

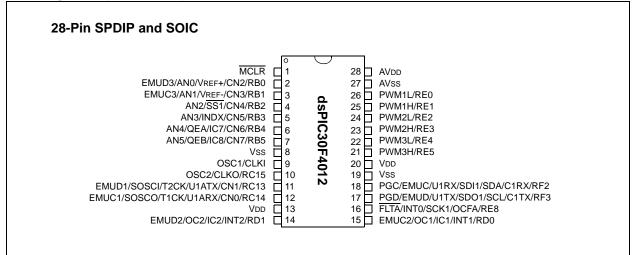
Welcome to E-XFL.COM

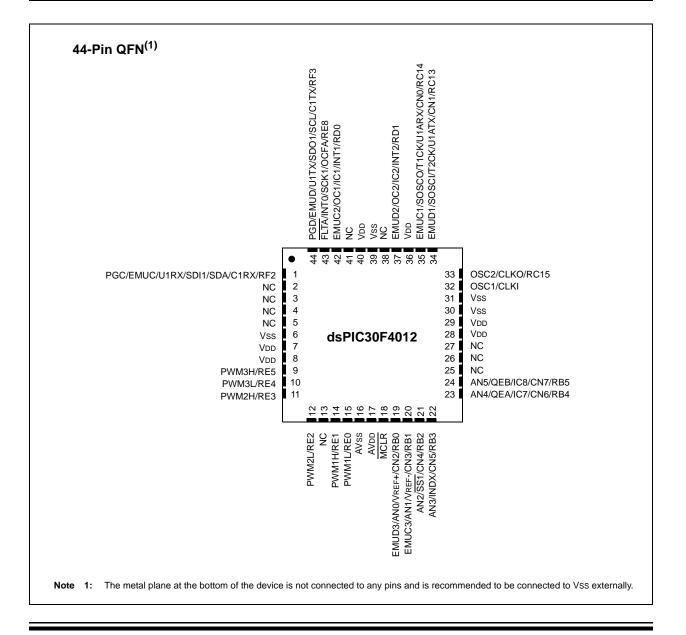
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI


Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	30 MIPs
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, QEI, POR, PWM, WDT
Number of I/O	30
Program Memory Size	48KB (16K x 24)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f4011-30i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

2.4.2.4 Data Space Write Saturation

In addition to adder/subtracter saturation, writes to data space may also be saturated, but without affecting the contents of the source accumulator. The data space write saturation logic block accepts a 16-bit, 1.15 fractional value from the round logic block as its input, together with overflow status from the original source (accumulator) and the 16-bit round adder. These are combined and used to select the appropriate 1.15 fractional value as output to write to data space memory.

If the SATDW bit in the CORCON register is set, data (after rounding or truncation) is tested for overflow and adjusted accordingly. For input data greater than 0x007FFF, data written to memory is forced to the maximum positive 1.15 value, 0x7FFF. For input data less than 0xFF8000, data written to memory is forced to the maximum negative 1.15 value, 0x8000. The MSb of the source (bit 39) is used to determine the sign of the operand being tested.

If the SATDW bit in the CORCON register is not set, the input data is always passed through unmodified under all conditions.

2.4.3 BARREL SHIFTER

The barrel shifter is capable of performing up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts in a single cycle. The source can be either of the two DSP accumulators or the X bus (to support multi-bit shifts of register or memory data).

The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. A negative value shifts the operand left. A value of '0' does not modify the operand.

The barrel shifter is 40 bits wide, thereby obtaining a 40-bit result for DSP shift operations and a 16-bit result for MCU shift operations. Data from the X bus is presented to the barrel shifter between bit positions 16 to 31 for right shifts, and bit positions 0 to 15 for left shifts.

5.3.1.2 Address Error Trap

This trap is initiated when any of the following circumstances occurs:

- 1. A misaligned data word access is attempted.
- 2. A data fetch from an unimplemented data memory location is attempted.
- 3. A data access of an unimplemented program memory location is attempted.
- 4. An instruction fetch from vector space is attempted.

Note: In the MAC class of instructions, wherein the data space is split into X and Y data space, unimplemented X space includes all of Y space and unimplemented Y space includes all of X space.

- 5. Execution of a "BRA #literal" instruction, or a "GOTO #literal" instruction, where literal is an unimplemented program memory address.
- 6. Executing instructions after modifying the PC to point to unimplemented program memory addresses. The PC may be modified by loading a value into the stack and executing a RETURN instruction.

5.3.1.3 Stack Error Trap

This trap is initiated under the following conditions:

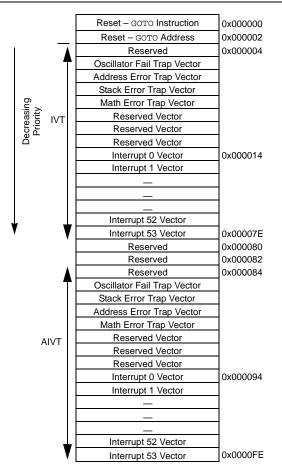
- 1. The Stack Pointer is loaded with a value which is greater than the (user-programmable) limit value written into the SPLIM register (stack overflow).
- 2. The Stack Pointer is loaded with a value which is less than 0x0800 (simple stack underflow).

5.3.1.4 Oscillator Fail Trap

This trap is initiated if the external oscillator fails and operation becomes reliant on an internal RC backup.

5.3.2 HARD AND SOFT TRAPS

It is possible that multiple traps can become active within the same cycle (e.g., a misaligned word stack write to an overflowed address). In such a case, the fixed priority shown in Figure 5-2 is implemented, which may require the user to check if other traps are pending in order to completely correct the Fault.


'Soft' traps include exceptions of priority level 8 through level 11, inclusive. The arithmetic error trap (level 11) falls into this category of traps.

'Hard' traps include exceptions of priority level 12 through level 15, inclusive. The address error (level 12), stack error (level 13) and oscillator error (level 14) traps fall into this category.

Each hard trap that occurs must be acknowledged before code execution of any type may continue. If a lower priority hard trap occurs while a higher priority trap is pending, acknowledged or is being processed, a hard trap conflict will occur.

The device is automatically Reset in a hard trap conflict condition. The TRAPR status bit (RCON<15>) is set when the Reset occurs, so that the condition may be detected in software.

FIGURE 5-1: TRAP VECTORS

7.0 DATA EEPROM MEMORY

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the *dsPIC30F Family Reference Manual* (DS70046). For more information on the device instruction set and programming, refer to the *"16-bit MCU and DSC Reference Manual"* (DS70157).

The data EEPROM memory is readable and writable during normal operation over the entire VDD range. The data EEPROM memory is directly mapped in the program memory address space.

The four SFRs used to read and write the program Flash memory are used to access data EEPROM memory, as well. As described in **Section 6.0 "Flash Program Memory"**, these registers are:

- NVMCON
- NVMADR
- NVMADRU
- NVMKEY

The EEPROM data memory allows read and write of single words and 16-word blocks. When interfacing to data memory, NVMADR, in conjunction with the NVMADRU register, is used to address the EEPROM location being accessed. TBLRDL and TBLWTL instructions are used to read and write data EEPROM. The dsPIC30F4011/4012 devices have 1 Kbyte (512 words) of data EEPROM, with an address range from 0x7FFC00 to 0x7FFFE.

A word write operation should be preceded by an erase of the corresponding memory location(s). The write typically requires 2 ms to complete, but the write time will vary with voltage and temperature. A program or erase operation on the data EEPROM does not stop the instruction flow. The user is responsible for waiting for the appropriate duration of time before initiating another data EEPROM write/erase operation. Attempting to read the data EEPROM while a programming or erase operation is in progress results in unspecified data.

Control bit, WR, initiates write operations, similar to program Flash writes. This bit cannot be cleared, only set, in software. This bit is cleared in hardware at the completion of the write operation. The inability to clear the WR bit in software prevents the accidental or premature termination of a write operation.

The WREN bit, when set, will allow a write operation. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a $\overline{\text{MCLR}}$ Reset, or a WDT Time-out Reset, during normal operation. In these situations, following Reset, the user can check the WRERR bit and rewrite the location. The address register, NVMADR, remains unchanged.

Note: Interrupt flag bit, NVMIF in the IFS0 register, is set when write is complete. It must be cleared in software.

7.1 Reading the Data EEPROM

A TBLRD instruction reads a word at the current program word address. This example uses W0 as a pointer to data EEPROM. The result is placed in register W4, as shown in Example 7-1.

EXAMPLE 7-1: DATA EEPROM READ

MOV	#LOW_ADDR_WORD,W0	;	Init	Pointer
MOV	#HIGH_ADDR_WORD,W1			
MOV	W1,TBLPAG			
TBLRDL	[WO], W4	;	read	data EEPROM

7.2 Erasing Data EEPROM

7.2.1 ERASING A BLOCK OF DATA EEPROM

In order to erase a block of data EEPROM, the NVMADRU and NVMADR registers must initially point to the block of memory to be erased. Configure NVMCON for erasing a block of data EEPROM and set the WR and WREN bits in the NVMCON register. Setting the WR bit initiates the erase, as shown in Example 7-2.

EXAMPLE 7-2: DATA EEPROM BLOCK ERASE

```
; Select data EEPROM block, WR, WREN bits
   MOV
           #0x4045,W0
   MOV
           W0 NVMCON
                                          ; Initialize NVMCON SFR
; Start erase cycle by setting WR after writing key sequence
   DISI
                                          ; Block all interrupts with priority < 7
           #5
                                          ; for next 5 instructions
   MOV
           #0x55,W0
                                         ;
           W0 NVMKEY
   MOV
                                         ; Write the 0x55 key
           #0xAA,W1
   MOV
   MOV
           W1 NVMKEY
                                         ; Write the OxAA key
   BSET
           NVMCON, #WR
                                          ; Initiate erase sequence
   NOP
   NOP
; Erase cycle will complete in 2mS. CPU is not stalled for the Data Erase Cycle
; User can poll WR bit, use NVMIF or Timer IRQ to determine erasure complete
```

7.2.2 ERASING A WORD OF DATA EEPROM

The TBLPAG and NVMADR registers must point to the block. Select erase a block of data Flash and set the WR and WREN bits in the NVMCON register. Setting the WR bit initiates the erase, as shown in Example 7-3.

EXAMPLE 7-3: DATA EEPROM WORD ERASE

```
; Select data EEPROM word, WR, WREN bits
           #0x4044,W0
   MOV
   MOV
           W0 NVMCON
; Start erase cycle by setting WR after writing key sequence
                                         ; Block all interrupts with priority <7
   DISI
           #5
                                          ; for next 5 instructions
           #0x55,W0
   MOV
                                  ;
   MOV
           W0 NVMKEY
                                  ; Write the 0x55 key
   MOV
           #0xAA,W1
                                  ;
           W1 NVMKEY
   MOV
                                  ; Write the OxAA key
                                  ; Initiate erase sequence
   BSET
           NVMCON, #WR
   NOP
   NOP
; Erase cycle will complete in 2mS. CPU is not stalled for the Data Erase Cycle
; User can poll WR bit, use NVMIF or Timer IRQ to determine erasure complete
```

dsPIC30F4011/4012

NOTES:

TABLE 14-1: QEI REGISTER MAP⁽¹⁾

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
QEICON	0122	CNTERR	_	QEISIDL	INDX	UPDN	QEIM2	QEIM1	QEIM0	SWPAB	-	TQGATE	TQCKPS1	TQCKPS0	POSRES	TQCS	UPDN_SRC	0000 0000 0000 0000
DFLTCON	0124		—			Ι	IMV1	IMV0	CEID	QEOUT	QECK2	QECK1	QECK0	_	_	_	_	0000 0000 0000 0000
POSCNT	VT 0126 Position Counter<15:0>										0000 0000 0000 0000							
MAXCNT	0128		Maximun Count<15:0>									1111 1111 1111 1111						
ADPCFG	02A8	_	—	_	—	_	—	_	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000 0000 0000 0000

Legend: — = unimplemented bit, read as '0'

Note 1: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

15.0 MOTOR CONTROL PWM MODULE

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the *dsPIC30F Family Reference Manual* (DS70046). For more information on the device instruction set and programming, refer to the *"16-bit MCU and DSC Reference Manual"* (DS70157).

This module simplifies the task of generating multiple, synchronized Pulse-Width Modulated (PWM) outputs. In particular, the following power and motion control applications are supported by the PWM module:

- Three-Phase AC Induction Motor
- Switched Reluctance (SR) Motor
- Brushless DC (BLDC) Motor
- Uninterruptible Power Supply (UPS)

The PWM module has the following features:

- 6 PWM I/O pins with 3 duty cycle generators
- Up to 16-bit resolution
- 'On-the-Fly' PWM frequency changes
- Edge and Center-Aligned Output modes
- Single Pulse Generation mode
- Interrupt support for asymmetrical updates in Center-Aligned mode
- Output override control for Electrically Commutative Motor (ECM) operation
- 'Special Event' comparator for scheduling other peripheral events
- Fault pins to optionally drive each of the PWM output pins to a defined state

This module contains 3 duty cycle generators, numbered 1 through 3. The module has 6 PWM output pins, numbered PWM1H/PWM1L through PWM3H/PWM3L. The six I/O pins are grouped into high/low numbered pairs, denoted by the suffix H or L, respectively. For complementary loads, the low PWM pins are always the complement of the corresponding high I/O pin.

The PWM module allows several modes of operation which are beneficial for specific power control applications.

15.1.4 DOUBLE UPDATE MODE

In the Double Update mode (PTMOD<1:0> = 11), an interrupt event is generated each time the PTMR register is equal to zero, as well as each time a period match occurs. The postscaler selection bits have no effect in this mode of the timer.

The Double Update mode provides two additional functions to the user. First, the control loop bandwidth is doubled because the PWM duty cycles can be updated, twice per period. Second, asymmetrical center-aligned PWM waveforms can be generated which are useful for minimizing output waveform distortion in certain motor control applications.

Note: Programming a value of 0x0001 in the Period register could generate a continuous interrupt pulse, and hence, must be avoided.

15.1.5 PWM TIME BASE PRESCALER

The input clock to PTMR (Fosc/4) has prescaler options of 1:1, 1:4, 1:16 or 1:64, selected by control bits, PTCKPS<1:0>, in the PTCON SFR. The prescaler counter is cleared when any of the following occurs:

- A write to the PTMR register
- A write to the PTCON register
- Any device Reset

The PTMR register is not cleared when PTCON is written.

15.1.6 PWM TIME BASE POSTSCALER

The match output of PTMR can optionally be postscaled through a 4-bit postscaler (which gives a 1:1 to 1:16 scaling).

The postscaler counter is cleared when any of the following occurs:

- A write to the PTMR register
- A write to the PTCON register
- Any device Reset

The PTMR register is not cleared when the PTCON register is written.

15.2 PWM Period

PTPER is a 15-bit register and is used to set the counting period for the PWM time base. PTPER is a double-buffered register. The PTPER buffer contents are loaded into the PTPER register at the following instants:

- <u>Free-Running and Single-Shot modes:</u> When the PTMR register is reset to zero after a match with the PTPER register.
- Continuous Up/Down Count modes: When the PTMR register is zero.

The value held in the PTPER buffer is automatically loaded into the PTPER register when the PWM time base is disabled (PTEN = 0).

The PWM period can be determined using Equation 15-1:

EQUATION 15-1: PWM PERIOD

$$T_{PWM} = T_{CY} \bullet (PTPER + 1) \bullet PTMR Prescale Value$$

If the PWM time base is configured for one of the Continuous Up/Down Count modes, the PWM period is provided by Equation 15-2.

EQUATION 15-2: PWM PERIOD (CENTER-ALIGNED MODE)

 $T_{PWM} = T_{CY} \bullet 2 \bullet PTPER + 1) \bullet PTMR Prescale Value$

The maximum resolution (in bits) for a given device oscillator and PWM frequency can be determined using Equation 15-3:

EQUATION 15-3: PWM RESOLUTION

 $Resolution = \frac{\log (2 \bullet TPWM/TCY)}{\log (2)}$

18.3.4 TRANSMIT INTERRUPT

The Transmit Interrupt Flag (U1TXIF or U2TXIF) is located in the corresponding interrupt flag register.

The transmitter generates an edge to set the UxTXIF bit. The condition for generating the interrupt depends on UTXISEL control bit:

- a) If UTXISEL = 0, an interrupt is generated when a word is transferred from the transmit buffer to the Transmit Shift register (UxTSR). This implies that the transmit buffer has at least one empty word.
- b) If UTXISEL = 1, an interrupt is generated when a word is transferred from the transmit buffer to the Transmit Shift register (UxTSR) and the transmit buffer is empty.

Switching between the two interrupt modes during operation is possible and sometimes offers more flexibility.

18.3.5 TRANSMIT BREAK

Setting the UTXBRK bit (UxSTA<11>) will cause the UxTX line to be driven to logic '0'. The UTXBRK bit overrides all transmission activity. Therefore, the user should generally wait for the transmitter to be Idle before setting UTXBRK.

To send a Break character, the UTXBRK bit must be set by software and must remain set for a minimum of 13 baud clock cycles. The UTXBRK bit is then cleared by software to generate Stop bits. The user must wait for a duration of at least one or two baud clock cycles in order to ensure a valid Stop bit(s) before reloading the UxTXB or starting other transmitter activity. Transmission of a Break character does not generate a transmit interrupt.

18.4 Receiving Data

18.4.1 RECEIVING IN 8-BIT OR 9-BIT DATA MODE

The following steps must be performed while receiving 8-bit or 9-bit data:

- 1. Set up the UART (see Section 18.3.1 "Transmitting in 8-bit Data Mode").
- 2. Enable the UART (see Section 18.3.1 "Transmitting in 8-bit Data Mode").
- A receive interrupt will be generated when one or more data words have been received, depending on the receive interrupt settings specified by the URXISEL bits (UxSTA<7:6>).
- 4. Read the OERR bit to determine if an overrun error has occurred. The OERR bit must be reset in software.
- Read the received data from UxRXREG. The act of reading UxRXREG will move the next word to the top of the receive FIFO and the PERR and FERR values will be updated.

18.4.2 RECEIVE BUFFER (UXRXB)

The receive buffer is 4 words deep. Including the Receive Shift register (UxRSR), the user effectively has a 5-word deep FIFO buffer.

URXDA (UxSTA<0>) = 1 indicates that the receive buffer has data available. URXDA = 0 implies that the buffer is empty. If a user attempts to read an empty buffer, the old values in the buffer will be read and no data shift will occur within the FIFO.

The FIFO is reset during any device Reset. It is not affected when the device enters or wakes up from a power-saving mode.

18.4.3 RECEIVE INTERRUPT

The Receive Interrupt Flag (U1RXIF or U2RXIF) can be read from the corresponding interrupt flag register. The interrupt flag is set by an edge generated by the receiver. The condition for setting the receive interrupt flag depends on the settings specified by the URXISEL<1:0> (UxSTA<7:6>) control bits.

- a) If URXISEL<1:0> = 00 or 01, an interrupt is generated every time a data word is transferred from the Receive Shift register (UxRSR) to the receive buffer. There may be one or more characters in the receive buffer.
- b) If URXISEL<1:0> = 10, an interrupt is generated when a word is transferred from the Receive Shift register (UxRSR) to the receive buffer which, as a result of the transfer, contains 3 characters.
- c) If URXISEL<1:0> = 11, an interrupt is set when a word is transferred from the Receive Shift register (UxRSR) to the receive buffer which, as a result of the transfer, contains 4 characters (i.e., becomes full).

Switching between the interrupt modes during operation is possible, though generally not advisable during normal operation.

18.5 Reception Error Handling

18.5.1 RECEIVE BUFFER OVERRUN ERROR (OERR BIT)

The OERR bit (UxSTA<1>) is set if all of the following conditions occur:

- a) The receive buffer is full.
- b) The Receive Shift register is full, but unable to transfer the character to the receive buffer.
- c) The Stop bit of the character in the UxRSR is detected, indicating that the UxRSR needs to transfer the character to the buffer.

Once OERR is set, no further data is shifted in UxRSR (until the OERR bit is cleared in software or a Reset occurs). The data held in UxRSR and UxRXREG remains valid.

18.9 Auto-Baud Support

To allow the system to determine baud rates of received characters, the input can be optionally linked to a selected capture input (IC1 for UART1, IC2 for UART2). To enable this mode, the user must program the input capture module to detect the falling and rising edges of the Start bit.

18.10 UART Operation During CPU Sleep and Idle Modes

18.10.1 UART OPERATION DURING CPU SLEEP MODE

When the device enters Sleep mode, all clock sources to the module are shut down and stay at logic '0'. If entry into Sleep mode occurs while a transmission is in progress, then the transmission is aborted. The UxTX pin is driven to logic '1'. Similarly, if entry into Sleep mode occurs while a reception is in progress, then the reception is aborted. The UxSTA, UxMODE, UxBRG, transmit and receive registers and buffers, are not affected by Sleep mode.

If the WAKE bit (UxMODE<7>) is set before the device enters Sleep mode, then a falling edge on the UxRX pin will generate a receive interrupt. The Receive Interrupt Select Mode bit (URXISEL) has no effect for this function. If the receive interrupt is enabled, then this will wake-up the device from Sleep. The UARTEN bit must be set in order to generate a wake-up interrupt.

18.10.2 UART OPERATION DURING CPU IDLE MODE

For the UART, the USIDL bit selects if the module will stop operation when the device enters Idle mode, or whether the module will continue on Idle. If USIDL = 0, the module will continue operation during Idle mode. If USIDL = 1, the module will stop on Idle.

TABLE 19-1: CAN1 REGISTER MAP⁽¹⁾

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
C1RXF0SID	0300	_	_	_			F	Receive Ad	cceptance	Filter 0 Stand	dard Iden	tifier<10:0	>			-	EXIDE	000u uuuu uuuu uu0u
C1RXF0EIDH	0302	_	_	_	_				Receiv	e Acceptance	e Filter 0	Extended	Identifier-	<17:6>				0000 uuuu uuuu uuuu
C1RXF0EIDL	0304	Rece	ive Accepta	nce Filter 0	Extended	Identifier<	5:0>	—	—	—	—	—	_	—	—	_	—	uuuu uu00 0000 0000
C1RXF1SID	0308	_	—	—			F	Receive Ad	cceptance	Filter 1 Stand	dard Iden	tifier<10:0	>			_	EXIDE	000u uuuu uuuu uu0u
C1RXF1EIDH	030A	_	_	_	_				Receiv	e Acceptance	e Filter 1	Extended	Identifier-	<17:6>				0000 uuuu uuuu uuuu
C1RXF1EIDL	030C	Rece	ive Accepta	nce Filter 1	Extended	Identifier<	5:0>	—	—	—	—	—	—	—	—	_	—	uuuu uu00 0000 0000
C1RXF2SID	0310	—	_	_			F	Receive Ad	cceptance	Filter 2 Stand	dard Iden	tifier<10:0	>			_	EXIDE	000u uuuu uuuu uu0u
C1RXF2EIDH	0312	_	_	_	—				Receiv	e Acceptance	e Filter 2	Extended	Identifier-	<17:6>				0000 uuuu uuuu uuuu
C1RXF2EIDL	0314	Rece	ive Accepta	nce Filter 2	Extended	Identifier<	5:0>	—	_	_	_	_	_	_	—	_	_	uuuu uu00 0000 0000
C1RXF3SID	0318	_	_	_			F	Receive Ad	cceptance	Filter 3 Stand	dard Iden	tifier<10:0	>				EXIDE	000u uuuu uuuu uu0u
C1RXF3EIDH	031A	_	_	_	—				Receiv	e Acceptance	e Filter 3	Extended	Identifier-	<17:6>				0000 uuuu uuuu uuuu
C1RXF3EIDL	031C	Rece	ive Accepta	nce Filter 3	Extended	Identifier<	5:0>	—	_	_	_	_	_	_	—	_	_	uuuu uu00 0000 0000
C1RXF4SID	0320	_	_	_			F	Receive Ad	cceptance	Filter 4 Stand	dard Iden	tifier<10:0	>				EXIDE	000u uuuu uuuu uu0u
C1RXF4EIDH	0322	_	_	_	—				Receiv	e Acceptance	e Filter 4	Extended	Identifier-	<17:6>				0000 uuuu uuuu uuuu
C1RXF4EIDL	0324	Rece	ive Accepta	nce Filter 4	Extended	Identifier<	5:0>	—	—	—	—	—	—	—	—	_	—	uuuu uu00 0000 0000
C1RXF5SID	0328	—	_	_			F	Receive Ad	cceptance	Filter 5 Stand	dard Iden	tifier<10:0	>			_	EXIDE	000u uuuu uuuu uu0u
C1RXF5EIDH	032A	_	_	_	—				Receiv	e Acceptance	e Filter 5	Extended	Identifier-	<17:6>				0000 uuuu uuuu uuuu
C1RXF5EIDL	032C	Rece	ive Accepta	nce Filter 5	Extended	Identifier<	5:0>	—	_	—	—	_	_	_	—	_	_	uuuu uu00 0000 0000
C1RXM0SID	0330	_	_	_			R	eceive Ac	ceptance	Mask 0 Stan	dard Ider	tifier<10:0	>				MIDE	000u uuuu uuuu uu0u
C1RXM0EIDH	0332	_	_	_	_				Receiv	e Acceptance	e Mask 0	Extended	Identifier	<17:6>				0000 uuuu uuuu uuuu
C1RXM0EIDL	0334	Recei	ive Accepta	nce Mask 0	Extended	Identifier<	5:0>	—	—	—	—	—	—	—	—	_	—	uuuu uu00 0000 0000
C1RXM1SID	0338	_	_	_			R	eceive Ac	ceptance	Mask 1 Stand	dard Ider	tifier<10:0	>				MIDE	000u uuuu uuuu uu0u
C1RXM1EIDH	033A	_	_	_	_				Receiv	e Acceptance	e Mask 1	Extended	Identifier	<17:6>				0000 uuuu uuuu uuuu
C1RXM1EIDL	033C	Recei	ive Accepta	nce Mask 1	Extended	Identifier<	5:0>	—	—	—	—	—	—	—	—	_	—	uuuu uu00 0000 0000
C1TX2SID	0340	Trans	smit Buffer	2 Standard I	dentifier<	0:6>	—	—	—	Tra	insmit Bu	ffer 2 Star	dard Ider	ntifier<5:0>		SRR	TXIDE	uuuu u000 uuuu uuuu
C1TX2EID	0342	Transmit B	Buffer 2 Exte	nded Identifi	er<17:14>	—	_	_	_	Transmit Buffer 2 Extended Identifier<13:6>							uuuu 0000 uuuu uuuu	
C1TX2DLC	0344		Transmit B	uffer 2 Exter	nded Ident	fier<5:0>		TXRTR	TXRB1	TXRB0		DLO	C<3:0>		—	_	_	uuuu uuuu uuuu u000
C1TX2B1	0346	Transmit Buffer 2 Byte 1							Transmit Buffer 2 Byte 0							uuuu uuuu uuuu uuuu		
C1TX2B2	0348	Transmit Buffer 2 Byte 3							Transmit Buffer 2 Byte 2							uuuu uuuu uuuu uuuu		
C1TX2B3	034A	Transmit Buffer 2 Byte 5							Transmit Buffer 2 Byte 4							uuuu uuuu uuuu uuuu		
C1TX2B4	034C			Tran	smit Buffe	r 2 Byte 7						Trar	smit Buff	er 2 Byte 6				uuuu uuuu uuuu uuuu
C1TX2CON	034E	—	—	—	—	—	—	—	—	—	TXABT	TXLARB	TXERR	TXREQ	—	TXPF	RI<1:0>	0000 0000 0000 0000
C1TX1SID	0350	Trans	smit Buffer	1 Standard I	dentifier<	0:6>	—	_	—	Tra	Insmit Bu	ffer 1 Star	Idard Ider	tifier<5:0>		SRR	TXIDE	uuuu u000 uuuu uuuu
C1TX1EID	0352	Transmit B	Buffer 1 Exte	nded Identifi	er<17:14>	_	_	_	_	Transmit Buffer 1 Extended Identifier<13:6>							uuuu 0000 uuuu uuuu	
C1TX1DLC	0354		Transmit B	uffer 1 Exter	nded Ident	fier<5:0>		TXRTR	TXRB1	TXRB0		DLO	C<3:0>		_	_	—	uuuu uuuu uuuu u000
C1TX1B1	0356			Tran	smit Buffe	r 1 Byte 1		•				Trar	smit Buff	er 1 Byte 0				uuuu uuuu uuuu uuuu

u = uninitialized bit; — = unimplemented bit, read as '0'

Legend: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields. Note 1:

21.2.3 LP OSCILLATOR CONTROL

Enabling the LP oscillator is controlled with two elements:

- Current oscillator group bits, COSC<1:0>
- LPOSCEN bit (OSCCON<1>)

The LP oscillator is on (even during Sleep mode) if LPOSCEN = 1. The LP oscillator is the device clock if:

- COSC<1:0> = 00 (LP selected as main osc.) and
- LPOSCEN = 1

Keeping the LP oscillator on at all times allows for a fast switch to the 32 kHz system clock for lower power operation. Returning to the faster main oscillator still requires a start-up time.

21.2.4 PHASE LOCKED LOOP (PLL)

The PLL multiplies the clock which is generated by the primary oscillator. The PLL is selectable to have either gains of x4, x8 or x16. Input and output frequency ranges are summarized in Table 21-3.

TABLE 21-3: PLL FREQUENCY RANGE

Fin	PLL Multiplier	Fout
4 MHz-10 MHz	x4	16 MHz-40 MHz
4 MHz-10 MHz	x8	32 MHz-80 MHz
4 MHz-7.5 MHz	x16	64 MHz-120 MHz

The PLL features a lock output which is asserted when the PLL enters a phase locked state. Should the loop fall out of lock (e.g., due to noise), the lock signal is rescinded. The state of this signal is reflected in the read-only LOCK bit in the OSCCON register.

21.2.5 FAST RC OSCILLATOR (FRC)

The FRC oscillator is a fast (7.37 MHz, $\pm 2\%$ nominal), internal RC oscillator. This oscillator is intended to provide reasonable device operating speeds without the use of an external crystal, ceramic resonator or RC network. Using the x4, x8 and x16 PLL options, higher operational frequencies can be generated.

The dsPIC30F operates from the FRC oscillator whenever the Current Oscillator Selection (COSC<1:0>) control bits in the OSCCON register (OSCCON<13:12>) are set to '01'.

There are four tuning bits (TUN<3:0>) for the FRC oscillator in the OSCCON register. These tuning bits allow the FRC oscillator frequency to be adjusted as close to 7.37 MHz as possible, depending on the device operating conditions. The FRC oscillator frequency has been calibrated during factory testing. Table 21-4 describes the adjustment range of the TUN<3:0> bits.

Note:	OSCTUN functionality has been provided
	to help customers compensate for
	temperature effects on the FRC frequency
	over a wide range of temperatures. The
	tuning step size is an approximation and is
	neither characterized nor tested.

TABLE 21-4: FRC TUNING

TUN<3:0> Bits	FRC Frequency
0111	+10.5%
0110	+9.0%
0101	+7.5%
0100	+6.0%
0011	+4.5%
0010	+3.0%
0001	+1.5%
0000	Center Frequency (oscillator is running at calibrated frequency)
1111	-1.5%
1110	-3.0%
1101	-4.5%
1100	-6.0%
1011	-7.5%
1010	-9.0%
1001	-10.5%
1000	-12.0%

21.2.6 LOW-POWER RC OSCILLATOR (LPRC)

The LPRC oscillator is a component of the Watchdog Timer (WDT) and oscillates at a nominal frequency of 512 kHz. The LPRC oscillator is the clock source for the Power-up Timer (PWRT) circuit, WDT and clock monitor circuits. It may also be used to provide a lowfrequency clock source option for applications where power consumption is critical and timing accuracy is not required.

The LPRC oscillator is always enabled at a POR because it is the clock source for the PWRT. After the PWRT expires, the LPRC oscillator remains on if one of the following is true:

- The Fail-Safe Clock Monitor is enabled
- The WDT is enabled
- The LPRC oscillator is selected as the system clock via the COSC<1:0> control bits in the OSCCON register

If one of the above conditions is not true, the LPRC shuts off after the PWRT expires.

- Note 1: OSC2 pin function is determined by the Primary Oscillator mode selection (FPR<3:0>).
 - 2: Note that OSC1 pin cannot be used as an I/O pin, even if the secondary oscillator or an internal clock source is selected at all times.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction, require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or twoword instruction. Moreover, double-word moves require two cycles. The double-word instructions execute in two instruction cycles.

Note:	For more details on the instruction set,						
	refer to the "16-bit MCU and DSC						
	Reference Manual" (DS70157).						

TABLE 22-1:	SYMBOLS	USED IN	OPCODE D	DESCRIPTIONS	

Field	Description							
#text	Means literal defined by "text"							
(text)	Means "content of text"							
[text]	Means "the location addressed by text"							
{ }	Optional field or operation							
<n:m></n:m>	Register bit field							
.b	Byte mode selection							
.d	Double-Word mode selection							
.S	Shadow register select							
. W	Word mode selection (default)							
Acc	One of two accumulators {A, B}							
AWB	Accumulator Write-Back Destination Address register ∈ {W13, [W13]+=2}							
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$							
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Zero							
Expr	Absolute address, label or expression (resolved by the linker)							
f	File register address ∈ {0x00000x1FFF}							
lit1	1-bit unsigned literal $\in \{0,1\}$							
lit4	4-bit unsigned literal ∈ {015}							
lit5	5-bit unsigned literal ∈ {031}							
lit8	8-bit unsigned literal ∈ {0255}							
lit10	10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode							
lit14	14-bit unsigned literal ∈ {016384}							
lit16	16-bit unsigned literal ∈ {065535}							
lit23	23-bit unsigned literal ∈ {08388608}; LSB must be 0							
None	Field does not require an entry, may be blank							
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate							
PC	Program Counter							
Slit10	10-bit signed literal \in {-512511}							
Slit16	16-bit signed literal ∈ {-3276832767}							
Slit6	6-bit signed literal ∈ {-1616}							

23.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows® programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC® microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

23.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

23.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

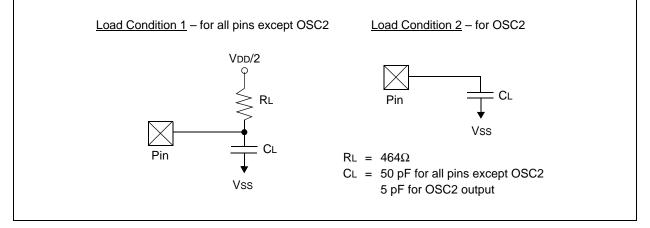
The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

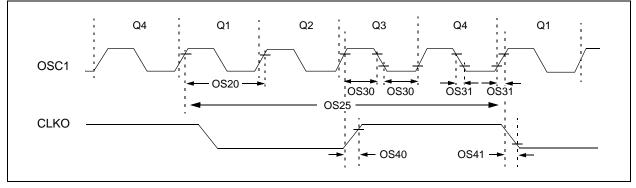
In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.


24.2 AC Characteristics and Timing Parameters

The information contained in this section defines dsPIC30F AC characteristics and timing parameters.


TABLE 24-12: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated)					
AC CHARACTERISTICS	Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended Operating voltage VDD range as described in Section 24.1 "DC Characteristics ".					

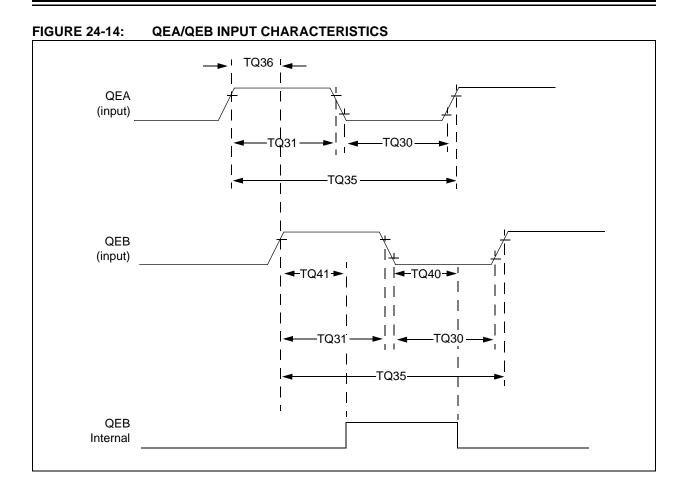
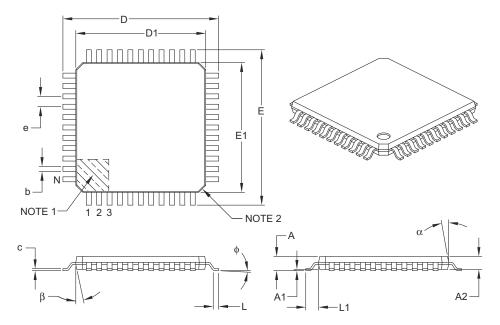

FIGURE 24-2: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

FIGURE 24-3: EXTERNAL CLOCK TIMING

dsPIC30F4011/4012

TABLE 24-30: QUADRATURE DECODER TIMING REQUIREMENTS


AC CHARACTERISTICS			Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended			
Param No.	Symbol	Characteristic ⁽¹⁾	Тур ⁽²⁾	Max	Units	Conditions
TQ30	TQUL	Quadrature Input Low Time	6 Tcy	—	ns	
TQ31	ΤουΗ	Quadrature Input High Time	6 Tcy	—	ns	
TQ35	ΤουΙΝ	Quadrature Input Period	12 TCY	—	ns	
TQ36	ΤουΡ	Quadrature Phase Period	3 TCY	—	ns	
TQ40	TQUFL	Filter Time to Recognize Low, with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)
TQ41	TQUFH	Filter Time to Recognize High, with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)

Note 1: These parameters are characterized but not tested in manufacturing.

2: N = Index Channel Digital Filter Clock Divide Select bits. Refer to Section 16. "Quadrature Encoder Interface (QEI)" in the "dsPIC30F Family Reference Manual" (DS70046).

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS				
Dimensi	ion Limits	MIN	NOM	MAX	
Number of Leads	Ν	44			
Lead Pitch	е	0.80 BSC			
Overall Height	A	—	-	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	φ	0°	3.5°	7°	
Overall Width	E	12.00 BSC			
Overall Length	D	12.00 BSC			
Molded Package Width	E1	10.00 BSC			
Molded Package Length	D1	10.00 BSC			
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.30	0.37	0.45	
Mold Draft Angle Top	α	11°	12°	13°	
Mold Draft Angle Bottom	β	11°	12°	13°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

INDEX

Numerics				
10-Bit, High-Speed Analog-to-Digital Converter (ADC) Mod-				
ule				
16-bit Up/Down Position Counter Mode90				
Count Direction Status90				
Counter Reset90				
Error Checking90				
Α				
AC Characteristics				
Load Conditions				
Temperature and Voltage Specifications				
ADC				
1 Msps Configuration Guideline142				
600 ksps Configuration Guideline 143				
750 ksps Configuration Guideline 143				
Aborting a Conversion140				
Acquisition Requirements144				
ADCHS 137				
ADCON1				
ADCON2137				
ADCON3				
ADCSSL				
ADPCFG				
Configuring Analog Port Pins				
Connection Considerations				
Conversion Operation				
Conversion Rate Parameters				
Conversion Speeds				
Effects of a Reset				
Operation During CPU Idle Mode				
Output Formats				
Power-Down Modes				
Programming the Start of Conversion Trigger				
Register Map				
Result Buffer				
Selecting the Conversion Clock				
Selecting the Conversion Sequence				
Voltage Reference Schematic				
Address Generator Units				
Alternate 16-bit Timer/Counter				
Alternate Interrupt Vector Table				
Assembler				
MPASM Assembler				

В

Barrel Shifter	
Bit-Reversed Addressing	
Example	
Implementation	
Modifier Values (table)	
Sequence Table (16-Entry)	
Block Diagrams	
10-Bit, High-Speed ADC	
16-bit Timer1 Module	
16-bit Timer4	76
16-bit Timer5	
32-bit Timer4/5	75
ADC Analog Input Model	144
CAN Buffers and Protocol Engine	128
Dedicated Port Structure	
DSP Engine	
-	

dsPIC30F4011	
dsPIC30F4012	11
External Power-on Reset Circuit	157
I ² C	112
Input Capture Mode	
Oscillator System	
Output Compare Mode	
PWM Module	
Quadrature Encoder Interface	
Reset System	
Shared Port Structure	
SPI	
SPI Master/Slave Connection	
UART Receiver	
UART Transmitter	
BOR. See Brown-out Reset.	
Brown-out Reset	
	400
Characteristics	182

С

C Compilers	
MPLAB C18	172
CAN Module	127
Baud Rate Setting	132
CAN1 Register Map	134
Frame Types	
Message Reception	130
Message Transmission	131
Modes of Operation	129
Overview	127
Center-Aligned PWM	99
Code Examples	
Data EEPROM Block Erase	56
Data EEPROM Block Write	58
Data EEPROM Read	55
Data EEPROM Word Erase	56
Data EEPROM Word Write	57
Erasing a Row of Program Memory	51
Initiating a Programming Sequence	52
Loading Write Latches	52
Port Write/Read	60
Code Protection	149
Complementary PWM Operation	100
Configuring Analog Port Pins	60
Core Overview	17
Core Register Map	
Customer Change Notification Service	235
Customer Notification Service	235
Customer Support	235

D

Data Access from Program Memory	
Using Program Space Visibility	. 28
Data Accumulators and Adder/Subtracter	. 22
Data Space Write Saturation	. 24
Overflow and Saturation	. 22
Round Logic	. 23
Write-Back	. 23
Data Address Space	. 29
Alignment	. 32
Alignment (Figure)	
Data Spaces	. 32
Effect of Invalid Memory Accesses	. 32
MCU and DSP (MAC Class) Instructions Example	

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent		
Fron				
FIUI				
	Company Address			
	City / State / ZIP / Country			
	Telephone: ()	FAX: ()		
Appl	ication (optional):			
Wou	ld you like a reply? Y N			
	ce: dsPIC30F4011/4012	Literature Number: DS70135G		
Que	stions:			
1.	What are the best features of this document?			
•				
2.	2. How does this document meet your hardware and software development needs?			
-				
3.	. Do you find the organization of this document easy to follow? If not, why?			
-				
4.	What additions to the document do you think would en	nance the structure and subject?		
-				
5.	What deletions from the document could be made without affecting the overall usefulness?			
-				
6.	Is there any incorrect or misleading information (what a	nd where)?		
•				
7.	How would you improve this document?			
•				