

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detano	
Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	38
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	2.95V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8s207c6t6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

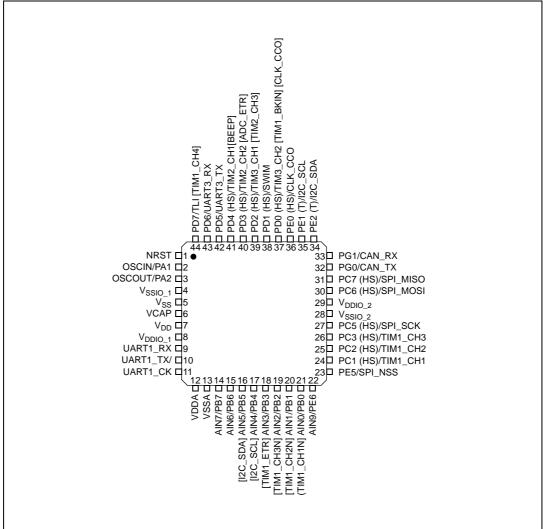
14	Revis	on history
13	Orde	ing information
	12.3	Programming tools
		12.2.2 C and assembly toolchains 111
		12.2.1 STM8 toolset
	12.2	Software tools
	12.1	Emulation and in-circuit debugging tools110
12	STM8	development tools 110
		11.2.2 Selecting the product temperature range
		11.2.1 Reference document
	11.2	Thermal characteristics 108
		11.1.5 LQFP32 package information105

2 Description

The STM8S20xxx performance line 8-bit microcontrollers offer from 32 to 128 Kbytes Flash program memory. They are referred to as high-density devices in the STM8S microcontroller family reference manual.

All STM8S20xxx devices provide the following benefits: reduced system cost, performance robustness, short development cycles, and product longevity.

The system cost is reduced thanks to an integrated true data EEPROM for up to 300 k write/erase cycles and a high system integration level with internal clock oscillators, watchdog, and brown-out reset.


Device performance is ensured by 20 MIPS at 24 MHz CPU clock frequency and enhanced characteristics which include robust I/O, independent watchdogs (with a separate clock source), and a clock security system.

Short development cycles are guaranteed due to application scalability across a common family product architecture with compatible pinout, memory map and modular peripherals. Full documentation is offered with a wide choice of development tools.

Product longevity is ensured in the STM8S family thanks to their advanced core which is made in a state-of-the art technology for applications with 2.95 V to 5.5 V operating supply.

1. (HS) high sink capability.

2. (T) True open drain (P-buffer and protection diode to V_{DD} not implemented).

[] alternate function remapping option (If the same alternate function is shown twice, it indicates an exclusive choice not a duplication of the function).

4. CAN_RX and CAN_TX is available on STM8S208xx devices only.

Address	Address Block Register label Register name					
0x00 5428		CAN_P0	CAN paged register 0	0xXX ⁽³⁾		
0x00 5429		CAN_P1	CAN paged register 1	0xXX ⁽³⁾		
0x00 542A		CAN_P2	CAN paged register 2	0xXX ⁽³⁾		
0x00 542B	_	CAN_P3	CAN paged register 3	0xXX ⁽³⁾		
0x00 542C	_	CAN_P4	CAN paged register 4	0xXX ⁽³⁾		
0x00 542D	_	CAN_P5	CAN paged register 5	0xXX ⁽³⁾		
0x00 542E	_	CAN_P6	CAN paged register 6	0xXX ⁽³⁾		
0x00 542F		CAN_P7	CAN paged register 7	0xXX ⁽³⁾		
0x00 5430	- beCAN	CAN_P8	CAN paged register 8	0xXX ⁽³⁾		
0x00 5431	_	CAN_P9	CAN paged register 9	0xXX ⁽³⁾		
0x00 5432	_	CAN_PA	CAN paged register A	0xXX ⁽³⁾		
0x00 5433	-	CAN_PB	CAN paged register B	0xXX ⁽³⁾		
0x00 5434	_	CAN_PC	CAN paged register C	0xXX ⁽³⁾		
0x00 5435	_	CAN_PD	CAN paged register D	0xXX ⁽³⁾		
0x00 5436	1	CAN_PE	CAN paged register E	0xXX ⁽³⁾		
0x00 5437		CAN_PF	CAN paged register F	0xXX ⁽³⁾		
0x00 5438 to 0x00 57FF		Reserved area (968 bytes)				

Table 0	Gonoral	hardwaro	rogistor	man	(continued)	•
Table 9.	General	naruware	register	map	(continued)	,

1. Depends on the previous reset source.

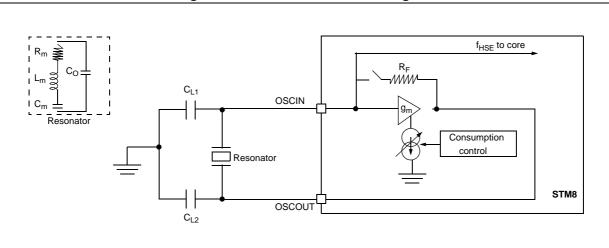
2. Write only register.

3. If the bootloader is enabled, it is initialized to 0x00.

Address Block		Block Register Label Register Name		Reset
0.00.7500		_	_	Status
0x00 7F00		A	Accumulator	0x00
0x00 7F01		PCE	Program counter extended	0x00
0x00 7F02		PCH	Program counter high	0x00
0x00 7F03		PCL	Program counter low	0x00
0x00 7F04		XH	X index register high	0x00
0x00 7F05	CPU ⁽¹⁾	XL	X index register low	0x00
0x00 7F06		YH	Y index register high	0x00
0x00 7F07		YL	Y index register low	0x00
0x00 7F08		SPH	Stack pointer high	0x17 ⁽²⁾
0x00 7F09		SPL	Stack pointer low	0xFF
0x00 7F0A		CCR	Condition code register	0x28
0x00 7F0B to 0x00 7F5F			Reserved area (85 bytes)	
0x00 7F60	CPU	CFG_GCR	Global configuration register	0x00
0x00 7F70		ITC_SPR1	Interrupt software priority register 1	0xFF
0x00 7F71		ITC_SPR2	Interrupt software priority register 2	0xFF
0x00 7F72		ITC_SPR3	Interrupt software priority register 3	0xFF
0x00 7F73	ITO	ITC_SPR4	Interrupt software priority register 4	0xFF
0x00 7F74	ITC	ITC_SPR5	Interrupt software priority register 5	0xFF
0x00 7F75		ITC_SPR6	Interrupt software priority register 6	0xFF
0x00 7F76		ITC_SPR7	Interrupt software priority register 7	0xFF
0x00 7F77		ITC_SPR8	Interrupt software priority register 8	0xFF
0x00 7F78 to 0x00 7F79			Reserved area (2 bytes)	
0x00 7F80	SWIM	SWIM_CSR	SWIM control status register	0x00
0x00 7F81 to 0x00 7F8F			Reserved area (15 bytes)	
0x00 7F90		DM_BK1RE	DM breakpoint 1 register extended byte	0xFF
0x00 7F91		DM_BK1RH	DM breakpoint 1 register high byte	0xFF
0x00 7F92		DM_BK1RL	DM breakpoint 1 register low byte	0xFF
0x00 7F93		DM_BK2RE	DM breakpoint 2 register extended byte	0xFF
0x00 7F94	DM	DM_BK2RH	DM breakpoint 2 register high byte	0xFF
0x00 7F95		DM_BK2RL	DM breakpoint 2 register low byte	0xFF
0x00 7F96		DM_CR1	DM debug module control register 1	0x00
		DM_CR2	DM debug module control register 2	-

Table 10. CPU/SWIM/debug module/interrupt controller registers

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
f _{HSE}	External high speed oscillator frequency		1		24	MHz	
R _F	Feedback resistor			220		kΩ	
C ⁽¹⁾	Recommended load capacitance (2)				20	pF	
	HSE oscillator power consumption	C = 20 pF, f _{OSC} = 24 MHz			6 (startup) 2 (stabilized) ⁽³⁾	mA	
IDD(HSE)		C = 10 pF, f _{OSC} = 24 MHz			6 (startup) 1.5 (stabilized) ⁽³⁾	mA	
9 _m	Oscillator transconductance		5			mA/V	
t _{SU(HSE)} ⁽⁴⁾	Startup time	V_{DD} is stabilized		1		ms	


Table 32. HSE oscillator characterist	ics
---------------------------------------	-----

1. C is approximately equivalent to 2 x crystal Cload.

2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small R_m value. Refer to crystal manufacturer for more details

3. Data based on characterization results, not tested in production.

 t_{SU(HSE)} is the start-up time measured from the moment it is enabled (by software) to a stabilized 24 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

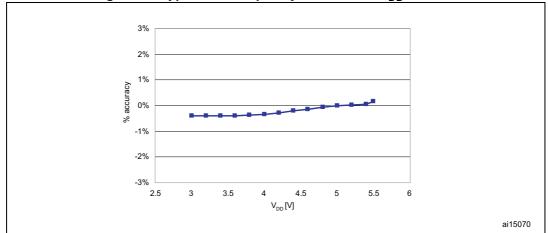
Figure 17. HSE oscillator circuit diagram

HSE oscillator critical g_m formula

 $g_{mcrit} = (2 \times \Pi \times f_{HSE})^2 \times R_m (2Co + C)^2$

 $\begin{array}{l} {\sf R}_m: \mbox{ Notional resistance (see crystal specification)} \\ {\sf L}_m: \mbox{ Notional inductance (see crystal specification)} \\ {\sf C}_m: \mbox{ Notional capacitance (see crystal specification)} \\ {\sf Co: Shunt capacitance (see crystal specification)} \\ {\sf C}_{L1} = {\sf C}_{L2} = {\sf C}: \mbox{ Grounded external capacitance } \\ {\sf g}_m >> {\sf g}_{mcrit} \end{array}$

DocID14733 Rev 13



Low speed internal RC oscillator (LSI)

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSI}	Frequency		110	128	146	kHz
t _{su(LSI)}	LSI oscillator wakeup time				7 ⁽¹⁾	μs
I _{DD(LSI)}	LSI oscillator power consumption			5		μA

1. Guaranteed by design, not tested in production.

Figure 19. Typical LSI frequency variation vs V_{DD} @ 25 °C

10.3.6 I/O port pin characteristics

General characteristics

Subject to general operating conditions for V_{DD} and T_A unless otherwise specified. All unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL}	Input low level voltage		-0.3		0.3 x V _{DD}	V
V _{IH}	Input high level voltage	$V_{DD} = 5 V$	0.7 x V _{DD}		V _{DD} + 0.3 V	v
V _{hys}	Hysteresis ⁽¹⁾			700		mV
R _{pu}	Pull-up resistor	V_{DD} = 5 V, V_{IN} = V_{SS}	30	55	80	kΩ
	Rise and fall time (10% - 90%)	Fast I/Os Load = 50 pF			20 ⁽²⁾	
		Standard and high sink I/Os Load = 50 pF			125 ⁽²⁾	ns
t _R , t _F		Fast I/Os Load = 20 pF			35 ⁽³⁾	
		Standard and high sink I/Os Load = 20 pF			125 ⁽³⁾	
l _{lkg}	Input leakage current, analog and digital	$V_{SS} \leq V_{IN} \leq V_{DD}$			±1	μA
l _{ikg ana}	Analog input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$			±250 ⁽²⁾	nA
l _{lkg(inj)}	Leakage current in adjacent I/O ⁽²⁾	Injection current ±4 mA			±1 ⁽²⁾	μA

1. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested in production.

2. Data based on characterization results, not tested in production.

3. Guaranteed by design.

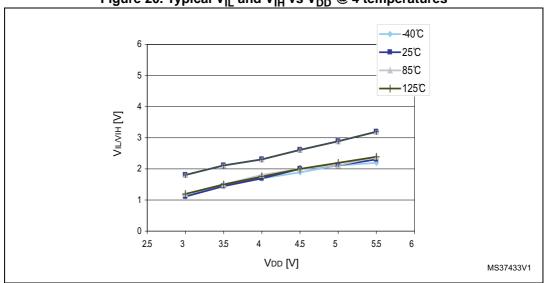
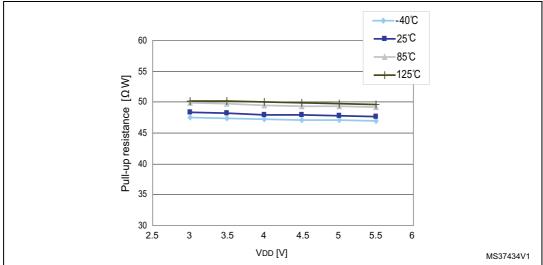



Figure 20. Typical V_{IL} and V_{IH} vs $V_{DD} \ @$ 4 temperatures

Figure 21. Typical pull-up resistance vs V_{DD} @ 4 temperatures

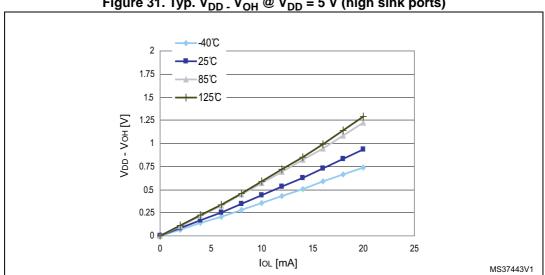
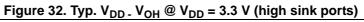
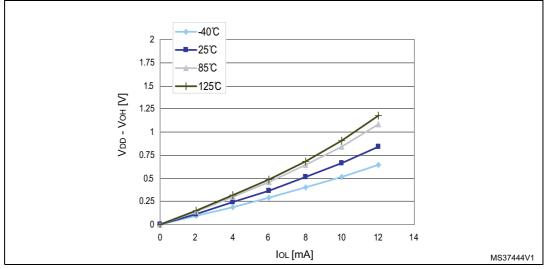
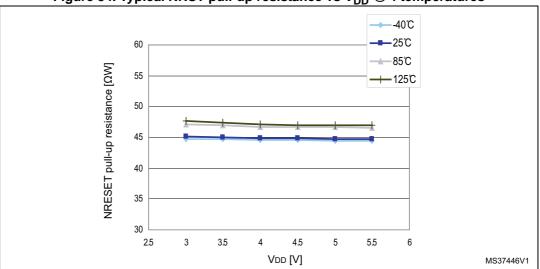
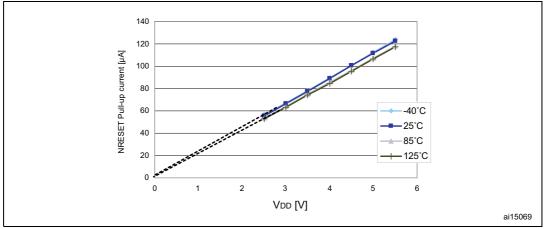




Figure 31. Typ. V_{DD} - V_{OH} @ V_{DD} = 5 V (high sink ports)

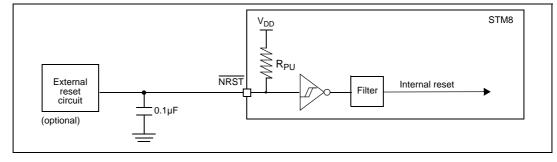

Figure 34. Typical NRST pull-up resistance vs V_{DD} @ 4 temperatures

Figure 35. Typical NRST pull-up current vs V_{DD} @ 4 temperatures

The reset network shown in *Figure 36* protects the device against parasitic resets. The user must ensure that the level on the NRST pin can go below the V_{IL} max. level specified in *Table 41*. Otherwise the reset is not taken into account internally. For power consumption sensitive applications, the capacity of the external reset capacitor can be reduced to limit charge/discharge current. If the NRSTsignal is used to reset the external circuitry, care must be taken of the charge/discharge time of the external capacitor to fulfill the external device's reset timing conditions. The minimum recommended capacity is 10 nF.

10.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during product characterization.

Functional EMS (electromagnetic susceptibility)

While executing a simple application (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).

- **ESD**: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 61000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709.

Designing hardened software to avoid noise problems

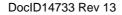
EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical data corruption (control registers...)


Prequalification trials

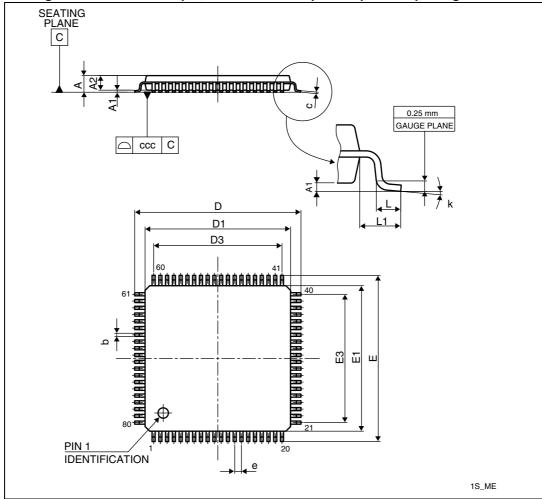
Most of the common failures (unexpected reset and program counter corruption) can be recovered by applying a low state on the NRST pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Symbol	Parameter Conditions		Level/class
V_{FESD} induce a functional disturbance $f_{\text{MASTER}} = 1$		$V_{DD} = 5 V$, $T_A = 25 °C$, $f_{MASTER} = 16 MHz$, conforming to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$V_{DD} = 5 \text{ V}, T_A = 25 \text{ °C},$ $f_{MASTER} = 16 \text{ MHz},$ conforming to IEC 61000-4-4	4A

Table	47.	EMS	data
Table	T / .		uuu

11 Package characteristics

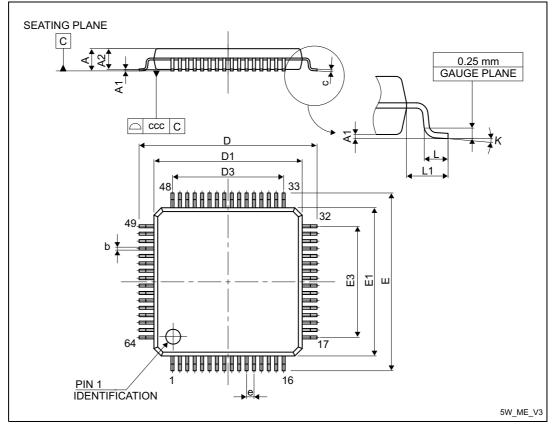

To meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at *www.st.com*. ECOPACK® is an ST trademark.

11.1 Package information

11.1.1 LQFP80 package information

Figure 43. LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package outline

1. Drawing is not to scale.


Table 51. LQFP80 - 80-pin, 14 x 1	4 mm low-profile quad flat package mechanical
•	data ⁽¹⁾

Symbol		millimeters		inches				
Symbol	Min	Тур	Max	Min	Тур	Max		
A	-	-	1.600	-	-	0.0630		
A1	0.050	-	0.150	0.0020	-	0.0059		
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571		
b	0.220	0.320	0.380	0.0087	0.0126	0.0150		
с	0.090	-	0.200	0.0035	-	0.0079		

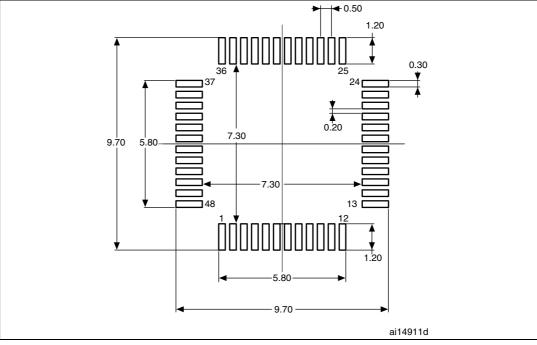
Table 52. LQFP64 - 64-pin, 14 x 14 mm low-profile quad flat package mechanical	
data (continued)	

Symbol		mm		inches ⁽¹⁾				
Symbol	Min	Тур	Max	Min	Тур	Max		
k	0.0 °	3.5 °	7.0 °	0.0 °	3.5 °	7.0 °		
CCC			0.100			0.0039		

1. Values in inches are converted from mm and rounded to four decimal places.

Figure 47. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline

Table 53. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data


			uata					
Symbol		mm		inches ⁽¹⁾				
Symbol	Min	Тур	Max	Min	Тур	Мах		
А	-	-	1.600	-	-	0.0630		
A1	0.050	-	0.150	0.0020	-	0.0059		
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571		
b	0.170	0.220	0.270	0.0067	0.0087	0.0106		
С	0.090	-	0.200	0.0035	-	0.0079		

(continued)								
Symbol	mm			inches ⁽¹⁾				
Symbol	Min Typ Max		Min	Тур	Max			
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835		
E3	-	5.500	-	-	0.2165	-		
е	-	0.500	-	-	0.0197	-		
L	0.450	0.600	0.750	0.0177	0.0236	0.0295		
L1	-	1.000	-	-	0.0394	-		
k	0°	3.5°	7°	0°	3.5°	7°		
CCC	-	-	0.080	-	-	0.0031		

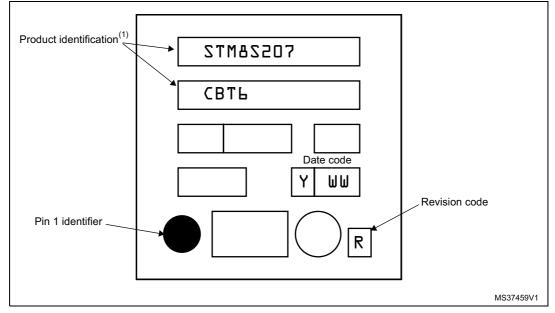
Table 54. LQFP48 - 48-pin, 7x 7 mm low-profile quad flat package mechanical(continued)

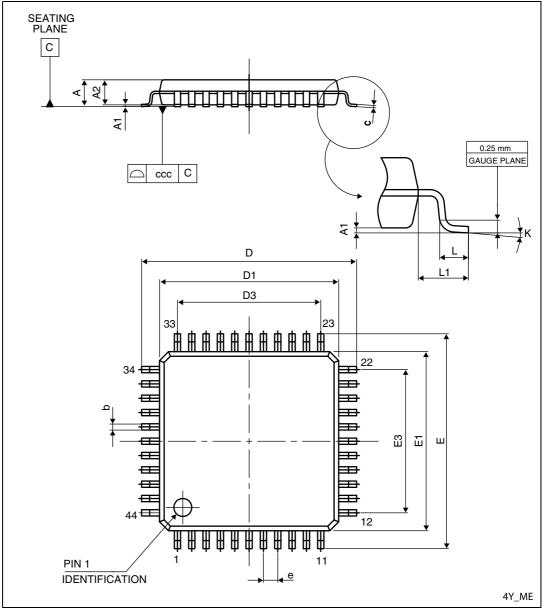
1. Values in inches are converted from mm and rounded to four decimal places.

1. Dimensions are expressed in millimeters.

Device marking

The following figure shows the marking for the LQFP48 package.




Figure 52. LQFP48 marking example (package top view)

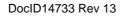
 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

11.1.4 LQFP44 package information

Figure 53. LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat package outline

13 Ordering information

Example:	STM8	S	208	М	В	т	6	В	TR
						I			
Product class	I								
STM8 microcontroller									
Family type -									
S = Standard									
Sub-family type ⁽²⁾									
208 = Full peripheral set									
207 = Intermediate peripheral set									
Pin count									
K = 32 pins									
S = 44 pins									
C = 48 pins									
R = 64 pins									
M = 80 pins									
Program memory size -									
6 = 32 Kbyte									
8 = 64 Kbyte									
B = 128 Kbyte									
Package type									
T = LQFP									
Temperature range									
3 = -40 °C to 125 °C									
6 = -40 °C to 85 °C									
Package pitch –]	
No character = 0.5 mm									
B = 0.65 mm									
C = 0.8 mm									
Packing –									
No character = Tray or tube									


 For a list of available options (e.g. memory size, package) and order-able part numbers or for further information on any aspect of this device, please go to <u>www.st.com</u> or contact the ST Sales Office nearest to you.

2. Refer to Table 2: STM8S20xxx performance line features for detailed description.

Date	Revision	Changes
10-Jul-2009	8 cont'd	Section 10: Electrical characteristics: Added data for TBD values; updated Table 15: Voltage characteristics and Table 18: General operating conditions; updated VCAP specifications in Table 18 and in Section 10.3.1: VCAP external capacitor, updated Figure 18; replaced Figure 19; updated Table 35: RAM and hardware registers; updated Figure 22 and Figure 35; added Figure 40: Typical application with I2C bus and timing diagram. Removed Table 56: Junction temperature range. Added link between ordering information Figure 59 and STM8S20xx features Table 2.
13-Apr-2010	9	Document status changed from "preliminary data" to "datasheet". <i>Table 2: STM8S20xxx performance line features</i> : high sink I/O for STM8S207C8 is 16 (not 13). <i>Table 3: Peripheral clock gating bit assignments in</i> <i>CLK_PCKENR1/2 registers</i> : updated bit positions for TIM2 and TIM3. <i>Figure 5: LQFP 48-pin pinout</i> : added CAN_TX and CAN_RX to pins 35 and 36; noted that these pins are available only in STM8S208xx devices. <i>Figure 7: LQFP 32-pin pinout</i> : replaced uart2 with uart3. <i>Table 6: Pin description</i> : added footnotes concerning beCAN availability and UART1_RX and UART3_RX pins. <i>Table 13: Option byte description</i> : added description of STM8L bootloader option bytes to the option byte description table. Added <i>Section 9: Unique ID</i> (and listed this attribute in <i>Features</i>). <i>Section 10.3: Operating conditions</i> : replaced "C _{EXT} " with "VCAP" and added data for ESR and ESL; removed "low power dissipation" condition for T _A . <i>Table 26: Total current consumption in halt mode at VDD = 5 V</i> : replaced max value of I _{DD(H)} at 85 °C from 30 µA to 35 µA for the condition "Flash in power-down mode, HSI clock after wakeup". <i>Table 33: HSI oscillator characteristics</i> : updated the ACC _{HSI} factory calibrated values. <i>Functional EMS (electromagnetic susceptibility)</i> and <i>Table 47</i> : replaced "IEC 1000" with "IEC 61000". <i>Electromagnetic interference (EMI)</i> and <i>Table 48</i> : replaced "SAE J1752/3" with "IEC 61967-2". <i>Table 57: Thermal characteristics</i> : changed the thermal resistance junction-ambient value of LQFP32 (7x7 mm) from 59 °C/W to 60 °C/W.

Table 58. Document revision history (continued)

