the instruction being executed, since two program memory fetches are required.

Note that the upper half of addressable data space is always part of the X data space. Therefore, when a DSP operation uses program space mapping to access this memory region, Y data space should typically contain state (variable) data for DSP operations, whereas X data space should typically contain coefficient (constant) data.

Although each data space address, 0x8000 and higher, maps directly into a corresponding program memory address (see Figure 3-5), only the lower 16 bits of the 24-bit program word are used to contain the data. The upper 8 bits should be programmed to force an illegal instruction to maintain machine robustness. For information on instruction encoding, refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157). Note that by incrementing the PC by 2 for each program memory word, the Least Significant 15 bits of data space addresses directly map to the Least Significant 15 bits in the corresponding program space addresses. The remaining bits are provided by the Program Space Visibility Page register, PSVPAG<7:0>, as shown in Figure 3-5.

Note:	PSV access is temporarily disabled during
	table reads/writes.

For instructions that use PSV which are executed outside a REPEAT loop:

- The following instructions require one instruction cycle in addition to the specified execution time:
 - MAC class of instructions with data operand prefetch
 - MOV instructions
 - MOV.D instructions
- All other instructions require two instruction cycles in addition to the specified execution time of the instruction.

For instructions that use PSV which are executed inside a REPEAT loop:

- The following instances require two instruction cycles in addition to the specified execution time of the instruction:
 - Execution in the first iteration
 - Execution in the last iteration
 - Execution prior to exiting the loop due to an interrupt
 - Execution upon re-entering the loop after an interrupt is serviced
- Any other iteration of the REPEAT loop allows the instruction, accessing data using PSV, to execute in a single cycle.

All byte loads into any W register are loaded into the LSB; the MSB is not modified.

A sign-extend (SE) instruction is provided to allow users to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, users can clear the MSB of any W register by executing a zero-extend (ZE) instruction on the appropriate address.

Although most instructions are capable of operating on word or byte data sizes, it should be noted that some instructions, including the DSP instructions, operate only on words.

3.2.5 NEAR DATA SPACE

An 8-Kbyte 'near' data space is reserved in X address memory space between 0x0000 and 0x1FFF, which is directly addressable via a 13-bit absolute address field within all memory direct instructions. The remaining X address space and all of the Y address space is addressable indirectly. Additionally, the whole of X data space is addressable using MOV instructions, which support Memory Direct Addressing with a 16-bit address field.

3.2.6 SOFTWARE STACK

The dsPIC DSC contains a software stack. W15 is used as the Stack Pointer.

The Stack Pointer always points to the first available free word and grows from lower addresses towards higher addresses. It pre-decrements for stack pops and post-increments for stack pushes, as shown in Figure 3-9. Note that for a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, ensuring that the MSB is always clear.

Note: A PC push during exception processing concatenates the SRL register to the MSB of the PC prior to the push.

There is a Stack Pointer Limit register (SPLIM) associated with the Stack Pointer. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0', because all stack operations must be word-aligned. Whenever an Effective Address (EA) is generated, using W15 as a source or destination pointer, the address thus generated is compared with the value in the SPLIM register. If the contents of the Stack Pointer (W15) and the SPLIM register are equal, and a push operation is performed, a stack error trap will not occur. The stack error trap will occur on a subsequent push operation. Thus, for example, if it is desirable to cause a stack error trap when the stack grows beyond address 0x2000 in RAM, initialize the SPLIM with the value, 0x1FFE.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0x0800, thus preventing the stack from interfering with the Special Function Register (SFR) space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

FIGURE 3-9: CALL STACK FRAME

IADEE										
		Norma	al Addre	SS	Bit-Reversed Address					
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal	
0	0	0	0	0	0	0	0	0	0	
0	0	0	1	1	1	0	0	0	8	
0	0	1	0	2	0	1	0	0	4	
0	0	1	1	3	1	1	0	0	12	
0	1	0	0	4	0	0	1	0	2	
0	1	0	1	5	1	0	1	0	10	
0	1	1	0	6	0	1	1	0	6	
0	1	1	1	7	1	1	1	0	14	
1	0	0	0	8	0	0	0	1	1	
1	0	0	1	9	1	0	0	1	9	
1	0	1	0	10	0	1	0	1	5	
1	0	1	1	11	1	1	0	1	13	
1	1	0	0	12	0	0	1	1	3	
1	1	0	1	13	1	0	1	1	11	
1	1	1	0	14	0	1	1	1	7	
1	1	1	1	15	1	1	1	1	15	

TABLE 4-2: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)

TABLE 4-3: BIT-REVERSED ADDRESS MODIFIER VALUES FOR XBREV REGISTER

Buffer Size (Words)	XB<14:0> Bit-Reversed Address Modifier Value ⁽¹⁾
32768	0x4000
16384	0x2000
8192	0x1000
4096	0x0800
2048	0x0400
1024	0x0200
512	0x0100
256	0x0080
128	0x0040
64	0x0020
32	0x0010
16	0x0008
8	0x0004
4	0x0002
2	0x0001

Note 1: Modifier values for buffer sizes greater than 1024 words will exceed the available data memory on the dsPIC30F4011/4012 devices.

5.0 INTERRUPTS

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the "dsPIC30F Family Reference Manual" (DS70046). For more information on the device instruction set and programming, refer to the "16-bit MCU and DSC Reference Manual" (DS70157).

The dsPIC30F4011/4012 has 30 interrupt sources and 4 processor exceptions (traps), which must be arbitrated based on a priority scheme.

The CPU is responsible for reading the Interrupt Vector Table (IVT) and transferring the address contained in the interrupt vector to the program counter. The interrupt vector is transferred from the program data bus into the program counter via a 24-bit wide multiplexer on the input of the program counter.

The Interrupt Vector Table (IVT) and Alternate Interrupt Vector Table (AIVT) are placed near the beginning of program memory (0x000004). The IVT and AIVT are shown in Figure 5-1.

The interrupt controller is responsible for preprocessing the interrupts and processor exceptions, prior to their being presented to the processor core. The peripheral interrupts and traps are enabled, prioritized and controlled using centralized Special Function Registers:

- IFS0<15:0>, IFS1<15:0>, IFS2<15:0> All interrupt request flags are maintained in these three registers. The flags are set by their respective peripherals or external signals, and they are cleared via software.
- IEC0<15:0>, IEC1<15:0>, IEC2<15:0>
 All interrupt enable control bits are maintained in these three registers. These control bits are used to individually enable interrupts from the peripherals or external signals.
- IPC0<15:0>... IPC11<7:0> The user-assignable priority level associated with each of these interrupts is held centrally in these twelve registers.
- IPL<3:0>

The current CPU priority level is explicitly stored in the IPL bits. IPL<3> is present in the CORCON register, whereas IPL<2:0> are present in the STATUS register (SR) in the processor core. INTCON1<15:0>, INTCON2<15:0> Global interrupt control functions are derived from these two registers. INTCON1 contains the control and status flags for the processor exceptions. The INTCON2 register controls the external interrupt request signal behavior and the use of the AIVT.

Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

All interrupt sources can be user-assigned to one of seven priority levels, 1 through 7, via the IPCx registers. Each interrupt source is associated with an interrupt vector, as shown in Table 5-1. Levels 7 and 1 represent the highest and lowest maskable priorities, respectively.

Note: Assigning a priority level of 0 to an interrupt source is equivalent to disabling that interrupt.

If the NSTDIS bit (INTCON1<15>) is set, nesting of interrupts is prevented. Thus, if an interrupt is currently being serviced, processing of a new interrupt is prevented, even if the new interrupt is of higher priority than the one currently being serviced.

Note: The IPL bits become read-only whenever the NSTDIS bit has been set to '1'.

Certain interrupts have specialized control bits for features like edge or level triggered interrupts, interrupton-change, etc. Control of these features remains within the peripheral module which generates the interrupt.

The DISI instruction can be used to disable the processing of interrupts of priorities 6 and lower for a certain number of instructions, during which the DISI bit (INTCON2<14>) remains set.

When an interrupt is serviced, the PC is loaded with the address stored in the vector location in program memory that corresponds to the interrupt. There are 63 different vectors within the IVT (refer to Figure 5-2). These vectors are contained in locations 0x000004 through 0x0000FE of program memory (refer to Figure 5-2). These locations contain 24-bit addresses, and in order to preserve robustness, an address error trap will take place should the PC attempt to fetch any of these words during normal execution. This prevents execution of random data as a result of accidentally decrementing a PC into vector space, accidentally mapping a data space address into vector space or the PC rolling over to 0x000000 after reaching the end of implemented program memory space. Execution of a GOTO instruction to this vector space will also generate an address error trap.

8.3 Input Change Notification Module

The input change notification module provides the dsPIC30F devices the ability to generate interrupt requests to the processor in response to a change of state on selected input pins. This module is capable of detecting input change of states, even in Sleep mode, when the clocks are disabled. There are 10 external signals (CN0 through CN7, CN17 and CN18) that may be selected (enabled) for generating an interrupt request on a change of state.

Please refer to the pin diagrams for CN pin locations.

TABLE 8-3: INPUT CHANGE NOTIFICATION REGISTER MAP (BITS 7-0)⁽¹⁾

SFR Name	Addr.	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
CNEN1	00C0	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000 0000 0000 0000
CNEN2	00C2	_	_	_	_	_	CN18IE ⁽²⁾	CN17IE ⁽²⁾	—	0000 0000 0000 0000
CNPU1	00C4	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000 0000 0000 0000
CNPU2	00C6	—	—	—		—	CN18PUE ⁽²⁾	CN17PUE ⁽²⁾	_	0000 0000 0000 0000

Legend: u = uninitialized bit; — = unimplemented bit, read as '0'

Note 1: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

2: These bits are not available on dsPIC30F4012 devices.

9.0 TIMER1 MODULE

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the *dsPIC30F Family Reference Manual* (DS70046). For more information on the device instruction set and programming, refer to the *"16-bit MCU and DSC Reference Manual"* (DS70157).

This section describes the 16-bit general purpose Timer1 module and associated operational modes. Figure 9-1 depicts the simplified block diagram of the 16-bit Timer1 module.

Note: Timer1 is a 'Type A' timer. Please refer to the specifications for a Type A timer in Section 24.0 "Electrical Characteristics" of this document.

The following sections provide a detailed description, including setup and control registers, along with associated block diagrams for the operational modes of the timers.

The Timer1 module is a 16-bit timer which can serve as the time counter for the Real-Time Clock, or operate as a free-running, interval timer/counter. The 16-bit timer has the following modes:

- 16-bit Timer
- 16-bit Synchronous Counter
- 16-bit Asynchronous Counter

Further, the following operational characteristics are supported:

- Timer gate operation
- Selectable prescaler settings
- Timer operation during CPU Idle and Sleep modes
- Interrupt on 16-bit Period register match or falling edge of external gate signal

These operating modes are determined by setting the appropriate bit(s) in the 16-bit SFR, T1CON. Figure 9-1 presents a block diagram of the 16-bit timer module.

16-bit Timer Mode: In the 16-bit Timer mode, the timer increments on every instruction cycle up to a match value, preloaded into the Period register, PR1, then resets to 0 and continues to count.

When the CPU goes into the Idle mode, the timer will stop incrementing unless the TSIDL (T1CON<13>) bit = 0. If TSIDL = 1, the timer module logic will resume the incrementing sequence upon termination of the CPU Idle mode.

16-bit Synchronous Counter Mode: In the 16-bit Synchronous Counter mode, the timer increments on the rising edge of the applied external clock signal, which is synchronized with the internal phase clocks. The timer counts up to a match value preloaded in PR1, then resets to 0 and continues.

When the CPU goes into the Idle mode, the timer will stop incrementing unless the respective TSIDL bit = 0. If TSIDL = 1, the timer module logic will resume the incrementing sequence upon termination of the CPU Idle mode.

16-bit Asynchronous Counter Mode: In the 16-bit Asynchronous Counter mode, the timer increments on every rising edge of the applied external clock signal. The timer counts up to a match value preloaded in PR1, then resets to 0 and continues.

When the timer is configured for the Asynchronous mode of operation, and the CPU goes into the Idle mode, the timer will stop incrementing if TSIDL = 1.

13.0 OUTPUT COMPARE MODULE

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the *dsPIC30F Family Reference Manual* (DS70046). For more information on the device instruction set and programming, refer to the *"16-bit MCU and DSC Reference Manual"* (DS70157).

This section describes the output compare module and associated operational modes. The features provided by this module are useful in applications requiring operational modes, such as:

- Generation of Variable Width Output Pulses
- Power Factor Correction

Figure 13-1 illustrates a block diagram of the output compare module.

The key operational features of the output compare module include:

- Timer2 and Timer3 Selection mode
- Simple Output Compare Match mode
- Dual Output Compare Match mode
- Simple PWM mode
- Output Compare during Sleep and Idle modes
- Interrupt on Output Compare/PWM Event

These operating modes are determined by setting the appropriate bits in the 16-bit OCxCON SFR (where x = 1, 2, ... N). The dsPIC30F4011/4012 devices have 4/2 compare channels, respectively.

OCxRS and OCxR in the figure represent the Dual Compare registers. In the Dual Compare mode, the OCxR register is used for the first compare and OCxRS is used for the second compare.

FIGURE 13-1: OUTPUT COMPARE MODE BLOCK DIAGRAM

13.1 Timer2 and Timer3 Selection Mode

Each output compare channel can select between one of two 16-bit timers: Timer2 or Timer3.

The selection of the timers is controlled by the OCTSEL bit (OCxCON<3>). Timer2 is the default timer resource for the output compare module.

13.2 Simple Output Compare Match Mode

When control bits, OCM<2:0> (OCxCON<2:0>) = 001, 010 or 011, the selected output compare channel is configured for one of three simple Output Compare Match modes:

- Compare forces I/O pin low
- Compare forces I/O pin high
- Compare toggles I/O pin

The OCxR register is used in these modes. The OCxR register is loaded with a value and is compared to the selected incrementing timer count. When a compare occurs, one of these Compare Match modes occurs. If the counter resets to zero before reaching the value in OCxR, the state of the OCx pin remains unchanged.

13.3 Dual Output Compare Match Mode

When control bits, OCM<2:0> (OCxCON<2:0>) = 100 or 101, the selected output compare channel is configured for one of two Dual Output Compare modes which are:

- Single Output Pulse mode
- Continuous Output Pulse mode

13.3.1 SINGLE OUTPUT PULSE MODE

For the user to configure the module for the generation of a single output pulse, the following steps are required (assuming timer is off):

- Determine instruction cycle time TcY
- · Calculate desired pulse width value based on TCY
- Calculate time to start pulse from timer start value of 0x0000
- Write pulse width start and stop times into OCxR and OCxRS Compare registers (x denotes channel 1, 2, ..., N)
- Set Timer Period register to value equal to, or greater than, value in OCxRS Compare register
- Set OCM<2:0> = 100
- Enable timer, TON bit (TxCON<15>) = 1

To initiate another single pulse, issue another write to set OCM<2:0> = 100.

13.3.2 CONTINUOUS OUTPUT PULSE MODE

For the user to configure the module for the generation of a continuous stream of output pulses, the following steps are required:

- Determine instruction cycle time TCY
- · Calculate desired pulse value based on TCY
- Calculate timer to start pulse width from timer start value of 0x0000
- Write pulse width start and stop times into OCxR and OCxRS (x denotes channel 1, 2, ..., N) Compare registers, respectively
- Set Timer Period register to value equal to, or greater than, value in OCxRS Compare register.
- Set OCM<2:0> = 101
- Enable timer, TON bit (TxCON<15>) = 1

13.4 Simple PWM Mode

When control bits, OCM<2:0> (OCxCON<2:0>) = 110 or 111, the selected output compare channel is configured for the PWM mode of operation. When configured for the PWM mode of operation, OCxR is the main latch (read-only) and OCxRS is the secondary latch. This enables glitchless PWM transitions.

The user must perform the following steps in order to configure the output compare module for PWM operation:

- 1. Set the PWM period by writing to the appropriate Period register.
- 2. Set the PWM duty cycle by writing to the OCxRS register.
- 3. Configure the output compare module for PWM operation.
- 4. Set the TMRx prescale value and enable the timer, TON bit (TxCON<15>) = 1.

13.4.1 INPUT PIN FAULT PROTECTION FOR PWM

When control bits, OCM<2:0> (OCxCON<2:0>) = 111, the selected output compare channel is again configured for the PWM mode of operation with the additional feature of input Fault protection. While in this mode, if a logic '0' is detected on the OCFA pin, the respective PWM output pin is placed in the high-impedance input state. The OCFLT bit (OCxCON<4>) indicates whether a Fault condition has occurred. This state will be maintained until both of the following events have occurred:

- The external Fault condition has been removed
- The PWM mode has been re-enabled by writing to the appropriate control bits

13.4.2 PWM PERIOD

The PWM period is specified by writing to the PRx register. The PWM period can be calculated using Equation 13-1.

EQUATION 13-1: PWM PERIOD

 $PWM \ period = [(PRx) + 1] \cdot 4 \cdot Tosc \cdot$ $(TMRx \ prescale \ value)$

PWM frequency is defined as 1/[PWM period].

When the selected TMRx is equal to its respective Period register, PRx, the following four events occur on the next increment cycle:

- TMRx is cleared
- The OCx pin is set
 - Exception 1: If PWM duty cycle is 0x0000, the OCx pin will remain low.
 - Exception 2: If duty cycle is greater than PRx, the pin will remain high.
- The PWM duty cycle is latched from OCxRS into OCxR
- The corresponding timer interrupt flag is set

See Figure 13-1 for key PWM period comparisons. Timer3 is referred to in the figure for clarity.

NOTES:

15.13 PWM Update Lockout

For a complex PWM application, the user may need to write up to three duty cycle registers and the Time Base Period register, PTPER, at a given time. In some applications, it is important that all buffer registers be written before the new duty cycle and period values are loaded for use by the module.

The PWM update lockout feature is enabled by setting the UDIS control bit in the PWMCON2 SFR. The UDIS bit affects all duty cycle buffer registers and the PWM Time Base Period buffer, PTPER. No duty cycle changes or period value changes will have effect while UDIS = 1.

15.14 PWM Special Event Trigger

The PWM module has a special event trigger that allows A/D conversions to be synchronized to the PWM time base. The A/D sampling and conversion time may be programmed to occur at any point within the PWM period. The special event trigger allows the user to minimize the delay between the time when A/D conversion results are acquired and the time when the duty cycle value is updated.

The PWM special event trigger has an SFR named SEVTCMP and five control bits to control its operation. The PTMR value for which a special event trigger should occur is loaded into the SEVTCMP register. When the PWM time base is in a Continuous Up/Down Count mode, an additional control bit is required to specify the counting phase for the special event trigger. The count phase is selected using the SEVTDIR control bit in the SEVTCMP SFR. If the SEVTDIR bit is cleared, the special event trigger will occur on the upward counting cycle of the PWM time base. If the SEVTDIR bit is set, the special event trigger will occur on the downward count cycle of the PWM time base. The SEVTDIR control bit has no effect unless the PWM time base is configured for a Continuous Up/Down Count mode.

15.14.1 SPECIAL EVENT TRIGGER POSTSCALER

The PWM special event trigger has a postscaler that allows a 1:1 to 1:16 postscale ratio. The postscaler is configured by writing the SEVOPS<3:0> control bits in the PWMCON2 SFR.

The special event output postscaler is cleared on the following events:

- Any write to the SEVTCMP register
- · Any device Reset

15.15 PWM Operation During CPU Sleep Mode

The Fault A input pin has the ability to wake the CPU from Sleep mode. The PWM module generates an interrupt if the Fault pin is driven low while in Sleep.

15.16 PWM Operation During CPU Idle Mode

The PTCON SFR contains a PTSIDL control bit. This bit determines if the PWM module will continue to operate or stop when the device enters Idle mode. If PTSIDL = 0, the module will continue to operate. If PTSIDL = 1, the module will stop operation as long as the CPU remains in Idle mode.

NOTES:

21.4 Watchdog Timer (WDT)

21.4.1 WATCHDOG TIMER OPERATION

The primary function of the Watchdog Timer (WDT) is to reset the processor in the event of a software malfunction. The WDT is a free-running timer that runs off an on-chip RC oscillator, requiring no external component. Therefore, the WDT timer continues to operate even if the main processor clock (e.g., the crystal oscillator) fails.

21.4.2 ENABLING AND DISABLING THE WDT

The Watchdog Timer can be "Enabled" or "Disabled" only through a Configuration bit (FWDTEN) in the Configuration register, FWDT.

Setting FWDTEN = 1 enables the Watchdog Timer. The enabling is done when programming the device. By default, after chip erase, FWDTEN bit = 1. Any device programmer capable of programming dsPIC30F devices allows programming of this and other Configuration bits.

If enabled, the WDT increments until it overflows or "times out". A WDT time-out forces a device Reset (except during Sleep). To prevent a WDT time-out, the user must clear the Watchdog Timer using a CLRWDT instruction.

If a WDT times out during Sleep, the device wakes-up. The WDTO bit in the RCON register is cleared to indicate a wake-up resulting from a WDT time-out.

Setting FWDTEN = 0 allows user software to enable/ disable the Watchdog Timer via the SWDTEN (RCON<5>) control bit.

21.5 Power-Saving Modes

There are two power-saving states that can be entered through the execution of a special instruction, PWRSAV.

These are: Sleep and Idle.

The format of the PWRSAV instruction is as follows:

PWRSAV <parameter>

where,

'parameter' defines Idle or Sleep mode.

21.5.1 SLEEP MODE

In Sleep mode, the clock to the CPU and peripherals is shut down. If an on-chip oscillator is being used, it is shut down.

The Fail-Safe Clock Monitor is not functional during Sleep, since there is no clock to monitor. However, the LPRC clock remains active if WDT is operational during Sleep.

The Brown-out Reset protection circuit and the Low-Voltage Detect (LVD) circuit, if enabled, remain functional during Sleep.

The processor wakes up from Sleep if at least one of the following conditions has occurred:

- Any interrupt that is individually enabled and meets the required priority level
- Any Reset (POR, BOR and MCLR)
- WDT time-out

On waking up from Sleep mode, the processor restarts the same clock that was active prior to entry into Sleep mode. When clock switching is enabled, bits COSC<1:0> determine the oscillator source to be used on wake-up. If clock switch is disabled, then there is only one system clock.

Note: If a POR or BOR occurred, the selection of the oscillator is based on the FOS<1:0> and FPR<3:0> Configuration bits.

If the clock source is an oscillator, the clock to the device is held off until OST times out (indicating a stable oscillator). If PLL is used, the system clock is held off until LOCK = 1 (indicating that the PLL is stable). In either case, TPOR, TLOCK and TPWRT delays are applied.

If EC, FRC, LPRC or ERC oscillators are used, then a delay of TPOR (~10 μs) is applied. This is the smallest delay possible on wake-up from Sleep.

Moreover, if the LP oscillator was active during Sleep, and LP is the oscillator used on wake-up, then the startup delay is equal to TPOR. PWRT and OST delays are not applied. In order to have the smallest possible startup delay when waking up from Sleep, one of these faster wake-up options should be selected before entering Sleep.

TABLE 22-2:	INSTRUCTION SET OVERVIEW	(CONTINUED)
-------------	--------------------------	-------------

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of words	# of cycles	Status Flags Affected
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N, Z, C, OV
		DIV.SD Wm,Wn Signed 32/16-bit Integr		Signed 32/16-bit Integer Divide	1	18	N, Z, C, OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N, Z, C, OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N, Z, C, OV
30	DIVF	DIVF	Wm,Wn	Signed 16/16-bit Fractional Divide	1	18	N, Z, C, OV
31	DO	DO	<pre>#lit14,Expr</pre>	Do code to PC + Expr, lit14 + 1 time	2	2	None
		DO	Wn,Expr	Do code to PC + Expr, (Wn) +1 time	2	2	None
32	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance (no accumulate)	1	1	OA, OB, OAB, SA, SB, SAB
33	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance	1	1	OA, OB, OAB, SA, SB, SAB
34	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
35	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
36	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
37	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
38	GOTO	GOTO	Expr	Go to address	2	2	None
		GOTO	Wn	Go to indirect	1	2	None
39	INC	INC	f	f = f + 1	1	1	C, DC, N, OV, Z
		INC	f,WREG	WREG = f + 1	1	1	C, DC, N, OV, Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C, DC, N, OV, Z
40	INC2	INC2	f	f = f + 2	1	1	C, DC, N, OV, Z
		INC2	f,WREG	WREG = f + 2	1	1	C, DC, N, OV, Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C, DC, N, OV, Z
41	IOR	IOR	f	f = f .IOR. WREG	1	1	N, Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N, Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N, Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N, Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N, Z
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA, OB, OAB, SA, SB, SAB
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	None
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C, N, OV, Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C, N, OV, Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C, N, OV, Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N, Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N, Z
45	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd, AWB	Multiply and Accumulate	1	1	OA, OB, OAB, SA, SB, SAB
		MAC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square and Accumulate	1	1	OA, OB, OAB, SA, SB, SAB
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	None
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
47	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB	Prefetch and store accumulator	1	1	None

TABLE 24-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACT	ERISTICS		Standard Operating Conditions: 2.5V to 5.5V (unless otherwise state Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended				
Parameter No.	Typical ⁽¹⁾	vical ⁽¹⁾ Max Units Conditions					
Power-Down	Current (IPD) ⁽	2)					
DC60a	0.3	_	μA	25°C			
DC60b	1	30	μA	85°C	3.3V		
DC60c	12	60	μA	125°C		Page newer down ourrent(3)	
DC60e	0.5	_	μA	25°C		Base power-down current	
DC60f	2	45	μA	85°C	5V		
DC60g	17	90	μA	125°C			
DC61a	5	8	μA	25°C			
DC61b	5	8	μA	85°C	3.3V		
DC61c	6	9	μA	125°C		Wetchdog Timer ourrent, Alwor(3)	
DC61e	10	15	μA	25°C			
DC61f	10	15	μA	85°C	5V		
DC61g	11	17	μA	125°C			
DC62a	4	10	μA	25°C			
DC62b	5	10	μA	85°C	3.3V		
DC62c	4	10	μA	125°C		Timori 1/22 kHz orvotol: Alti22(3)	
DC62e	4	15	μA	25°C			
DC62f	6	15	μA	85°C	5V		
DC62g	5	15	μA	125°C			
DC63a	32	48	μA	25°C			
DC63b	35	53	μA	85°C	3.3V		
DC63c	37	56	μA	125°C			
DC63e	37	56	μA	25°C			
DC63f	41	62	μA	85°C	5V		
DC63g	57	86	μA	125°C			

Note 1: Data in "Typ" column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: These parameters are characterized but not tested in manufacturing.

FIGURE 24-11: OUTPUT COMPARE/PWM MODULE TIMING CHARACTERISTICS

TABLE 24-28: SIMPLE OUTPUT COMPARE/PWM MODE TIMING REQUIREMENTS

AC CHARACTERISTICS					Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended			
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Conditions			
OC15	Tfd	Fault Input to PWM I/O Change			50	ns		
OC20	TFLT	Fault Input Pulse Width	50		_	ns		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-213-7830 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

08/04/10