

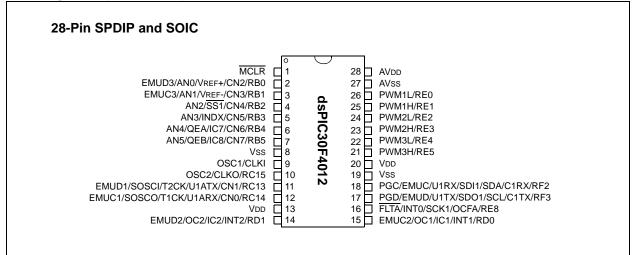
Welcome to E-XFL.COM

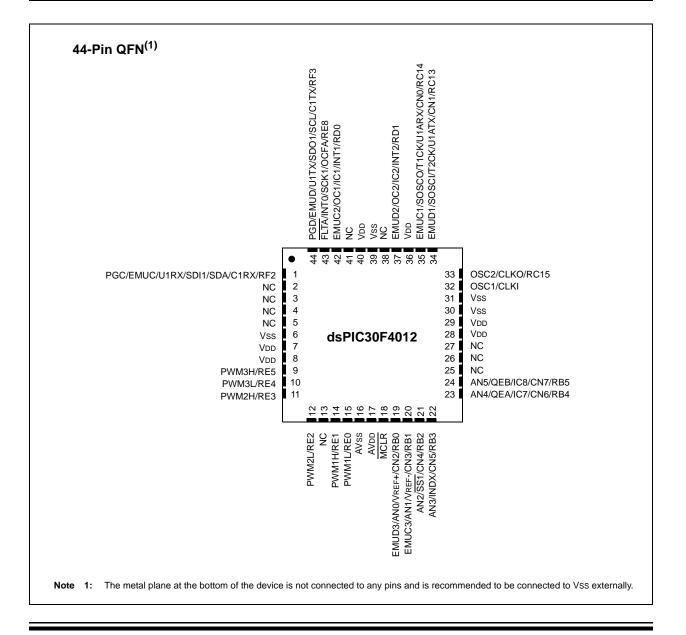
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI


Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	20 MIPS
Connectivity	CANbus, I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, Motor Control PWM, QEI, POR, PWM, WDT
Number of I/O	20
Program Memory Size	48KB (16K x 24)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic30f4012-20e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

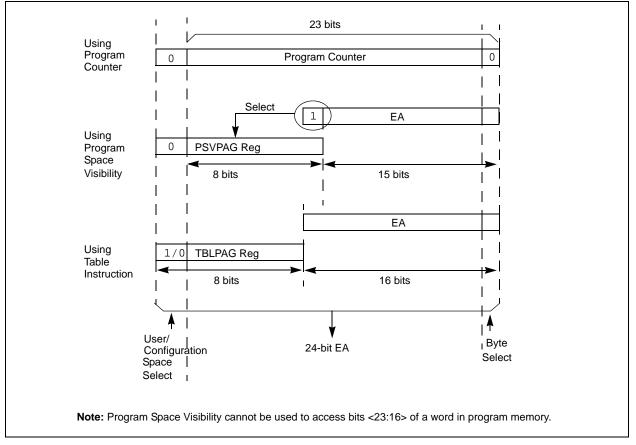


TABLE 3-1: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	Program Space Address									
Access Type	Space	<23>	<22:16>	<14:1>	<0>						
Instruction Access	User	0	0 PC<22:1>								
TBLRD/TBLWT	User (TBLPAG<7> = 0)	TBL	PAG<7:0>		Data EA<15:0>						
TBLRD/TBLWT	Configuration (TBLPAG<7> = 1)	TBL	.PAG<7:0>		Data EA<15:0>						
Program Space Visibility	User	0	PSVPAG<	7:0>	Data EA<1	4:0>					

FIGURE 3-2: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

6.6 **Programming Operations**

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. A programming operation is nominally 2 msec in duration and the processor stalls (waits) until the operation is finished. Setting the WR bit (NVMCON<15>) starts the operation, and the WR bit is automatically cleared when the operation is finished.

6.6.1 PROGRAMMING ALGORITHM FOR PROGRAM FLASH

The user can erase or program one row of program Flash memory at a time. The general process is:

- 1. Read one row of program Flash (32 instruction words) and store into data RAM as a data "image".
- 2. Update the data image with the desired new data.
- 3. Erase program Flash row.
 - a) Set up NVMCON register for multi-word, program Flash, erase and set WREN bit.
 - b) Write address of row to be erased into NVMADRU/NVMDR.
 - c) Write 0x55 to NVMKEY.
 - d) Write 0xAA to NVMKEY.
 - e) Set the WR bit. This will begin erase cycle.
 - f) CPU will stall for the duration of the erase cycle.
 - g) The WR bit is cleared when erase cycle ends.

- Write 32 instruction words of data from data RAM "image" into the program Flash write latches.
- 5. Program 32 instruction words into program Flash.
 - a) Set up NVMCON register for multi-word, program Flash, program and set WREN bit.
 - b) Write 0x55 to NVMKEY.
 - c) Write 0xAA to NVMKEY.
 - d) Set the WR bit. This will begin program cycle.
 - e) CPU will stall for duration of the program cycle.
 - f) The WR bit is cleared by the hardware when program cycle ends.
- 6. Repeat steps 1 through 5 as needed to program desired amount of program Flash memory.

6.6.2 ERASING A ROW OF PROGRAM MEMORY

Example 6-1 shows a code sequence that can be used to erase a row (32 instructions) of program memory.

EXAMPLE 6-1: ERASING A ROW OF PROGRAM MEMORY

	-		for erase operation, multi wor		write
i	progr	MOV	ry selected, and writes enabled #0x4041,W0	;	
		MOV	W0,NVMCON	;	Init NVMCON SFR
;	Init	pointer	to row to be ERASED		
		MOV	<pre>#tblpage(PROG_ADDR),W0</pre>	;	
		MOV	W0 NVMADRU	;	Initialize PM Page Boundary SFR
		MOV	<pre>#tbloffset(PROG_ADDR),W0</pre>	;	Intialize in-page EA[15:0] pointer
		MOV	W0, NVMADR	;	Intialize NVMADR SFR
		DISI	#5	;	Block all interrupts with priority < 7
				;	for next 5 instructions
		MOV	#0x55,W0		
		MOV	WONVMKEY	;	Write the 0x55 key
		MOV	#0xAA,W1	;	
		MOV	W1 NVMKEY	;	Write the OxAA key
		BSET	NVMCON, #WR	;	Start the erase sequence
		NOP		;	Insert two NOPs after the erase
		NOP		;	command is asserted

TABLE 8-2: dsPIC30F4012 PORT REGISTER MAP⁽¹⁾

	• =.		0001 40															
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
TRISB	02C6	—	—	_	-	-	—	—	—		—	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	0000 0000 0011 1111
PORTB	02C8	_	_	_	_	_	_	_	—	_	_	RB5	RB4	RB3	RB2	RB1	RB0	0000 0000 0000 0000
LATB	02CB	_	_	_	_	_	_	_	—	_	—	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	0000 0000 0000 0000
TRISC	02CC	TRISC15	TRISC14	TRISC13	_	_	_	_	—	_	—	_	_	_	_	_	—	1110 0000 0000 0000
PORTC	02CE	RC15	RC14	RC13	_	_	_	_	—	_	_	—	_	_	_	_	_	0000 0000 0000 0000
LATC	02D0	LATC15	LATC14	LATC13	_	_	_	_	—	_	_	—	_	_	_	_	_	0000 0000 0000 0000
TRISD	02D2	_	_	_	_	_	_	_	—	_	_	—	_	_	_	TRISD1	TRISD0	0000 0000 0000 0011
PORTD	02D4	_	_	_	_	_	_	_	—	_	_	—	_	_	_	RD1	RD0	0000 0000 0000 0000
LATD	02D6	_	_	_	_	_	_	_	—	_	_	—	_	_	_	LATD1	LATD0	0000 0000 0000 0000
TRISE	02D8	_	_	_	_	_	_	_	TRISE8	_	_	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	0000 0001 0011 1111
PORTE	02DA	_	_	_	_	_	_	_	RE8	_	_	RE5	RE4	RE3	RE2	RE1	RE0	0000 0000 0000 0000
LATE	02DC	_	_	_	_	_	_	_	LATE8	_	_	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	0000 0000 0000 0000
TRISF	02EE	—	—	_				—	_			_	—	TRISF3	TRISF2	—	_	0000 0000 0000 1100
PORTF	02E0	—	—	_				—	—	_	_	_	_	RF3	RF2	—	—	0000 0000 0000 0000
LATF	02E2	—	—	_		_		—	_	_	_	_	_	LATF3	LATF2	—	—	0000 0000 0000 0000

Legend: — = unimplemented bit, read as '0'

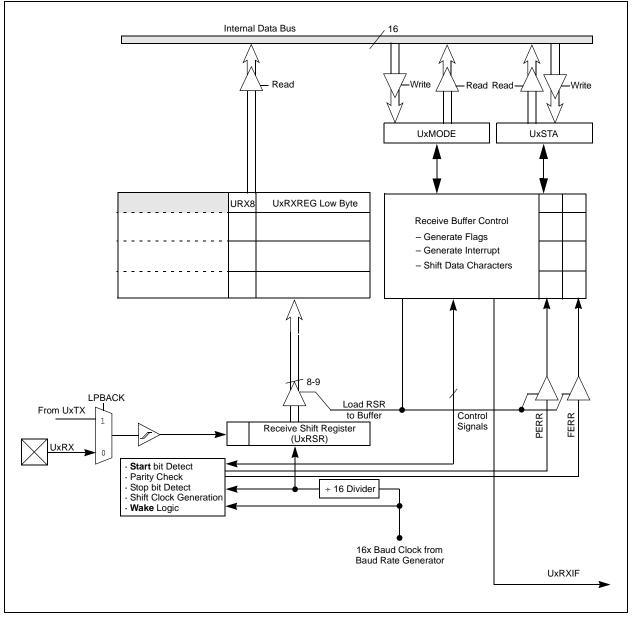
Note 1: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

TABLE 11-1: TIMER4/5 REGISTER MAP⁽¹⁾

SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
TMR4	0114								Tir	mer4 Regis	ter							uuuu uuuu uuuu uuuu
TMR5HLD	0116			Timer5 Holding Register (For 32-bit operations only)											uuuu uuuu uuuu uuuu			
TMR5	0118								Tir	ner5 Regis	ter							uuuu uuuu uuuu uuuu
PR4	011A								Pe	riod Registe	er 4							1111 1111 1111 1111
PR5	011C		_						Pe	riod Registe	er 5							1111 1111 1111 1111
T4CON	011E	TON	_	- TSIDL TGATE TCKPS1 TCKPS0 T45 - TCS												0000 0000 0000 0000		
T5CON	0120	TON	_	TSIDL	—	_	_		_	—	TGATE	TCKPS1	TCKPS0	—	—	TCS	-	0000 0000 0000 0000

 Legend:
 u = uninitialized bit; — = unimplemented bit, read as '0'

 Note
 1:
 Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.


TABLE 14-1: QEI REGISTER MAP⁽¹⁾

		-																
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
QEICON	0122	CNTERR	_	QEISIDL	INDX	UPDN	QEIM2	QEIM1	QEIM0	SWPAB	-	TQGATE	TQCKPS1	TQCKPS0	POSRES	TQCS	UPDN_SRC	0000 0000 0000 0000
DFLTCON	0124		—			Ι	IMV1	IMV0	CEID	QEOUT	QECK2	QECK1	QECK0	_	_	_	_	0000 0000 0000 0000
POSCNT	0126								Positio	n Counter	<15:0>							0000 0000 0000 0000
MAXCNT	0128								Maxim	un Count<	:15:0>		_			_		1111 1111 1111 1111
ADPCFG	02A8	_	—	_	—	_	—	_	PCFG8	PCFG7	PCFG6	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000 0000 0000 0000

Legend: — = unimplemented bit, read as '0'

Note 1: Refer to the "dsPIC30F Family Reference Manual" (DS70046) for descriptions of register bit fields.

FIGURE 18-2: UART RECEIVER BLOCK DIAGRAM

19.4.6.3 Receive Error Interrupts

A receive error interrupt will be indicated by the ERRIF bit. This bit shows that an error condition occurred. The source of the error can be determined by checking the bits in the CAN Interrupt Status register, C1INTF.

- Invalid message received.
- If any type of error occurred during reception of the last message, an error will be indicated by the IVRIF bit.
- Receiver overrun.
- The RXxOVR bit indicates that an overrun condition occurred.
- Receiver warning.
- The RXWAR bit indicates that the Receive Error Counter (RERRCNT<7:0>) has reached the warning limit of 96.
- Receiver error passive.
- The RXEP bit indicates that the Receive Error Counter has exceeded the error passive limit of 127 and the module has gone into error passive state.

19.5 Message Transmission

19.5.1 TRANSMIT BUFFERS

The CAN module has three transmit buffers. Each of the three buffers occupies 14 bytes of data. Eight of the bytes are the maximum 8 bytes of the transmitted message. Five bytes hold the standard and extended identifiers and other message arbitration information.

19.5.2 TRANSMIT MESSAGE PRIORITY

Transmit priority is a prioritization within each node of the pending transmittable messages. There are 4 levels of transmit priority. If TXPRI<1:0> (C1TXxCON<1:0>, where x = 0, 1 or 2, represents a particular transmit buffer) for a particular message buffer is set to '11', that buffer has the highest priority. If TXPRI<1:0> for a particular message buffer is set to '10' or '01', that buffer has an intermediate priority. If TXPRI<1:0> for a particular message buffer is set to '10' or '01', that buffer has an intermediate priority. If TXPRI<1:0> for a particular message buffer is '00', that buffer has the lowest priority.

19.5.3 TRANSMISSION SEQUENCE

To initiate transmission of the message, the TXREQ bit (C1TXxCON<3>) must be set. The CAN bus module resolves any timing conflicts between setting of the TXREQ bit and the Start-of-Frame (SOF), ensuring that if the priority was changed, it is resolved correctly before the SOF occurs. When TXREQ is set, the TXABT (C1TXxCON<6>), TXLARB (C1TXxCON<5>) and TXERR (C1TXxCON<4>) flag bits are automatically cleared.

Setting TXREQ bit simply flags a message buffer as enqueued for transmission. When the module detects an available bus, it begins transmitting the message which has been determined to have the highest priority.

If the transmission completes successfully on the first attempt, the TXREQ bit is cleared automatically and an interrupt is generated if TXxIE was set.

If the message transmission fails, one of the error condition flags will be set and the TXREQ bit will remain set, indicating that the message is still pending for transmission. If the message encountered an error condition during the transmission attempt, the TXERR bit will be set and the error condition may cause an interrupt. If the message loses arbitration during the transmission attempt, the TXLARB bit is set. No interrupt is generated to signal the loss of arbitration.

19.5.4 ABORTING MESSAGE TRANSMISSION

The system can also abort a message by clearing the TXREQ bit associated with each message buffer. Setting the ABAT bit (C1CTRL<12>) will request an abort of all pending messages. If the message has not yet started transmission, or if the message started but is interrupted by loss of arbitration or an error, the abort will be processed. The abort is indicated when the module sets the TXABT bit, and the TXxIF flag is not automatically set.

19.5.5 TRANSMISSION ERRORS

The CAN module will detect the following transmission errors:

- Acknowledge Error
- Form Error
- Bit Error

These transmission errors will not necessarily generate an interrupt but are indicated by the transmission error counter. However, each of these errors will cause the transmission error counter to be incremented by one. Once the value of the error counter exceeds the value of 96, the ERRIF (C1INTF<5>) and the TXWAR bit (C1INTF<10>) are set. Once the value of the error counter exceeds the value of 96, an interrupt is generated and the TXWAR bit in the error flag register is set.

TABLE 20-2: ADC REGISTER MAP⁽¹⁾

ADCBUF1 0282 -			1.20											-					
ADCBUF1 0282 -	SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
ADCBUF20284ADCData Buffer 2UADC Data Buffer 3U000000uu uuu uu uuuu uu ADCBUF4000000uu uuu uu uuuu uu ADCBUF4000000uu uuu uu uuuu uu ADCBUF4000000uu uuu uu uuuu uu ADCBUF4000000uu uuuu uu uuuu ADCBUF4000000uu uuuu uu uuuuu ADCBUF4000000uu uuuu uu uuuuu ADCBUF40000<	ADCBUF0	0280	_	—	_	_	—	_					ADC Data	Buffer 0					0000 00uu uuuu uuuu
ADCBUF3 0.286 - <th< td=""><td>ADCBUF1</td><td>0282</td><td>_</td><td>_</td><td>_</td><td>—</td><td>_</td><td>_</td><td></td><td></td><td></td><td></td><td>ADC Data</td><td>Buffer 1</td><td></td><td></td><td></td><td></td><td>0000 00uu uuuu uuuu</td></th<>	ADCBUF1	0282	_	_	_	—	_	_					ADC Data	Buffer 1					0000 00uu uuuu uuuu
ACCBUF4 0.28 -	ADCBUF2	0284	Ι			Ι	Ι			ADC Data Buffer 2									0000 00uu uuuu uuuu
ACCBUFS 028 - - - - - - - - - ACCBUFS ADC Data Buffer 1 - ADC Data Buffer 1 - 0000 00uu uuuu uu ADC Dut uuuu uu ADC Du	ADCBUF3	0286		_	_	_	-	_		ADC Data Buffer 3								0000 00uu uuuu uuuu	
ADCBUFG 0.28C - - - - - - - - ADC BUFS 0.000	ADCBUF4	0288		—	_	-	_			ADC Data Buffer 4								0000 00uu uuuu uuuu	
ADCBUF7 0.288 - <th< td=""><td>ADCBUF5</td><td>028A</td><td> </td><td>—</td><td>_</td><td>-</td><td>_</td><td></td><td></td><td colspan="8">ADC Data Buffer 5</td><td>0000 00uu uuuu uuuu</td></th<>	ADCBUF5	028A		—	_	-	_			ADC Data Buffer 5								0000 00uu uuuu uuuu	
ADCBUFR9 0.209 - - - - - - - - ADC - ADC DUG - ADC DUG -	ADCBUF6	028C		—	_	-	_						ADC Data	Buffer 6					0000 00uu uuuu uuuu
ADCBUF9 0292 - - - - - - - - ADCBUFA 0293 - - - - - - - - ADCBUFA 0293 - <th< td=""><td>ADCBUF7</td><td>028E</td><td> </td><td>—</td><td>_</td><td>-</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td>ADC Data</td><td>Buffer 7</td><td></td><td></td><td></td><td></td><td>0000 00uu uuuu uuuu</td></th<>	ADCBUF7	028E		—	_	-	_						ADC Data	Buffer 7					0000 00uu uuuu uuuu
ADCBUFA 0294 - - - - - - - - ADC - ADC Data - ADC Data - - 0000 000u uuuu 0000 00uu 00uu 00uu 00uu 00uu 00uu 00uu 00uu 0000 0	ADCBUF8	0290		—	_	-	_						ADC Data	Buffer 8					0000 00uu uuuu uuuu
ADCBUFB 0290 ADCBUFC 0290 0290 ADCBUFC 0290 0 ADC BUFC 0000 00	ADCBUF9	0292	_	—	_	_	—	-					ADC Data	Buffer 9					0000 00uu uuuu uuuu
ADCBUFC 0298 DCBUFC 0298 000 00uu uuuu uuuuu uuuu uuuu uuuu uuuu uuuu uuuuu uuuu uuuu uuuu uuuuu	ADCBUFA	0294	_	—	_	_	—	-					ADC Data E	Buffer 10					0000 00uu uuuu uuuu
ADCBUFD 029A	ADCBUFB	0296	—	—	—	—	—	—					ADC Data E	Buffer 11					0000 00uu uuuu uuuu
ADCBUFE 029C Description Description <thdescription< th=""> <thdescription< th=""></thdescription<></thdescription<>	ADCBUFC	0298	—	—	—	—	—	—					ADC Data E	Buffer 12					0000 00uu uuuu uuuu
ADCBUFF 029E - 0000 00	ADCBUFD	029A	—	—	—	—	—	—					ADC Data E	Buffer 13					0000 00uu uuuu uuuu
ADCON1 02A0 ADON — ADSIDL — — FORM<1:0> SRC<2:0> — SIMSAM ASAM SAMP DONE 0000	ADCBUFE	029C	—	—	—	—	—	—					ADC Data E	Buffer 14					0000 00uu uuuu uuuu
ADCON2 02A2 VCFG<2:> - - CSCNA CHPS-1:> BUFS - SMPI-3:O> BUFM ALTS 00000 00000 00000 00000	ADCBUFF	029E	—	—	_	—	_	—			-		ADC Data E	Buffer 15		-			0000 00uu uuuu uuuu
ADCON3 02A4 SAMC<4:0> ADRC ADRC ADRCS ADRCS ADRCS ADRCS ADRCS ADRCS ADRCS ADRCS ADRCS ADRCS ADRCS ADRCS ADRCS ADRCS ADRCS ADRCS CH123NA<1:0> CH123NA CH02NS CH02NS 00:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0	ADCON1	02A0	ADON	—	ADSIDL	—	_	—	FOR	M<1:0>		SSRC<2:0	>	—	SIMSAM	ASAM	SAMP	DONE	0000 0000 0000 0000
ADCHS 02A6 CH123WB CH123SB CH0NB CH0SB CH123SB CH123SB CH0NA CH0SA	ADCON2	02A2		VCFG<2:	0>	—	—	CSCNA	CHP	CHPS<1:0> BUFS — SMPI<3:0> BUFM ALTS (0000 0000 0000 0000		
ADPCFG 02A8 PCFG8 ⁽²⁾ PCFG7 ⁽²⁾ PCFG6 ⁽²⁾ PCFG5 PCFG4 PCFG3 PCFG2 PCFG1 PCFG0 0000 0000 0	ADCON3	02A4	—	—	—		S	SAMC<4:0	>		ADRC	—			ADCS<	5:0>			0000 0000 0000 0000
	ADCHS	02A6	CH123N	IB<1:0>	CH123SB	CH0NB		CHOSE	B<3:0>		CH123	VA<1:0>	CH123SA	CH0NA		CH0SA	<3:0>		0000 0000 0000 0000
ADCSSL 02AA CSSL8 ⁽²⁾ CSSL7 ⁽²⁾ CSSL7 ⁽²⁾ CSSL5 ⁽²⁾ CSSL4 CSSL3 CSSL2 CSSL1 CSSL0 0000 0000 0000 0000 0000 0000 000	ADPCFG	02A8	—	—	_	—	—	_					PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000 0000 0000 0000
	ADCSSL	02AA	_	—	_	—	—	_	—	CSSL8 ⁽²⁾	CSSL7(2)	CSSL6 ⁽²⁾	CSSL5	CSSL4	CSSL3	CSSL2	CSSL1	CSSL0	0000 0000 0000 0000

Legend:

u = uninitialized bit; — = unimplemented bit, read as '0' Refer to the "*dsPIC30F Family Reference Manual*" (DS70046) for descriptions of register bit fields. Note 1:

2: These bits are not available on dsPIC30F4012 devices.

21.7 In-Circuit Debugger

When MPLAB[®] ICD 2 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. When the device has this feature enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

one of four pairs of debug I/O pins may be selected by the user using configuration options in MPLAB IDE. These pin pairs are named EMUD/EMUC, EMUD1/ EMUC1, EMUD2/EMUC2 and EMUD3/EMUC3. In each case, the selected EMUD pin is the emulation/ debug data line and the EMUC pin is the emulation/ debug clock line. These pins interface to the MPLAB ICD 2 module available from Microchip. The selected pair of debug I/O pins is used by MPLAB ICD 2 to send commands and receive responses, as well as to send and receive data. To use the in-circuit debugger function of the device, the design must implement ICSP connections to MCLR, VDD, VSS, PGC, PGD and the selected EMUDx/EMUCx pin pair.

This gives rise to two possibilities:

- If EMUD/EMUC is selected as the debug I/O pin pair, then only a 5-pin interface is required as the EMUD and EMUC pin functions are multiplexed with the PGD and PGC pin functions in all dsPIC30F devices.
- If EMUD1/EMUC1, EMUD2/EMUC2 or EMUD3/ EMUC3 is selected as the debug I/O pin pair, then a 7-pin interface is required as the EMUDx/ EMUCx pin functions (x = 1, 2 or 3) are not multiplexed with the PGD and PGC pin functions.

DC CHA	ARACTER	RISTICS	Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended								
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions				
	VIL	Input Low Voltage ⁽²⁾									
DI10		I/O pins:									
		with Schmitt Trigger buffer	Vss	—	0.2 Vdd	V					
DI15		MCLR	Vss	—	0.2 Vdd	V					
DI16		OSC1 (in XT, HS and LP modes)	Vss	—	0.2 Vdd	V					
DI17		OSC1 (in RC mode) ⁽³⁾	Vss	—	0.3 Vdd	V					
DI18		SDA, SCL	Vss	—	0.3 Vdd	V	SMBus disabled				
DI19		SDA, SCL	Vss	—	0.8	V	SMBus enabled				
	Vih	Input High Voltage ⁽²⁾									
DI20		I/O pins: with Schmitt Trigger buffer	0.8 Vdd	_	Vdd	V					
DI25		MCLR	0.8 Vdd	_	Vdd	V					
DI26		OSC1 (in XT, HS and LP modes)	0.7 Vdd	_	Vdd	V					
DI27		OSC1 (in RC mode) ⁽³⁾	0.9 Vdd	_	Vdd	V					
DI28		SDA, SCL	0.7 Vdd	_	Vdd	V	SMBus disabled				
DI29		SDA, SCL	2.1	—	Vdd	V	SMBus enabled				
DI30	ICNPU	CNxx Pull-up Current ⁽²⁾	50	250	400	μA	VDD = 5V, VPIN = VSS				
	lı∟	Input Leakage Current ^(2,4,5)									
DI50		I/O ports	—	0.01	±1	μA	Vss ≤VPIN ≤VDD, Pin at high-impedance				
DI51		Analog input pins	—	0.50	_	μA	Vss ≤VPIN ≤VDD, Pin at high-impedance				
DI55		MCLR	—	0.05	±5	μA	Vss ⊴Vpin ⊴Vdd				
DI56		OSC1	_	0.05	±5	μA	Vss ⊴VPIN ⊴VDD, XT, HS and LP Osc mode				

TABLE 24-8: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 5V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: These parameters are characterized but not tested in manufacturing.

3: In RC oscillator configuration, the OSC1/CLKI pin is a Schmitt Trigger input. It is not recommended that the dsPIC30F device be driven with an external clock while in RC mode.

4: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

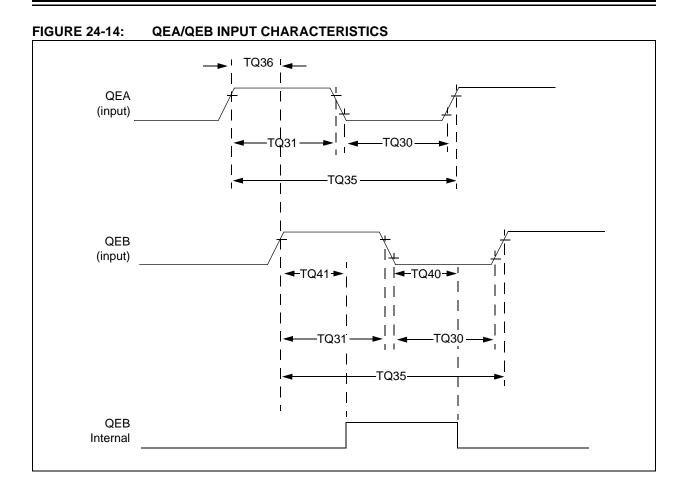

5: Negative current is defined as current sourced by the pin.

TABLE 24-23: TIMER2 AND TIMER4 EXTERNAL CLOCK TIMING REQUIREMENTS

АС СНА	ARACTERIS	TICS		Standard Operating Conditions: 2.5V to 5.5V(unless otherwise stated)Operating temperature-40°C ≤TA ≤+85°C for Industrial-40°C ≤TA ≤+125°C for Extended								
Param No.	Symbol	Charact	eristic		Min	Тур	Max	Units	Conditions			
TB10	B10 TTXH TxCK High Time Synchr no pres				0.5 Tcy + 20	—	_	ns	Must also meet parameter TB15			
			Synchro with pres		10	—	_	ns				
TB11	ΤτxL	TxCK Low Time	Synchro no preso		0.5 TCY + 20		_	ns	Must also meet parameter TB15			
			Synchro with pres		10	—	—	ns				
TB15	ΤτχΡ	TxCK Input Period	Synchro no preso		Tcy + 10	—	—	ns	N = prescale value			
	Synch with pr				Greater of: 20 ns or (TCY + 40)/N				(1, 8, 64, 256)			
TB20	TB20 TCKEXTMRL Delay from External TxCK Edge to Timer Increment			Clock	0.5 TCY	—	1.5 TCY	—				

TABLE 24-24: TIMER3 AND TIMER5 EXTERNAL CLOCK TIMING REQUIREMENTS

АС СНА	ARACTERIS	TICS		Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended								
Param No.	Symbol	Characte	eristic		Min	Тур	Max	Units	Conditions			
TC10	TtxH	TxCK High Time	Synchro	nous	0.5 TCY + 20			ns	Must also meet parameter TC15			
TC11	TtxL	TxCK Low Time	Synchro	nous	0.5 TCY + 20	_	—	ns	Must also meet parameter TC15			
TC15	TtxP	TxCK Input Period	Synchro no preso		Tcy + 10	—	—	ns	N = prescale value			
			Synchro with pres		Greater of: 20 ns or (Tcy + 40)/N				(1, 8, 64, 256)			
TC20	TCKEXTMRL	Delay from Externa Edge to Timer Incre		lock	0.5 TCY		1.5 TCY	_				

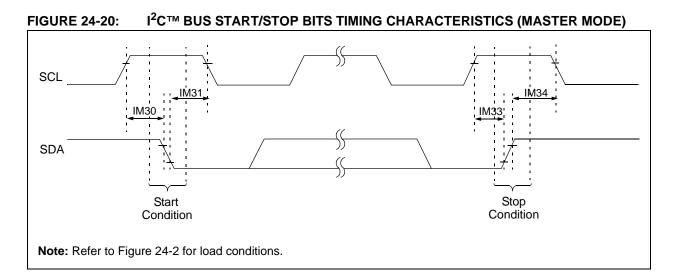
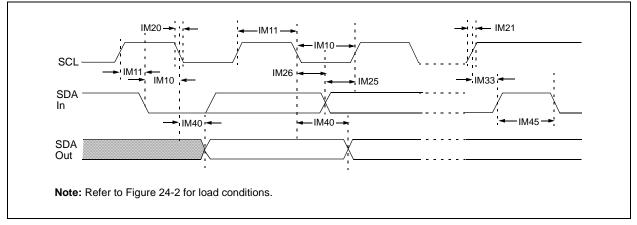


TABLE 24-30: QUADRATURE DECODER TIMING REQUIREMENTS


АС СНА	ARACTER	ISTICS	Standard Ope (unless other Operating terr	wise state	ed) -40°C ≤	2 .5V to 5.5V ΓA ≤+85°C for Industrial ΓA ≤+125°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Тур ⁽²⁾	Max	Units	Conditions
TQ30	TQUL	Quadrature Input Low Time	6 Tcy	—	ns	
TQ31	ΤουΗ	Quadrature Input High Time	6 Tcy	—	ns	
TQ35	ΤουΙΝ	Quadrature Input Period	12 TCY	—	ns	
TQ36	ΤουΡ	Quadrature Phase Period	3 TCY	—	ns	
TQ40	TQUFL	Filter Time to Recognize Low, with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)
TQ41	TQUFH	Filter Time to Recognize High, with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)

Note 1: These parameters are characterized but not tested in manufacturing.

2: N = Index Channel Digital Filter Clock Divide Select bits. Refer to Section 16. "Quadrature Encoder Interface (QEI)" in the "dsPIC30F Family Reference Manual" (DS70046).

AC CHARACTERISTICS			Standard Operating Conditions: 2.5V to 5.5V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended				
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions
Clock P	aramete	rs		•			-
AD50	TAD	A/D Clock Period	_	84	_	ns	See Table 20-2 ⁽¹⁾
AD51	tRC	A/D Internal RC Oscillator Period	700	900	1100	ns	
Conver	sion Rate	3					
AD55	tCONV	Conversion Time	_	12 Tad	—	_	
AD56	FCNV	Throughput Rate	_	1.0	_	Msps	See Table 20-2 ⁽¹⁾
AD57	TSAMP	Sample Time	—	1 Tad	_	_	See Table 20-2 ⁽¹⁾
Timing	Paramete	ers					·
AD60	tPCS	Conversion Start from Sample Trigger	—	1.0 Tad	—	_	
AD61	tPSS	Sample Start from Setting Sample (SAMP) Bit	0.5 Tad	—	1.5 Tad	_	
AD62	tCSS	Conversion Completion to Sample Start (ASAM = 1)	—	0.5 Tad	—	_	
AD63	tdpu (2)	Time to Stabilize Analog Stage from A/D Off to A/D On	—	—	20	μs	

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

2: tDPU is the time required for the ADC module to stabilize when it is turned on (ADCON1<ADON> = 1). During this time the ADC result is indeterminate.

U UART

UART						
Address Detect Mode 123						
Alternate I/O121						
Auto-Baud Support124						
Baud Rate Generator123						
Disabling121						
Enabling and Setting Up 121						
Loopback Mode 123						
Module Overview119						
Operation During CPU Sleep and Idle Modes 124						
Receiving Data122						
In 8-bit or 9-bit Data Mode 122						
Interrupt 122						
Receive Buffer (UxRCB)122						
Reception Error Handling122						
Framing Error (FERR)123						
Idle Status 123						
Parity Error (PERR) 123						
Receive Break 123						
Receive Buffer Overrun Error (OERR Bit) 122						
Setting Up Data, Parity and Stop Bit Selections 121						
Transmitting Data121						
Break122						
In 8-bit Data Mode121						
In 9-bit Data Mode121						
Interrupt122						
Transmit Buffer (UxTXB)121						
UART1 Register Map125						
UART2 Register Map125						
Unit ID Locations149						
Universal Asynchronous Receiver						
Transmitter Module (UART)119						

W

Wake-up from Sleep	149
Wake-up from Sleep and Idle	
Watchdog Timer (WDT)	149, 159
Enabling and Disabling	159
Operation	
WWW Address	
WWW, On-Line Support	8