

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

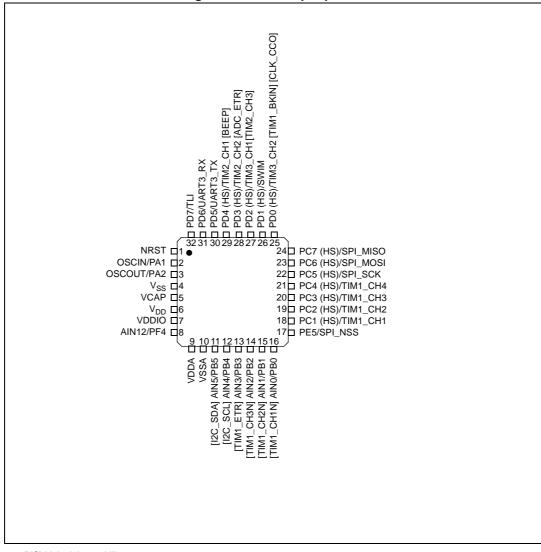
Detano	
Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	38
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	1.5K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	2.95V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8s207c8t6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	6.2	Registe	map
7	Interr	upt vec	tor mapping
8	Optio	n bytes	
9	Uniqu	ie ID	
10	Electr	ical cha	aracteristics
	10.1	Parame	ter conditions
		10.1.1	Minimum and maximum values
		10.1.2	Typical values
		10.1.3	Typical curves
		10.1.4	Typical current consumption
		10.1.5	Pin loading conditions
		10.1.6	Loading capacitor
		10.1.7	Pin input voltage
	10.2	Absolute	e maximum ratings 54
	10.3	Operatir	ng conditions
		10.3.1	VCAP external capacitor
		10.3.2	Supply current characteristics
		10.3.3	External clock sources and timing characteristics
		10.3.4	Internal clock sources and timing characteristics
		10.3.5	Memory characteristics
		10.3.6	I/O port pin characteristics
		10.3.7	Reset pin characteristics
		10.3.8	SPI serial peripheral interface80
		10.3.9	I ² C interface characteristics
		10.3.10	10-bit ADC characteristics
		10.3.11	EMC characteristics
11	Packa	age cha	racteristics
	11.1	Package	e information
		11.1.1	LQFP80 package information92
		11.1.2	LQFP64 package information95
		11.1.3	LQFP48 package information
		11.1.4	LQFP44 package information

DocID14733 Rev 13


1 Introduction

This datasheet contains the description of the STM8S20xxx features, pinout, electrical characteristics, mechanical data and ordering information.

- For complete information on the STM8S microcontroller memory, registers and peripherals, please refer to the STM8S microcontroller family reference manual (RM0016).
- For information on programming, erasing and protection of the internal Flash memory please refer to the STM8S Flash programming manual (PM0051).
- For information on the debug and SWIM (single wire interface module) refer to the STM8 SWIM communication protocol and debug module user manual (UM0470).
- For information on the STM8 core, please refer to the STM8 CPU programming manual (PM0044).

1. (HS) high sink capability.

2. [] alternate function remapping option (If the same alternate function is shown twice, it indicates an exclusive choice not a duplication of the function).

Туре	I= Input, O	= Input, O = Output, S = Power supply					
Level	Input	nput CM = CMOS					
	Output HS = High sink						
Output speed	O2 = Fast (O3 = Fast/s	D1 = Slow (up to 2 MHz) D2 = Fast (up to 10 MHz) D3 = Fast/slow programmability with slow as default state after reset D4 = Fast/slow programmability with fast as default state after reset					
Port and control	Input	float = floating, wpu = weak pull-up					
configuration	Output	Dutput T = True open drain, OD = Open drain, PP = Push pull					
Reset state	Unless othe	state after internal reset release) erwise specified, the pin state is the same during the reset phase and ernal reset release.					

Table 5. Legend/abbreviations	for pinout table
-------------------------------	------------------

	Pin	num	ber					Inpu	t		Out	put				
LQFP80	LQFP64	LQFP48	LQFP44	LQFP32	Pin name	Type	floating	ndw	Ext. interrupt	High sink	Speed	QO	Ы	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
1	1	1	1	1	NRST	I/O		<u>X</u>						Reset		
2	2	2	2	2	PA1/OSCIN	I/O	<u>x</u>	х			01	х	х	Port A1	Resonator/ crystal in	
3	3	3	3	3	PA2/OSCOUT	I/O	X	х	х		01	х	х	Port A2	Resonator/ crystal out	
4	4	4	4	-	V _{SSIO_1}	S								I/O groun	d	
5	5	5	5	4	V _{SS}	S								Digital gro	ound	
6	6	6	6	5	VCAP	S								1.8 V reg	ulator capacitor	
7	7	7	7	6	V _{DD}	S								Digital po	wer supply	
8	8	8	8	7	V _{DDIO_1}	S								I/O powe	r supply	
9	9	9	-	-	PA3/TIM2_CH3	I/O	<u>x</u>	х	Х		01	х	х	Port A3	Timer 2 - channel3	TIM3_CH1 [AFR1]
10	10	10	9	-	PA4/UART1_RX	I/O	X	х	Х	HS	O3	х	Х	Port A4	UART1 receive	
11	11	11	10	-	PA5/UART1_TX	I/O	<u>x</u>	х	Х	HS	О3	Х	Х	Port A5	UART1 transmit	

Table 6. Pin description

	Pin	num	nber					Inpu	t		Out	put		-		
LQFP80	LQFP64	LQFP48	LQFP44	LQFP32	Pin name	Type	floating	ndw	Ext. interrupt	High sink	Speed	OD	ΡР	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
69	55	39	35	-	PE1/I ² C_SCL	I/O	<u>X</u>		Х		01	T ⁽³⁾		Port E1	I ² C clock	
70	56	40	36	-	PE0/CLK_CCO	I/O	X	Х	Х	HS	O3	х	Х	Port E0	Configurable clock output	
71	-	-	-	-	PI6	I/O	<u>X</u>	Х			01	Х	Х	Port I6		
72	-	-	-	-	PI7	I/O	<u>X</u>	Х			01	Х	Х	Port I7		
73	57	41	37	25	PD0/TIM3_CH2	I/O	<u>x</u>	х	х	HS	O3	х	х	Port D0	Timer 3 - channel 2	TIM1_BKIN [AFR3]/ CLK_CCO [AFR2]
74	58	42	38	26	PD1/SWIM ⁽⁴⁾	I/O	х	<u>x</u>	Х	HS	04	х	х	Port D1	SWIM data interface	
75	59	43	39	27	PD2/TIM3_CH1	I/O	<u>x</u>	х	Х	HS	O3	х	х	Port D2	Timer 3 - channel 1	TIM2_CH3 [AFR1]
76	60	44	40	28	PD3/TIM2_CH2	I/O	<u>x</u>	х	Х	HS	O3	х	х	Port D3	Timer 2 - channel 2	ADC_ETR [AFR0]
77	61	45	41	29	PD4/TIM2_CH1/B EEP	I/O	X	х	Х	HS	O3	х	х	Port D4	Timer 2 - channel 1	BEEP output [AFR7]
78	62	46	42	30	PD5/ UART3_TX	I/O	X	х	Х		01	х	х	Port D5	UART3 data transmit	
79	63	47	43	31	PD6/ UART3_RX ⁽¹⁾	I/O	X	Х	Х		01	х	х	Port D6	UART3 data receive	
80	64	48	44	32	PD7/TLI	I/O	X	Х	Х		01	х	х	Port D7	Top level interrupt	TIM1_CH4 [AFR4] ⁽⁵⁾

Table	6.	Pin	descri	ption ((continued)	
IUNIO	•••		400011		(oonanaoa)	

1. The default state of UART1_RX and UART3_RX pins is controlled by the ROM bootloader. These pins are pulled up as part of the bootloader activation process and returned to the floating state before a return from the bootloader.

2. The beCAN interface is available on STM8S208xx devices only

3. In the open-drain output column, 'T' defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to V_{DD} are not implemented).

4. The PD1 pin is in input pull-up during the reset phase and after the internal reset release.

5. Available in 44-pin package only. On other packages, the AFR4 bit is reserved and must be kept at 0.

5.2 Alternate function remapping

As shown in the rightmost column of the pin description table, some alternate functions can be remapped at different I/O ports by programming one of eight AFR (alternate function

Address	Block	Register label	Register name	Reset status
0x00 5428		CAN_P0	CAN paged register 0	0xXX ⁽³⁾
0x00 5429		CAN_P1	CAN paged register 1	0xXX ⁽³⁾
0x00 542A		CAN_P2	CAN paged register 2	0xXX ⁽³⁾
0x00 542B	_	CAN_P3	CAN paged register 3	0xXX ⁽³⁾
0x00 542C	_	CAN_P4	CAN paged register 4	0xXX ⁽³⁾
0x00 542D	_	CAN_P5	CAN paged register 5	0xXX ⁽³⁾
0x00 542E	_	CAN_P6	CAN paged register 6	0xXX ⁽³⁾
0x00 542F		CAN_P7	CAN paged register 7	0xXX ⁽³⁾
0x00 5430	- beCAN	CAN_P8	CAN paged register 8	0xXX ⁽³⁾
0x00 5431	_	CAN_P9	CAN paged register 9	0xXX ⁽³⁾
0x00 5432	_	CAN_PA	CAN paged register A	0xXX ⁽³⁾
0x00 5433	-	CAN_PB	CAN paged register B	0xXX ⁽³⁾
0x00 5434	_	CAN_PC	CAN paged register C	0xXX ⁽³⁾
0x00 5435	_	CAN_PD	CAN paged register D	0xXX ⁽³⁾
0x00 5436	1	CAN_PE	CAN paged register E	0xXX ⁽³⁾
0x00 5437		CAN_PF	CAN paged register F	0xXX ⁽³⁾
0x00 5438 to 0x00 57FF		Re	eserved area (968 bytes)	

Table 0	Gonoral	hardwaro	rogistor	man	(continued)	•
Table 9.	General	naruware	register	map	(continued)	,

1. Depends on the previous reset source.

2. Write only register.

3. If the bootloader is enabled, it is initialized to 0x00.

Option byte no.	Description
	LSI_EN: Low speed internal clock enable 0: LSI clock is not available as CPU clock source 1: LSI clock is available as CPU clock source
0070	IWDG_HW: Independent watchdog0: IWDG Independent watchdog activated by software1: IWDG Independent watchdog activated by hardware
OPT3	WWDG_HW: Window watchdog activation0: WWDG window watchdog activated by software1: WWDG window watchdog activated by hardware
	WWDG_HALT: Window watchdog reset on halt 0: No reset generated on halt if WWDG active 1: Reset generated on halt if WWDG active
	EXTCLK: <i>External clock selection</i> 0: External crystal connected to OSCIN/OSCOUT 1: External clock signal on OSCIN
OPT4	CKAWUSEL: Auto wakeup unit/clock 0: LSI clock source selected for AWU 1: HSE clock with prescaler selected as clock source for AWU
	PRSC[1:0] AWU clock prescaler 00: 24 MHz to 128 kHz prescaler 01: 16 MHz to 128 kHz prescaler 10: 8 MHz to 128 kHz prescaler 11: 4 MHz to 128 kHz prescaler
OPT5	HSECNT[7:0]: HSE crystal oscillator stabilization time This configures the stabilization time. 0x00: 2048 HSE cycles 0xB4: 128 HSE cycles 0xD2: 8 HSE cycles 0xE1: 0.5 HSE cycles
OPT6	Reserved
OPT7	 WAITSTATE Wait state configuration This option configures the number of wait states inserted when reading from the Flash/data EEPROM memory. 1 wait state is required if f_{CPU} > 16 MHz. 0: No wait state 1: 1 wait state

	Table 13. O	ption byte	description	(continued)
--	-------------	------------	-------------	-------------

Symbol	Ratings	Max. ⁽¹⁾	Unit
I _{VDD}	Total current into V _{DD} power lines (source) ⁽²⁾	60	
I _{VSS}	Total current out of V_{SS} ground lines (sink) ⁽²⁾	60	
1	Output current sunk by any I/O and control pin	20	
I _{IO}	Output current source by any I/Os and control pin	20	
	Total output current sourced (sum of all I/O and control pins) for devices with two $V_{DDIO}\rm pins^{(3)}$	200	
ΣL	Total output current sourced (sum of all I/O and control pins) for devices with one $V_{DDIO}\rm{pin}^{(3)}$	100	mA
Σl _{lO}	Total output current sunk (sum of all I/O and control pins) for devices with two $\rm V_{SSIO}\ pins^{(3)}$	160	IIIA
	Total output current sunk (sum of all I/O and control pins) for devices with one $V_{SSIO}\text{pin}^{(3)}$	80	
	Injected current on NRST pin	±4	
I _{INJ(PIN)} ⁽⁴⁾⁽⁵⁾	Injected current on OSCIN pin	±4	
	Injected current on any other pin ⁽⁶⁾	±4	
$\Sigma I_{\rm INJ(PIN)}^{(4)}$	Total injected current (sum of all I/O and control pins) ⁽⁶⁾	±20	

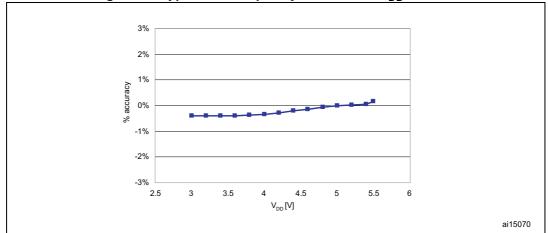
Table 16. Current characteristics

1. Data based on characterization results, not tested in production.

- 2. All power (V_{DD}, V_{DDIO}, V_{DDA}) and ground (V_{SS}, V_{SSIO}, V_{SSA}) pins must always be connected to the external supply.
- 3. I/O pins used simultaneously for high current source/sink must be uniformly spaced around the package between the V_{DDIO}/V_{SSIO} pins.
- 4. I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN}<V_{SS}. For true open-drain pads, there is no positive injection current, and the corresponding V_{IN} maximum must always be respected
- 5. Negative injection disturbs the analog performance of the device. See note in Section 10.3.10: 10-bit ADC characteristics on page 85.
- 6. When several inputs are submitted to a current injection, the maximum Σl_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with Σl_{INJ(PIN)} maximum current injection on four I/O port pins of the device.

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to 150	°C
TJ	Maximum junction temperature	150	0

Table 17. Thermal characteristics



Low speed internal RC oscillator (LSI)

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSI}	Frequency		110	128	146	kHz
t _{su(LSI)}	LSI oscillator wakeup time				7 ⁽¹⁾	μs
I _{DD(LSI)}	LSI oscillator power consumption			5		μA

1. Guaranteed by design, not tested in production.

Figure 19. Typical LSI frequency variation vs V_{DD} @ 25 °C

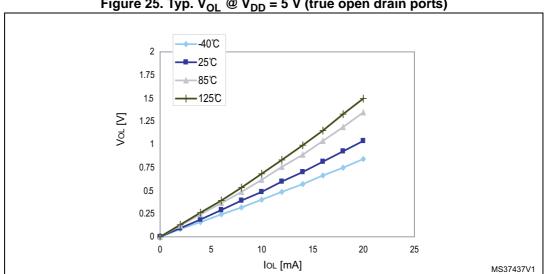
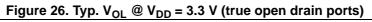
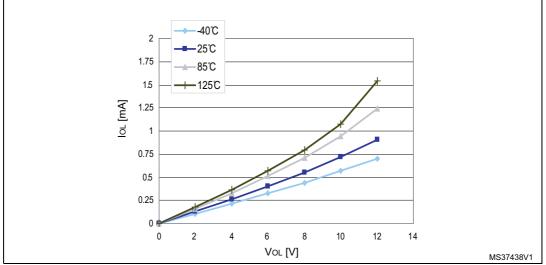




Figure 25. Typ. $V_{OL} @ V_{DD} = 5 V$ (true open drain ports)

10.3.9 I²C interface characteristics

O week at	Denemation	Standard mode I ² C		Fast mode I ² C ⁽¹⁾		
Symbol	Parameter	Min ⁽²⁾	Max ⁽²⁾	Min ⁽²⁾	Max ⁽²⁾	Unit
t _{w(SCLL)}	v(SCLL) SCL clock low time			1.3		
t _{w(SCLH)}	SCL clock high time	4.0		0.6		μs
t _{su(SDA)}	SDA setup time	250		100		
t _{h(SDA)}	SDA data hold time	0 ⁽³⁾		0 ⁽⁴⁾	900 ⁽³⁾	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time		1000		300 ns	
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time		300		300	
t _{h(STA)}	START condition hold time	4.0		0.6		
t _{su(STA)}	Repeated START condition setup time	4.7		0.6		μs
t _{su(STO)}	STOP condition setup time	4.0		0.6		μs
t _{w(STO:STA)}	STOP to START condition time (bus free)			1.3		μs
Cb	Capacitive load for each bus line		400		400	pF

Table 43. I²C characteristics

1. $f_{MASTER},$ must be at least 8 MHz to achieve max fast I^2C speed (400kHz) $\,$

2. Data based on standard I²C protocol requirement, not tested in production

3. The maximum hold time of the start condition has only to be met if the interface does not stretch the low time

4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL

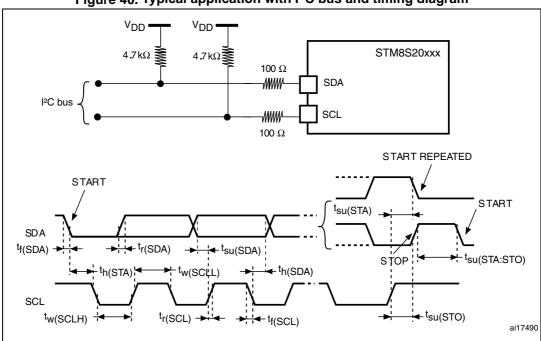


Figure 40. Typical application with I²C bus and timing diagram

1. Measurement points are made at CMOS levels: 0.3 x V_{DD} and 0.7 x V_{DD}

10.3.10 10-bit ADC characteristics

Subject to general operating conditions for $V_{\text{DDA}},\,f_{\text{MASTER}},$ and T_{A} unless otherwise specified.

Symbol	Parameter	Conditions	Min	Min Typ		Unit	
f	ADC alook fraguanay	V _{DDA} = 3 to 5.5 V	1		4		
f _{ADC}	ADC clock frequency	V _{DDA} = 4.5 to 5.5 V	1		6	MHz	
V _{DDA}	Analog supply		3		5.5	V	
V _{REF+}	Positive reference voltage		2.75 ⁽¹⁾		V _{DDA}	V	
V _{REF-}	Negative reference voltage		V _{SSA}		0.5 ⁽¹⁾	V	
			V_{SSA}		V _{DDA}	V	
V _{AIN}	Conversion voltage range ⁽²⁾	Devices with external V _{REF+} /V _{REF-} pins	V _{REF-}		V _{REF+}	V	
C _{ADC}	Internal sample and hold capacitor			3		pF	
ts ⁽²⁾	Sampling time	f _{ADC} = 4 MHz		0.75			
LS V		f _{ADC} = 6 MHz		0.5		μs	
t _{STAB}	Wakeup time from standby			7		μs	
		$f_{ADC} = 4 MHz$	3.5			μs	
t _{CONV}	Total conversion time (including sampling time, 10-bit resolution)	f _{ADC} = 6 MHz		2.33		μs	
				14		1/f _{ADC}	

Table 44.	ADC	characteristics
-----------	-----	-----------------

1. Data guaranteed by design, not tested in production.

2. During the sample time the input capacitance C_{AIN} (3 pF max) can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_S. After the end of the sample time t_S, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_S depend on programming.

Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit
		$f_{ADC} = 2 MHz$	1	2.5	
E _T	Total unadjusted error ⁽²⁾	f _{ADC} = 4 MHz	1.4	3	
		f _{ADC} = 6 MHz	1.6	3.5	
		f _{ADC} = 2 MHz	0.6	2	
E _O	Offset error ⁽²⁾	f _{ADC} = 4 MHz	1.1	2.5	
		f _{ADC} = 6 MHz	1.2	2.5	
		f _{ADC} = 2 MHz	0.2	2	
E _G	Gain error ⁽²⁾	f _{ADC} = 4 MHz	0.6	2.5	LSB
		f _{ADC} = 6 MHz	0.8	2.5	
		f _{ADC} = 2 MHz	0.7	1.5	
E _D	Differential linearity error ⁽²⁾	f _{ADC} = 4 MHz	0.7	1.5	
		f _{ADC} = 6 MHz	0.8	1.5	
		f _{ADC} = 2 MHz	0.6	1.5	
E _L	Integral linearity error (2)	$f_{ADC} = 4 \text{ MHz}$	0.6	1.5	
		f _{ADC} = 6 MHz	0.6	1.5	

Table 45. ADC accuracy	y with R _{AIN} < 10) $\mathbf{k}\Omega$, $\mathbf{V}_{\mathbf{DDA}} = 5 \mathbf{V}$
------------------------	------------------------------	---

1. Data based on characterization results for LQFP80 device with V_{REF+}/V_{REF-} , not tested in production.

 ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 10.3.6 does not affect the ADC accuracy.

Symbol	Parameter Conditions		Тур	Max ⁽¹⁾	Unit
E _T	Total unadjusted error ⁽²⁾	$f_{ADC} = 2 MHz$	1.1	2	
I⊢ŢI		f _{ADC} = 4 MHz	1.6	2.5	
IEal	E _O Offset error ⁽²⁾	$f_{ADC} = 2 MHz$	0.7	1.5	
E _O Offset e		f _{ADC} = 4 MHz	1.3	2	
IE . I	E _G Gain error ⁽²⁾	f _{ADC} = 2 MHz	0.2	1.5	LSB
I⊏GI		$f_{ADC} = 4 \text{ MHz}$	0.5	2	LSD
	Differential linearity error ⁽²⁾	f _{ADC} = 2 MHz	0.7	1	
E _D Differential li		f _{ADC} = 4 MHz	0.7	1	
E _L	Integral linearity error ⁽²⁾	$f_{ADC} = 2 MHz$	0.6	1.5	
וברו		f _{ADC} = 4 MHz	0.6	1.5	

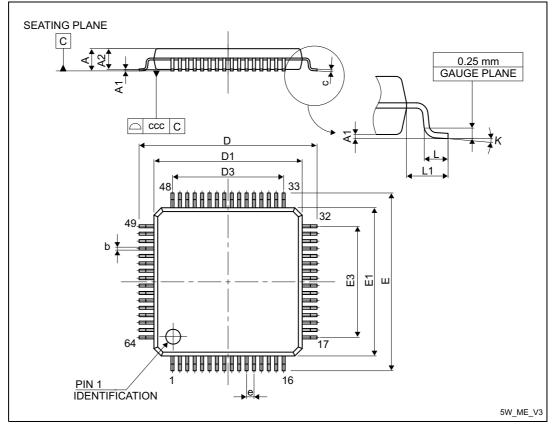

Table 46. ADC accuracy	with R_{AIN} < 10 k Ω	$R_{AIN}, V_{DDA} = 3.3 V$

Table 52. LQFP64 - 64-pin, 14 x 14 mm low-profile quad flat package mechanical	
data (continued)	

Symbol		mm			inches ⁽¹⁾		
Symbol	Min	Тур	/p Max Min Typ		Max		
k	0.0 °	3.5 °	7.0 °	0.0 °	3.5 °	7.0 °	
CCC			0.100			0.0039	

1. Values in inches are converted from mm and rounded to four decimal places.

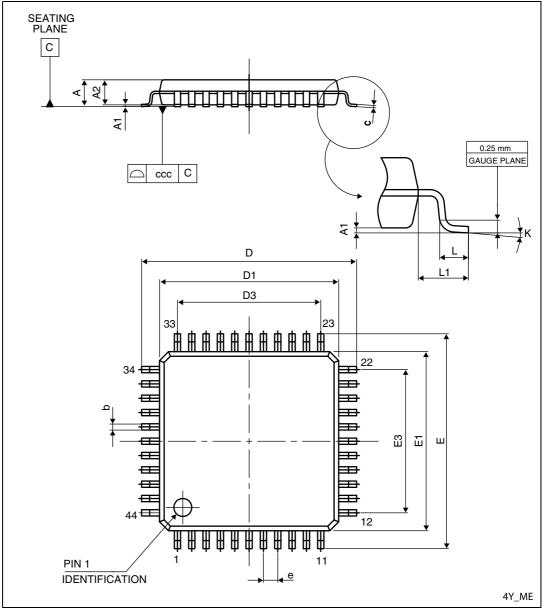

Figure 47. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline

Table 53. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data

Gata						
Symbol	mm			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079

11.1.4 LQFP44 package information

Figure 53. LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat package outline

11.2 Thermal characteristics

The maximum chip junction temperature (T_{Jmax}) must never exceed the values given in *Table 18: General operating conditions on page 56.*

The maximum chip-junction temperature, T_{Jmax} , in degrees Celsius, may be calculated using the following equation:

 $T_{Jmax} = T_{Amax} + (P_{Dmax} \times \Theta_{JA})$

Where:

- T_{Amax} is the maximum ambient temperature in °C
- Θ_{JA} is the package junction-to-ambient thermal resistance in ° C/W
- P_{Dmax} is the sum of P_{INTmax} and P_{I/Omax} (P_{Dmax} = P_{INTmax} + P_{I/Omax})
- P_{INTmax} is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.
- $P_{I/Omax}$ represents the maximum power dissipation on output pins, where: $P_{I/Omax} = \Sigma (V_{OL}*I_{OL}) + \Sigma ((V_{DD}-V_{OH})*I_{OH})$, and taking account of the actual V_{OL}/I_{OL} and V_{OH}/I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
Θ_{JA}	Thermal resistance junction-ambient LQFP 80 - 14 x 14 mm	38	°C/W
Θ_{JA}	Thermal resistance junction-ambient LQFP 64 - 14 x 14 mm	45	°C/W
Θ_{JA}	Thermal resistance junction-ambient LQFP 64 - 10 x 10 mm	46	°C/W
Θ_{JA}	Thermal resistance junction-ambient LQFP 48 - 7 x 7 mm	57	°C/W
Θ_{JA}	Thermal resistance junction-ambient LQFP 44 - 10 x 10 mm	54	°C/W
Θ_{JA}	Thermal resistance junction-ambient LQFP 32 - 7 x 7 mm	60	°C/W

Table 57. Thermal characteristics ⁽¹⁾	Table 57.	Thermal	characteristics ⁽¹⁾
--	-----------	---------	--------------------------------

1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection environment.

11.2.1 Reference document

JESD51-2 integrated circuits thermal test method environment conditions - natural convection (still air). Available from www.jedec.org.

12.2 Software tools

STM8 development tools are supported by a complete, free software package from STMicroelectronics that includes ST Visual Develop (STVD) IDE and the ST Visual Programmer (STVP) software interface. STVD provides seamless integration of the Cosmic and Raisonance C compilers for STM8. A free version that outputs up to 32 Kbytes of code is available.

12.2.1 STM8 toolset

STM8 toolset with STVD integrated development environment and STVP programming software is available for free download at <u>www.st.com/mcu</u>. This package includes:

ST Visual Develop - Full-featured integrated development environment from ST, featuring

- Seamless integration of C and ASM toolsets
- Full-featured debugger
- Project management
- Syntax highlighting editor
- Integrated programming interface
- Support of advanced emulation features for STice such as code profiling and coverage

ST Visual Programmer (STVP) – Easy-to-use, unlimited graphical interface allowing read, write and verification of the STM8 microcontroller Flash program memory, data EEPROM and option bytes. STVP also offers project mode for saving programming configurations and automating programming sequences.

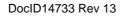
12.2.2 C and assembly toolchains

Control of C and assembly toolchains is seamlessly integrated into the STVD integrated development environment, making it possible to configure and control the building of the application directly from an easy-to-use graphical interface.

Available toolchains include:

- Cosmic C compiler for STM8 One free version that outputs up to 32 Kbytes of code is available. For more information, see www.cosmic-software.com.
- Raisonance C compiler for STM8 One free version that outputs up to 32 Kbytes of code. For more information, see www.raisonance.com.
- **STM8 assembler linker** Free assembly toolchain included in the STVD toolset, which allows you to assemble and link the application source code.

12.3 Programming tools


During the development cycle, STice provides in-circuit programming of the STM8 Flash microcontroller on the application board via the SWIM protocol. Additional tools are to include a low-cost in-circuit programmer as well as ST socket boards, which provide dedicated programming platforms with sockets for programming the STM8.

For production environments, programmers will include a complete range of gang and automated programming solutions from third-party tool developers already supplying programmers for the STM8 family.

Date	Revision	Changes
10-Jul-2009	8 cont'd	Section 10: Electrical characteristics: Added data for TBD values; updated Table 15: Voltage characteristics and Table 18: General operating conditions; updated VCAP specifications in Table 18 and in Section 10.3.1: VCAP external capacitor, updated Figure 18; replaced Figure 19; updated Table 35: RAM and hardware registers; updated Figure 22 and Figure 35; added Figure 40: Typical application with I2C bus and timing diagram. Removed Table 56: Junction temperature range. Added link between ordering information Figure 59 and STM8S20xx features Table 2.
13-Apr-2010	9	Document status changed from "preliminary data" to "datasheet". <i>Table 2: STM8S20xxx performance line features</i> : high sink I/O for STM8S207C8 is 16 (not 13). <i>Table 3: Peripheral clock gating bit assignments in</i> <i>CLK_PCKENR1/2 registers</i> : updated bit positions for TIM2 and TIM3. <i>Figure 5: LQFP 48-pin pinout</i> : added CAN_TX and CAN_RX to pins 35 and 36; noted that these pins are available only in STM8S208xx devices. <i>Figure 7: LQFP 32-pin pinout</i> : replaced uart2 with uart3. <i>Table 6: Pin description</i> : added footnotes concerning beCAN availability and UART1_RX and UART3_RX pins. <i>Table 13: Option byte description</i> : added description of STM8L bootloader option bytes to the option byte description table. Added <i>Section 9: Unique ID</i> (and listed this attribute in <i>Features</i>). <i>Section 10.3: Operating conditions</i> : replaced "C _{EXT} " with "VCAP" and added data for ESR and ESL; removed "low power dissipation" condition for T _A . <i>Table 26: Total current consumption in halt mode at VDD = 5 V</i> : replaced max value of I _{DD(H)} at 85 °C from 30 µA to 35 µA for the condition "Flash in power-down mode, HSI clock after wakeup". <i>Table 33: HSI oscillator characteristics</i> : updated the ACC _{HSI} factory calibrated values. <i>Functional EMS (electromagnetic susceptibility)</i> and <i>Table 47</i> : replaced "IEC 1000" with "IEC 61000". <i>Electromagnetic interference (EMI)</i> and <i>Table 48</i> : replaced "SAE J1752/3" with "IEC 61967-2". <i>Table 57: Thermal characteristics</i> : changed the thermal resistance junction-ambient value of LQFP32 (7x7 mm) from 59 °C/W to 60 °C/W.

Table 58. Document revision history (continued)

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

DocID14733 Rev 13