

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	30 MIPs
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, QEI, POR, PWM, WDT
Number of I/O	30
Program Memory Size	48KB (16K x 24)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f4011-30i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Type	Buffer Type	Description							
OSC1	I	ST/CMOS	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.							
OSC2	I/O	—	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.							
PGD	I/O	ST	In-Circuit Serial Programming™ data input/output pin.							
PGC	I	ST	In-Circuit Serial Programming clock input pin.							
RB0-RB8	I/O	ST	PORTB is a bidirectional I/O port.							
RC13-RC15	I/O	ST	PORTC is a bidirectional I/O port.							
RD0-RD3	I/O	ST	PORTD is a bidirectional I/O port.							
RE0-RE5, RE8	I/O	ST	PORTE is a bidirectional I/O port.							
RF0-RF6	I/O	ST	PORTF is a bidirectional I/O port.							
SCK1	I/O	ST	Synchronous serial clock input/output for SPI1.							
SDI1	I	ST	SPI1 data in.							
SDO1	0	—	SPI1 data out.							
SS1	I	ST	SPI1 slave synchronization.							
SCL	I/O	ST	Synchronous serial clock input/output for I ² C™.							
SDA	I/O	ST	Synchronous serial data input/output for I ² C.							
SOSCO	0	—	32 kHz low-power oscillator crystal output.							
SOSCI	I	ST/CMOS	32 kHz low-power oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.							
T1CK	I	ST	Timer1 external clock input.							
T2CK	I	ST	Timer2 external clock input.							
U1RX	I	ST	UART1 receive.							
U1TX	0	—	UART1 transmit.							
U1ARX		ST	UART1 alternate receive.							
U1ATX	0	— CT	UART1 alternate transmit.							
U2RX U2TX	 0	ST	UART2 receive. UART2 transmit.							
VDD	P		Positive supply for logic and I/O pins.							
Vss	P									
VSS VREF+		Analaa	Ground reference for logic and I/O pins.							
VREF+ VREF-	 	Analog	Analog voltage reference (high) input.							
		Analog	Analog voltage reference (low) input.							
Legend: CM			ible input or output Analog = Analog input							
ST		00	r input with CMOS levels O = Output							
I	= Inj	put	P = Power							

TABLE 1-1: dsPIC30F4011 I/O PIN DESCRIPTIONS (CONTINUED)

2.3 Divide Support

The dsPIC DSCs feature a 16/16-bit signed fractional divide operation, as well as 32/16-bit and 16/16-bit signed and unsigned integer divide operations, in the form of single instruction iterative divides. The following instructions and data sizes are supported:

- 1. DIVF 16/16 signed fractional divide
- 2. DIV.sd 32/16 signed divide
- 3. DIV.ud 32/16 unsigned divide
- 4. DIV.s 16/16 signed divide
- 5. DIV.u 16/16 unsigned divide

The divide instructions must be executed within a REPEAT loop. Any other form of execution (e.g. a series of discrete divide instructions) will not function correctly because the instruction flow depends on RCOUNT. The divide instruction does not automatically set up the RCOUNT value and it must, therefore, be explicitly and correctly specified in the REPEAT instruction, as shown in Table 2-1 (REPEAT executes the target instruction {operand value + 1} times). The REPEAT loop count must be set up for 18 iterations of the DIV/DIVF instruction. Thus, a complete divide operation requires 19 cycles.

Note: The divide flow is interruptible. However, the user needs to save the context as appropriate.

Instruction	Function					
DIVF	Signed fractional divide: Wm/Wn \rightarrow W0; Rem \rightarrow W1					
DIV.sd	Signed divide: (Wm + 1:Wm)/Wn \rightarrow W0; Rem \rightarrow W1					
DIV.s	Signed divide: Wm/Wn \rightarrow W0; Rem \rightarrow W1					
DIV.ud	Unsigned divide: (Wm + 1:Wm)/Wn \rightarrow W0; Rem \rightarrow W1					
DIV.u	Unsigned divide: Wm/Wn \rightarrow W0; Rem \rightarrow W1					

TABLE 2-1: DIVIDE INSTRUCTIONS

2.4 DSP Engine

The DSP engine consists of a high-speed, 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/ subtracter (with two target accumulators, round and saturation logic).

The dsPIC30F devices have a single instruction flow which can execute either DSP or MCU instructions. Many of the hardware resources are shared between the DSP and MCU instructions. For example, the instruction set has both DSP and MCU multiply instructions which use the same hardware multiplier.

The DSP engine also has the capability to perform inherent accumulator-to-accumulator operations which require no additional data. These instructions are ADD, SUB and NEG.

The DS0 engine has various options selected through various bits in the CPU Core Configuration register (CORCON), as listed below:

- 1. Fractional or integer DSP multiply (IF).
- 2. Signed or unsigned DSP multiply (US).
- 3. Conventional or convergent rounding (RND).
- 4. Automatic saturation on/off for ACCA (SATA).
- 5. Automatic saturation on/off for ACCB (SATB).
- 6. Automatic saturation on/off for writes to data memory (SATDW).
- 7. Accumulator Saturation mode selection (ACCSAT).

Note: For CORCON layout, see Table 3-3.

A block diagram of the DSP engine is shown in Figure 2-2.

TABLE 2-2: DSP INSTRUCTION SUMMARY

Instruction	Algebraic Operation
CLR	A = 0
ED	$A = (x - y)^2$
EDAC	$A = A + (x - y)^2$
MAC	A = A + (x * y)
MOVSAC	No change in A
MPY	A = x * y
MPY.N	A = - x * y
MSC	A = A - x * y

2.4.1 MULTIPLIER

The 17x17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. The output of the 17x17-bit multiplier/ scaler is a 33-bit value, which is sign-extended to 40 bits. Integer data is inherently represented as a signed two's complement value, where the MSB is defined as a sign bit. Generally speaking, the range of an N-bit two's complement integer is -2^{N-1} to $2^{N-1} - 1$. For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF), including 0. For a 32-bit integer, the data range is -2,147,483,648 (0x8000 0000) to 2,147,483,645 (0x7FFF FFFF).

When the multiplier is configured for fractional multiplication, the data is represented as a two's complement fraction, where the MSB is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit two's complement fraction with this implied radix point is -1.0 to $(1-2^{1-N})$. For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF), including 0, and has a precision of 3.01518x10⁻⁵. In Fractional mode, a 16x16 multiply operation generates a 1.31 product, which has a precision of 4.65661x10⁻¹⁰.

The same multiplier is used to support the DSC multiply instructions, which include integer 16-bit signed, unsigned and mixed sign multiplies.

The MUL instruction may be directed to use byte or word-sized operands. Byte operands direct a 16-bit result, and word operands direct a 32-bit result to the specified register(s) in the W array.

2.4.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER

The data accumulator consists of a 40-bit adder/ subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its pre-accumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled via the barrel shifter, prior to accumulation.

2.4.2.1 Adder/Subtracter, Overflow and Saturation

The adder/subtracter is a 40-bit adder with an optional zero input into one side and either true or complement data into the other input. In the case of addition, the carry/borrow input is active-high and the other input is true data (not complemented), whereas in the case of subtraction, the carry/borrow input is active-low and the other input is complemented. The adder/subtracter generates Overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS register.

- Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed.
- Overflow into guard bits 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other.

The adder has an additional saturation block which controls accumulator data saturation, if selected. It uses the result of the adder, the Overflow Status bits described above, and the SATA/B (CORCON<7:6>) and ACCSAT (CORCON<4>) mode control bits to determine when and to what value to saturate.

Six STATUS register bits have been provided to support saturation and overflow; they are:

- 1. OA: ACCA overflowed into guard bits.
- 2. OB: ACCB overflowed into guard bits.
- 3. SA: ACCA saturated (bit 31 overflow and saturation). *or*

ACCA overflowed into guard bits and saturated (bit 39 overflow and saturation).

SB: ACCB saturated (bit 31 overflow and saturation).

or ACCB overflowed into guard bits and saturated (bit 39 overflow and saturation).

5. OAB: Logical OR of OA and OB.

4

6. SAB: Logical OR of SA and SB.

The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). Also, the OA and OB bits can optionally generate an arithmetic warning trap when set and the corresponding Overflow Trap Flag Enable bit (OVATE, OVBTE) in the INTCON1 register (refer to **Section 5.0 "Interrupts"**) is set. This allows the user to take immediate action, for example, to correct system gain.

4.2.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a start and end address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 3-3).

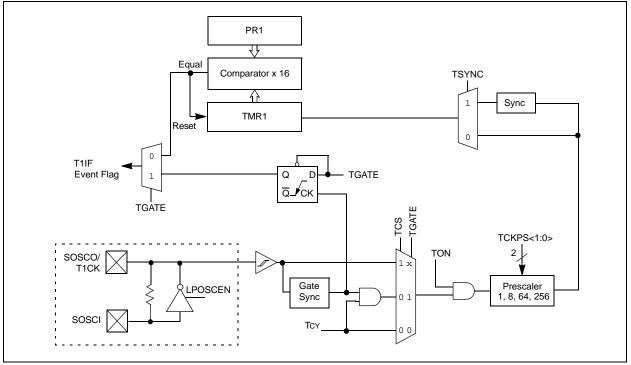
Note:	Y space Modulo Addressing EA calcula-						
	tions assume word-sized data (LSb of						
	every EA is always clear).						

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.2.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select which registers operate with Modulo Addressing. If XWM = 15, X RAGU and X WAGU Modulo Addressing are disabled. Similarly, if YWM = 15, Y AGU Modulo Addressing is disabled.

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 3-3). Modulo Addressing is enabled for X data space when XWM is set to any value other than 15 and the XMODEN bit is set at MODCON<15>.


The Y Address Space Pointer W register (YWM), to which Modulo Addressing is to be applied, is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than 15 and the YMODEN bit is set at MODCON<14>.

JNE 4 -1.				
Byte Address		MOV MOV MOV MOV	#0x1100,W0 W0, XMODSRT #0x1163,W0 W0,MODEND	;set modulo start address ;set modulo end address
0x1100		MOV MOV MOV DO MOV AGAIN:	<pre>#0x8001,W0 W0,MODCON #0x0000,W0 #0x1110,W1 AGAIN,#0x31 W0, [W1++] INC W0,W0</pre>	<pre>;enable W1, X AGU for modulo ;W0 holds buffer fill value ;point W1 to buffer ;fill the 50 buffer locations ;fill the next location ;increment the fill value</pre>
End	rt Addr = 0x1100 d Addr = 0x1163 gth = 0x0032 words			

FIGURE 4-1: MODULO ADDRESSING OPERATION EXAMPLE

NOTES:

FIGURE 9-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM (TYPE A TIMER)

9.1 Timer Gate Operation

The 16-bit timer can be placed in the Gated Time Accumulation mode. This mode allows the internal TCY to increment the respective timer when the gate input signal (T1CK pin) is asserted high. Control bit, TGATE (T1CON<6>), must be set to enable this mode. The timer must be enabled (TON = 1) and the timer clock source set to internal (TCS = 0).

When the CPU goes into the Idle mode, the timer will stop incrementing unless TSIDL = 0. If TSIDL = 1, the timer will resume the incrementing sequence upon termination of the CPU Idle mode.

9.2 Timer Prescaler

The input clock (FOSC/4 or external clock) to the 16-bit Timer has a prescale option of 1:1, 1:8, 1:64 and 1:256 selected by control bits, TCKPS<1:0> (T1CON<5:4>). The prescaler counter is cleared when any of the following occurs:

- · A write to the TMR1 register
- Clearing of the TON bit (T1CON<15>)
- A device Reset, such as a POR and BOR

However, if the timer is disabled (TON = 0), then the timer prescaler cannot be reset since the prescaler clock is halted.

The TMR1 register is not cleared when the T1CON register is written. It is cleared by writing to the TMR1 register.

9.3 Timer Operation During Sleep Mode

During CPU Sleep mode, the timer will operate if:

- The timer module is enabled (TON = 1) and
- The timer clock source is selected as external (TCS = 1) and
- The TSYNC bit (T1CON<2>) is asserted to a logic '0', which defines the external clock source as asynchronous

When all three conditions are true, the timer will continue to count up to the Period register and be reset to 0x0000.

When a match between the timer and the Period register occurs, an interrupt can be generated if the respective timer interrupt enable bit is asserted.

10.1 Timer Gate Operation

The 32-bit timer can be placed in the Gated Time Accumulation mode. This mode allows the internal TCY to increment the respective timer when the gate input signal (T2CK pin) is asserted high. Control bit, TGATE (T2CON<6>), must be set to enable this mode. When in this mode, Timer2 is the originating clock source. The TGATE setting is ignored for Timer3. The timer must be enabled (TON = 1) and the timer clock source set to internal (TCS = 0).

The falling edge of the external signal terminates the count operation but does not reset the timer. The user must reset the timer in order to start counting from zero.

10.2 ADC Event Trigger

When a match occurs between the 32-bit timer (TMR3/ TMR2) and the 32-bit combined Period register (PR3/ PR2), a special ADC trigger event signal is generated by Timer3.

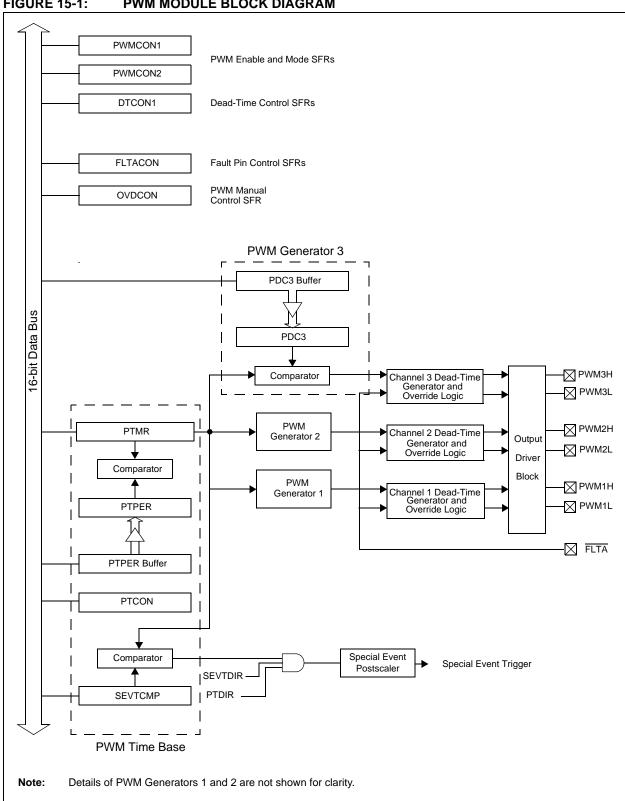
10.3 Timer Prescaler

The input clock (FOSC/4 or external clock) to the timer has a prescale option of 1:1, 1:8, 1:64 and 1:256, selected by control bits, TCKPS<1:0> (T2CON<5:4> and T3CON<5:4>). For the 32-bit timer operation, the originating clock source is Timer2. The prescaler operation for Timer3 is not applicable in this mode. The prescaler counter is cleared when any of the following occurs:

- A write to the TMR2/TMR3 register
- Clearing either of the TON bits (T2CON<15> or T3CON<15>) to '0'
- A device Reset, such as a POR and BOR

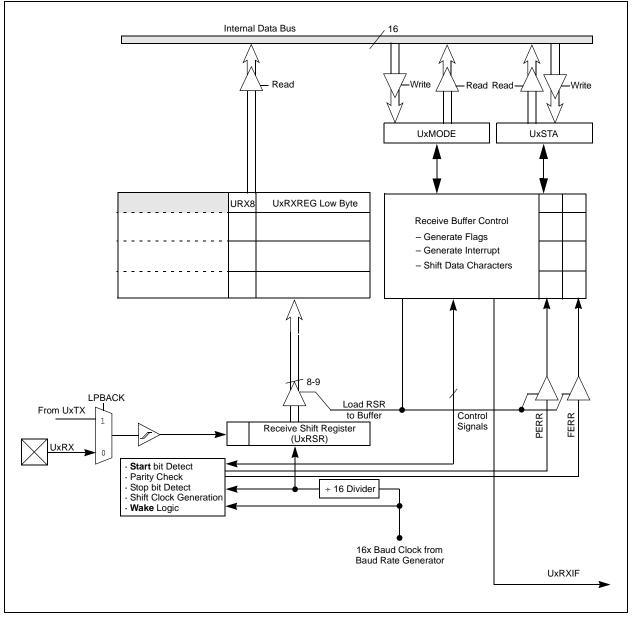
However, if the timer is disabled (TON = 0), then the Timer 2 prescaler cannot be reset, since the prescaler clock is halted.

The TMR2/TMR3 register is not cleared when the T2CON/T3CON register is written.


10.4 Timer Operation During Sleep Mode

During CPU Sleep mode, the timer will not operate because the internal clocks are disabled.

10.5 Timer Interrupt


The 32-bit timer module can generate an interrupt on period match, or on the falling edge of the external gate signal. When the 32-bit timer count matches the respective 32-bit Period register, or the falling edge of the external "gate" signal is detected, the T3IF bit (IFS0<7>) is asserted and an interrupt will be generated, if enabled. In this mode, the T3IF interrupt flag is used as the source of the interrupt. The T3IF bit must be cleared in software.

Enabling an interrupt is accomplished via the respective Timer Interrupt Enable bit, T3IE (IEC0<7>).

FIGURE 15-1: PWM MODULE BLOCK DIAGRAM

FIGURE 18-2: UART RECEIVER BLOCK DIAGRAM

18.5.2 FRAMING ERROR (FERR)

The FERR bit (UxSTA<2>) is set if a '0' is detected instead of a Stop bit. If two Stop bits are selected, both Stop bits must be '1', otherwise FERR will be set. The read-only FERR bit is buffered along with the received data; it is cleared on any Reset.

18.5.3 PARITY ERROR (PERR)

The PERR bit (UxSTA<3>) is set if the parity of the received word is incorrect. This error bit is applicable only if a Parity mode (odd or even) is selected. The read-only PERR bit is buffered along with the received data bytes; it is cleared on any Reset.

18.5.4 IDLE STATUS

When the receiver is active (i.e., between the initial detection of the Start bit and the completion of the Stop bit), the RIDLE bit (UxSTA<4>) is '0'. Between the completion of the Stop bit and detection of the next Start bit, the RIDLE bit is '1', indicating that the UART is Idle.

18.5.5 RECEIVE BREAK

The receiver will count and expect a certain number of bit times based on the values programmed in the PDSEL<1:0> (UxMODE<2:1>) and STSEL (UxMODE<0>) bits.

If the Break is longer than 13 bit times, the reception is considered complete after the number of bit times specified by PDSEL and STSEL. The URXDA bit is set, FERR is set, zeros are loaded into the receive FIFO, interrupts are generated, if appropriate and the RIDLE bit is set.

When the module receives a long Break signal and the receiver has detected the Start bit, the data bits and the invalid Stop bit (which sets the FERR), the receiver must wait for a valid Stop bit before looking for the next Start bit. It cannot assume that the Break condition on the line is the next Start bit.

Break is regarded as a character containing all '0's, with the FERR bit set. The Break character is loaded into the buffer. No further reception can occur until a Stop bit is received. Note that RIDLE goes high when the Stop bit has not been received yet.

18.6 Address Detect Mode

Setting the ADDEN bit (UxSTA<5>) enables this special mode in which a 9th bit (URX8) value of '1' identifies the received word as an address, rather than data. This mode is only applicable for 9-bit data communication. The URXISELx control bit does not have any impact on interrupt generation in this mode, since an interrupt (if enabled) will be generated every time the received word has the 9th bit set.

18.7 Loopback Mode

Setting the LPBACK bit enables this special mode in which the UxTX pin is internally connected to the UxRX pin. When configured for the Loopback mode, the UxRX pin is disconnected from the internal UART receive logic. However, the UxTX pin still functions as in a normal operation.

To select this mode:

- a) Configure UART for desired mode of operation.
- b) Set LPBACK = 1 to enable Loopback mode.
- c) Enable transmission as defined in **Section 18.3** "**Transmitting Data**".

18.8 Baud Rate Generator

The UART has a 16-bit Baud Rate Generator to allow maximum flexibility in baud rate generation. The Baud Rate Generator register (UxBRG) is readable and writable. The baud rate is computed as follows:

- BRG = 16-bit value held in UxBRG register (0 through 65535)
- FCY = Instruction Clock Rate (1/TCY)

The baud rate is given by Equation 18-1.

EQUATION 18-1: BAUD RATE

Baud Rate = FCY/(16 * (BRG + 1))

Therefore, maximum baud rate possible is:

FCY/16 (if BRG = 0),

and the minimum baud rate possible is:

FCY/(16 * 65536).

With a full, 16-bit Baud Rate Generator, at 30 MIPS operation, the minimum baud rate achievable is 28.5 bps.

19.6.2 PRESCALER SETTING

There is a programmable prescaler with integral values ranging from 1 to 64 in addition to a fixed divide-by-2 for clock generation. The Time Quantum (TQ) is a fixed unit of time derived from the oscillator period, shown in Equation 19-1, where FCAN is FCY (if the CANCKS bit is set) or 4 FCY (if CANCKS is cleared).

Note:	FCAN must not exceed 30 MHz. If
	CANCKS = 0, FCY must not exceed 7.5
	MHz.

EQUATION 19-1: TIME QUANTUM FOR CLOCK GENERATION

TQ = 2 (BRP < 5:0 > + 1)/FCAN

19.6.3 PROPAGATION SEGMENT

This part of the bit time is used to compensate physical delay times within the network. These delay times consist of the signal propagation time on the bus line and the internal delay time of the nodes. The propagation segment can be programmed from 1 T_Q to 8 T_Q by setting the PRSEG<2:0> bits (C1CFG2<2:0>).

19.6.4 PHASE SEGMENTS

The phase segments are used to optimally locate the sampling of the received bit within the transmitted bit time. The sampling point is between Phase1 Seg and Phase2 Seg. These segments are lengthened or shortened by resynchronization. The end of the Phase1 Seg determines the sampling point within a bit period. The segment is programmable from 1 TQ to 8 TQ. Phase2 Seg provides delay to the next transmitted data transition. The segment is programmable from 1 TQ to 8 TQ, or it may be defined to be equal to the greater of Phase1 Seg or the information processing time (2 TQ). The Phase1 Seg is initialized by setting bits SEG1PH<2:0> (C1CFG2<5:3>), and Phase2 Seg is initialized by setting SEG2PH<2:0> (C1CFG2<10:8>).

The following requirement must be fulfilled while setting the lengths of the phase segments:

Propagation Segment + Phase1 Seg > = Phase2 Seg

19.6.5 SAMPLE POINT

The sample point is the point of time at which the bus level is read and interpreted as the value of that respective bit. The location is at the end of Phase1 Seg. If the bit timing is slow and contains many TQ, it is possible to specify multiple sampling of the bus line at the sample point. The level determined by the CAN bus then corresponds to the result from the majority decision of three values. The majority samples are taken at the sample point and twice before with a distance of TQ/2. The CAN module allows the user to choose between sampling three times at the same point, or once at the same point, by setting or clearing the SAM bit (C1CFG2<6>).

Typically, the sampling of the bit should take place at about 60-70% through the bit time depending on the system parameters.

19.6.6 SYNCHRONIZATION

To compensate for phase shifts between the oscillator frequencies of the different bus stations, each CAN controller must be able to synchronize to the relevant signal edge of the incoming signal. When an edge in the transmitted data is detected, the logic will compare the location of the edge to the expected time (synchronous segment). The circuit will then adjust the values of Phase1 Seg and Phase2 Seg. There are 2 mechanisms used to synchronize.

19.6.6.1 Hard Synchronization

Hard synchronization is only done whenever there is a 'recessive' to 'dominant' edge during bus ldle, indicating the start of a message. After hard synchronization, the bit time counters are restarted with the synchronous segment. Hard synchronization forces the edge which has caused the hard synchronization to lie within the synchronization segment of the restarted bit time. If a hard synchronization is done, there will not be a resynchronization within that bit time.

19.6.6.2 Resynchronization

As a result of resynchronization, Phase1 Seg may be lengthened or Phase2 Seg may be shortened. The amount of lengthening or shortening of the phase buffer segment has an upper bound known as the synchronization jump width, and is specified by the SJW<1:0> bits (C1CFG1<7:6>). The value of the synchronization jump width will be added to Phase1 Seg or subtracted from Phase2 Seg. The resynchronization jump width is programmable between 1 Tq and 4 Tq.

The following requirement must be fulfilled while setting the SJW<1:0> bits:

Phase2 Seg > Synchronization Jump Width

21.0 SYSTEM INTEGRATION

Note: This data sheet summarizes features of this group of dsPIC30F devices and is not intended to be a complete reference source. For more information on the CPU, peripherals, register descriptions and general device functionality, refer to the *dsPIC30F Family Reference Manual* (DS70046). For more information on the device instruction set and programming, refer to the *"16-bit MCU and DSC Reference Manual"* (DS70157).

There are several features intended to maximize system reliability, minimize cost through elimination of external components, provide power-saving operating modes and offer code protection:

- Oscillator Selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Programmable Brown-out Reset (BOR)
- Watchdog Timer (WDT)
- Power-Saving Modes (Sleep and Idle)
- Code Protection
- Unit ID Locations
- In-Circuit Serial Programming (ICSP)

dsPIC30F devices have a Watchdog Timer which is permanently enabled via the Configuration bits, or can be software controlled. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a delay on power-up only, designed to keep the part in Reset while the power supply stabilizes. With these two timers on-chip, most applications need no external Reset circuitry.

Sleep mode is designed to offer a very low-current Power-Down mode. The user can wake-up from Sleep through external Reset, Watchdog Timer wake-up or through an interrupt. Several oscillator options are also made available to allow the part to fit a wide variety of applications. In the Idle mode, the clock sources are still active, but the CPU is shut off. The RC oscillator option saves system cost, while the LP crystal option saves power.

21.1 Oscillator System Overview

The dsPIC30F oscillator system has the following modules and features:

- Various external and internal oscillator options as clock sources
- An on-chip PLL to boost internal operating frequency
- A clock switching mechanism between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- Oscillator Control register (OSCCON)
- · Configuration bits for main oscillator selection

Table 21-1 provides a summary of the dsPIC30F oscillator operating modes. A simplified diagram of the oscillator system is shown in Figure 21-1.

Configuration bits determine the clock source upon Power-on Reset (POR) and Brown-out Reset (BOR). Thereafter, the clock source can be changed between permissible clock sources. The OSCCON register controls the clock switching and reflects system clock related status bits.

23.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

23.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

23.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

23.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

23.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

TABLE 24-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACT	ERISTICS		Standard Operating te	emperature	-40°C ≤TA ≤+85	5.5V (unless otherwise stated) 5°C for Industrial 25°C for Extended
Parameter No.	Typical ⁽¹⁾	Мах	Units		Co	nditions
Operating Cur	rent (IDD) ⁽²⁾		·	·		
DC31a	2	4	mA	+25°C		
DC31b	2	4	mA	+85°C	3.3V	
DC31c	2	4	mA	+125°C		0.128 MIPS
DC31e	3	5	mA	+25°C		LPRC (512 kHz)
DC31f	3	5	mA	+85°C	5V	
DC31g	3	5	mA	+125°C		
DC30a	4	6	mA	+25°C		
DC30b	4	6	mA	+85°C	3.3V	
DC30c	4	6	mA	+125°C		(1.8 MIPS)
DC30e	7	10	mA	+25°C		FRC (7.37 MHz)
DC30f	7	10	mA	+85°C	5V	
DC30g	7	10	mA	+125°C		
DC23a	12	19	mA	+25°C		4 MIPS
DC23b	12	19	mA	+85°C	3.3V	
DC23c	13	19	mA	+125°C		
DC23e	19	31	mA	+25°C		
DC23f	20	31	mA	+85°C	5V	
DC23g	20	31	mA	+125°C		
DC24a	28	39	mA	+25°C		
DC24b	28	39	mA	+85°C	3.3V	
DC24c	29	39	mA	+125°C		
DC24e	46	64	mA	+25°C		10 MIPS
DC24f	46	64	mA	+85°C	5V	
DC24g	47	64	mA	+125°C		
DC27a	53	72	mA	+25°C	2.01/	
DC27b	53	72	mA	+85°C	3.3V	
DC27d	87	120	mA	+25°C		20 MIPS
DC27e	87	120	mA	+85°C	5V	
DC27f	87	120	mA	+125°C]	
DC29a	124	170	mA	+25°C	5)/	
DC29b	125	170	mA	+85°C	5V	30 MIPS

Note 1: Data in "Typical" column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSC1 driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to VDD. MCLR = VDD, WDT, FSCM, LVD and BOR are disabled. CPU, SRAM, program memory and data memory are operational. No peripheral modules are operating.

TABLE 24-10: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS			Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended						
Param No.	Symbol	Character	Characteristic			Max	Units	Conditions	
BO10	VBOR	BOR Voltage on	BORV = 11 ⁽³⁾		_	_	V	Not in operating range	
		VDD Transition	BORV = 10	2.6	—	2.71	V		
	High-to-Low ⁽²⁾		BORV = 01	4.1	—	4.4	V		
			BORV = 00	4.58	—	4.73	V		
BO15	VBHYS			_	5	_	mV		

Note 1: Data in "Typ" column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: These parameters are characterized but not tested in manufacturing.

3: '11' values not in usable operating range.

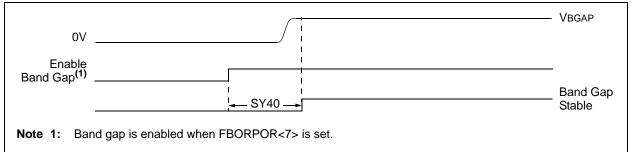
DC CHARACTERISTICS				rd Opera ing temp	-	-40°C :	: 2.5V to 5.5V (unless otherwise stated) ≤TA ≤+85°C for Industrial ≤TA ≤+125°C for Extended
Param No.	Symbol	Characteristic	Min Typ ⁽¹⁾ Max Units			Units	Conditions
		Data EEPROM Memory ⁽²⁾					
D120	ED	Byte Endurance	100K	1M	—	E/W	-40° C ≤TA ≤+85°C
D121	Vdrw	VDD for Read/Write	Vmin	_	5.5	V	Using EECON to read/write, Vмм = Minimum operating voltage
D122	TDEW	Erase/Write Cycle Time	0.8	2	2.6	ms	RTSP
D123	Tretd	Characteristic Retention	40	100	—	Year	Provided no other specifications are violated
D124	IDEW	IDD During Programming	—	10	30	mA	Row Erase
		Program Flash Memory ⁽²⁾					
D130	Eр	Cell Endurance	10K	100K	—	E/W	-40° C ≤TA ≤+85°C
D131	Vpr	VDD for Read	VMIN		5.5	V	VMIN = Minimum operating voltage
D132	VEB	VDD for Bulk Erase	4.5		5.5	V	
D133	VPEW	VDD for Erase/Write	3.0		5.5	V	
D134	TPEW	Erase/Write Cycle Time	0.8	2	2.6	ms	RTSP
D135	Tretd	Characteristic Retention	40	100	—	Year	Provided no other specifications are violated
D137	IPEW	IDD During Programming	—	10	30	mA	Row Erase
D138	lев	IDD During Programming	—	10	30	mA	Bulk Erase

TABLE 24-11: DC CHARACTERISTICS: PROGRAM AND EEPROM

Note 1: Data in "Typ" column is at 5V, 25°C unless otherwise stated.

2: These parameters are characterized but not tested in manufacturing.

TABLE 24-20: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET TIMING REQUIREMENTS

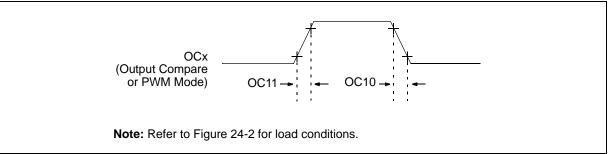

AC CHARACTERISTICS			Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max Units Conditions					
SY10	TmcL	MCLR Pulse Width (low)	2	—	_	μs	-40°C to +85°C	
SY11	TPWRT	Power-up Timer Period	2 8 32	4 16 64	6 24 96	ms	-40°C to +85°C, VDD = 5V User programmable	
SY12	TPOR	Power-on Reset Delay	3	10	30	μs	-40°C to +85°C	
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset		0.8	1.0	μs		
SY20	Twdt1 Twdt2 Twdt3	Watchdog Timer Time-out Period (No Prescaler)	0.6 0.8 1.0	2.0 2.0 2.0	3.4 3.2 3.0	ms ms ms	VDD = 2.5V VDD = 3.3V, ±10% VDD = 5V, ±10%	
SY25	TBOR	Brown-out Reset Pulse Width ⁽³⁾	100	—	_	μs	Vdd ⊴Vbor (D034)	
SY30	Tost	Oscillation Start-up Timer Period	_	1024 Tosc		_	Tosc = OSC1 period	
SY35	TFSCM	Fail-Safe Clock Monitor Delay	_	500	900	μs	-40°C to +85°C	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 5V, 25°C unless otherwise stated.

3: Refer to Figure 24-1 and Table 24-10 for BOR.

FIGURE 24-6: BAND GAP START-UP TIME CHARACTERISTICS


TABLE 24-21: BAND GAP START-UP TIME REQUIREMENTS

AC CHARACTERISTICS				ard Oper ting temp		-40°C	ns: 2.5V to 5.5V (unless otherwise stated) C ≤TA ≤+85°C for Industrial C ≤TA ≤+125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max Units Conditions				
SY40	Tbgap	Band Gap Start-up Time	_	40	65	μs	Defined as the time between the instant that the band gap is enabled and the moment that the band gap reference voltage is stable (RCON<13> status bit)

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 5V, 25°C unless otherwise stated.

FIGURE 24-10: OUTPUT COMPARE MODULE TIMING CHARACTERISTICS

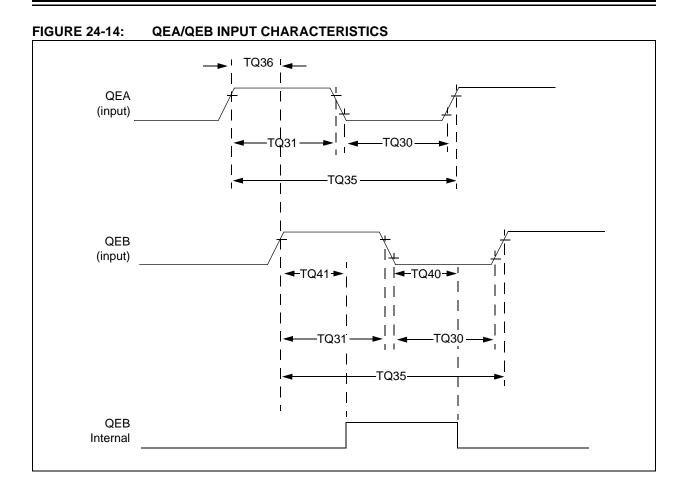


TABLE 24-27: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Мах	Units	Conditions
OC10	TccF	OCx Output Fall Time	_	_		ns	See parameter DO32
OC11	TccR	OCx Output Rise Time	_	_	_	ns	See parameter DO31

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 24-30: QUADRATURE DECODER TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended			
Param No.	Symbol	Characteristic ⁽¹⁾	Тур ⁽²⁾	Max	Units	Conditions
TQ30	TQUL	Quadrature Input Low Time	6 Tcy	—	ns	
TQ31	ΤουΗ	Quadrature Input High Time	6 Tcy	—	ns	
TQ35	ΤουΙΝ	Quadrature Input Period	12 TCY	—	ns	
TQ36	ΤουΡ	Quadrature Phase Period	3 TCY	—	ns	
TQ40	TQUFL	Filter Time to Recognize Low, with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)
TQ41	TQUFH	Filter Time to Recognize High, with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)

Note 1: These parameters are characterized but not tested in manufacturing.

2: N = Index Channel Digital Filter Clock Divide Select bits. Refer to Section 16. "Quadrature Encoder Interface (QEI)" in the "dsPIC30F Family Reference Manual" (DS70046).

TABLE 24-37: I²C[™] BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

АС СНА	RACTERIS	STICS	Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Charac	teristic	Min	Max	Units	Conditions	
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	_	μs	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	1.3	—	μs	Device must operate at a minimum of 10 MHz.	
			1 MHz mode ⁽¹⁾	0.5	—	μs		
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	_	μs	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	_	μs	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5		μs		
IS20	TF:SCL	SDA and SCL	100 kHz mode	—	300	ns	CB is specified to be from	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	100	ns		
IS21	TR:SCL	SDA and SCL	100 kHz mode	—	1000	ns	CB is specified to be from	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	300	ns		
IS25	TSU:DAT	Data Input	100 kHz mode	250		ns		
		Setup Time	400 kHz mode	100	—	ns		
			1 MHz mode ⁽¹⁾	100	—	ns		
IS26	THD:DAT	Data Input	100 kHz mode	0	—	ns		
		Hold Time	400 kHz mode	0	0.9	μs		
			1 MHz mode ⁽¹⁾	0	0.3	μs		
IS30	TSU:STA	Start Condition	100 kHz mode	4.7		μs	Only relevant for Repeated	
		Setup Time	400 kHz mode	0.6	_	μs	Start condition	
			1 MHz mode ⁽¹⁾	0.25	_	μs		
IS31	THD:STA	Start Condition	100 kHz mode	4.0		μs	After this period, the first	
		Hold Time	400 kHz mode	0.6		μs	clock pulse is generated	
			1 MHz mode ⁽¹⁾	0.25	—	μs		
IS33	TSU:STO	Stop Condition	100 kHz mode	4.7	—	μs		
		Setup Time	400 kHz mode	0.6	—	μs		
			1 MHz mode ⁽¹⁾	0.6		μs		
IS34	THD:STO	Stop Condition	100 kHz mode	4000	—	ns		
		Hold Time	400 kHz mode	600		ns		
			1 MHz mode ⁽¹⁾	250		ns		
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns		
		From Clock	400 kHz mode	0	1000	ns		
			1 MHz mode ⁽¹⁾	0	350	ns		
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be free	
			400 kHz mode	1.3		μs	before a new transmission	
			1 MHz mode ⁽¹⁾	0.5		μs	can start	
IS50	Св	Bus Capacitive Lo	ading		400	pF		

Note 1: Maximum pin capacitance = 10 pF for all I²C pins (for 1 MHz mode only).

Μ

Microchip Internet Web Site	235
Modulo Addressing	. 38
Applicability	. 40
Operation Example	. 39
Start and End Address	. 39
W Address Register Selection	. 39
Motor Control PWM Module	. 95
Register Map	105
MPLAB ASM30 Assembler, Linker, Librarian	172
MPLAB Integrated Development Environment Software	171
MPLAB PM3 Device Programmer	174
MPLAB REAL ICE In-Circuit Emulator System	173
MPLINK Object Linker/MPLIB Object Librarian	172

Ο

Operating MIPS vs. Voltage	176
Oscillator	
Configurations	152
Fail-Safe Clock Monitor	
Fast RC (FRC)	153
Initial Clock Source Selection	
Low-Power RC (LPRC)	153
LP	153
Phase Locked Loop (PLL)	153
Start-up Timer (OST)	
Operating Modes (Table)	
Oscillator Selection	
Output Compare Module	
During CPU Idle Mode	
During CPU Sleep Mode	86
Interrupts	
Register Map	

Ρ

Packaging	219
Details	221
Marking	219
Pinout Descriptions	
dsPIC30F4011	12
dsPIC30F4012	
POR. See Power-on Reset.	
Position Measurement Mode	
Power-Saving Modes	159
Idle	
Sleep	159
Power-Saving Modes (Sleep and Idle)	149
Program Address Space	
Construction	
Data Access From Program Memory Using T	
structions	
Data Access From, Address Generation	
Memory Map	
Memory Map	25
Memory Map	25 27
Memory Map Table Instructions TBLRDH	25 27 27
Memory Map Table Instructions TBLRDH TBLRDL	25 27 27 27
Memory Map Table Instructions TBLRDH TBLRDL TBLWTH	25 27 27 27 27
Memory Map Table Instructions TBLRDH TBLRDL TBLWTH TBLWTL Program Counter	25 27 27 27 27 18
Memory Map Table Instructions TBLRDH TBLRDL TBLWTH TBLWTL	25 27 27 27 27 18 27
Memory Map Table Instructions TBLRDH TBLRDL TBLWTH TBLWTL Program Counter Program Data Table Access (Isw)	25 27 27 27 27 18 27
Memory Map Table Instructions TBLRDH TBLRDL TBLWTH TBLWTL Program Counter Program Data Table Access (Isw) Program Data Table Access (MSB) Program Space Visibility	25 27 27 27 27 27 28
Memory Map Table Instructions TBLRDH TBLRDL TBLWTH TBLWTL Program Counter Program Data Table Access (Isw) Program Data Table Access (MSB) Program Space Visibility Window into Program Space Operation	25 27 27 27 27 18 27 28 29
Memory Map Table Instructions TBLRDH TBLRDL TBLWTH TBLWTL Program Counter Program Data Table Access (Isw) Program Data Table Access (MSB) Program Space Visibility	25 27 27 27 27 18 27 28 29 91

Diagram	19
Programming Operations	51
Algorithm for Program Flash	51
Erasing a Row of Program Memory	51
Initiating the Programming Sequence	52
Loading Write Latches	
Protection Against Accidental Writes to OSCCON	154
PWM Duty Cycle Comparison Units	
Duty Cycle Register Buffers	100
PWM Fault Pin	103
Enable Bits	103
Fault States	103
Input Modes	103
Cycle-by-Cycle	103
Latched	103
PWM Operation During CPU Idle Mode	104
PWM Operation During CPU Sleep Mode	104
PWM Output and Polarity Control	103
Output Pin Control	103
PWM Output Override	102
Complementary Output Mode	102
Synchronization	102
PWM Period	98
PWM Special Event Trigger	104
Postscaler	104
PWM Time Base	97
Continuous Up/Down Count Modes	97
Double Update Mode	98
Free-Running Mode	97
Postscaler	98
Prescaler	98
Single-Shot Mode	97
PWM Update Lockout	104

91
91
89
92
90
92
93
92

R

Reader Response	
Reset	149, 155
BOR, Programmable	157
Oscillator Start-up Timer (OST)	149
POR	155
Long Crystal Start-up Time	157
Operating Without FSCM and PWRT	157
Power-on Reset (POR)	
Power-up Timer (PWRT)	149
Programmable Brown-out Reset (BOR)	
Reset Sequence	
Reset Sources	
Revision History	227
RTSP	
Control Registers	50
NVMADR	50
NVMADRU	50
NVMCON	50
NVMKEY	50
Operation	50