

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	38
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	2.95V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8s207cbt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.5 Clock controller

The clock controller distributes the system clock (f_{MASTER}) coming from different oscillators to the core and the peripherals. It also manages clock gating for low power modes and ensures clock robustness.

Features

- **Clock prescaler:** To get the best compromise between speed and current consumption the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler.
- **Safe clock switching:** Clock sources can be changed safely on the fly in run mode through a configuration register. The clock signal is not switched until the new clock source is ready. The design guarantees glitch-free switching.
- **Clock management:** To reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- *Master clock sources*: Four different clock sources can be used to drive the master clock:
 - 1-24 MHz high-speed external crystal (HSE)
 - Up to 24 MHz high-speed user-external clock (HSE user-ext)
 - 16 MHz high-speed internal RC oscillator (HSI)
 - 128 kHz low-speed internal RC (LSI)
- **Startup clock:** After reset, the microcontroller restarts by default with an internal 2 MHz clock (HSI/8). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
- Clock security system (CSS): This feature can be enabled by software. If an HSE clock failure occurs, the internal RC (16 MHz/8) is automatically selected by the CSS and an interrupt can optionally be generated.
- **Configurable main clock output (CCO):** This outputs an external clock for use by the application.

Bit	Peripheral clock	Bit	Peripheral clock	Bit	Peripheral clock	Bit	Peripheral clock
PCKEN17	TIM1	PCKEN13	UART3	PCKEN27	beCAN	PCKEN23	ADC
PCKEN16	TIM3	PCKEN12	UART1	PCKEN26	Reserved	PCKEN22	AWU
PCKEN15	TIM2	PCKEN11	SPI	PCKEN25	Reserved	PCKEN21	Reserved
PCKEN14	TIM4	PCKEN10	l ² C	PCKEN24	Reserved	PCKEN20	Reserved

Table 3. Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers

4.6 **Power management**

For efficient power management, the application can be put in one of four different lowpower modes. You can configure each mode to obtain the best compromise between lowest power consumption, fastest start-up time and available wakeup sources.

- *Wait mode*: In this mode, the CPU is stopped, but peripherals are kept running. The wakeup is performed by an internal or external interrupt or reset.
- Active halt mode with regulator on: In this mode, the CPU and peripheral clocks are stopped. An internal wakeup is generated at programmable intervals by the auto wake up unit (AWU). The main voltage regulator is kept powered on, so current consumption is higher than in active halt mode with regulator off, but the wakeup time is faster. Wakeup is triggered by the internal AWU interrupt, external interrupt or reset.
- Active halt mode with regulator off: This mode is the same as active halt with regulator on, except that the main voltage regulator is powered off, so the wake up time is slower.
- **Halt mode**: In this mode the microcontroller uses the least power. The CPU and peripheral clocks are stopped, the main voltage regulator is powered off. Wakeup is triggered by external event or reset.

4.7 Watchdog timers

The watchdog system is based on two independent timers providing maximum security to the applications.

Activation of the watchdog timers is controlled by option bytes or by software. Once activated, the watchdogs cannot be disabled by the user program without performing a reset.

Window watchdog timer

The window watchdog is used to detect the occurrence of a software fault, usually generated by external interferences or by unexpected logical conditions, which cause the application program to abandon its normal sequence.

The window function can be used to trim the watchdog behavior to match the application perfectly.

The application software must refresh the counter before time-out and during a limited time window.

A reset is generated in two situations:

- 1. Timeout: At 16 MHz CPU clock the time-out period can be adjusted between 75 μ s up to 64 ms.
- 2. Refresh out of window: The downcounter is refreshed before its value is lower than the one stored in the window register.

4.12 TIM4 - 8-bit basic timer

- 8-bit autoreload, adjustable prescaler ratio to any power of 2 from 1 to 128
- Clock source: CPU clock
- Interrupt source: 1 x overflow/update

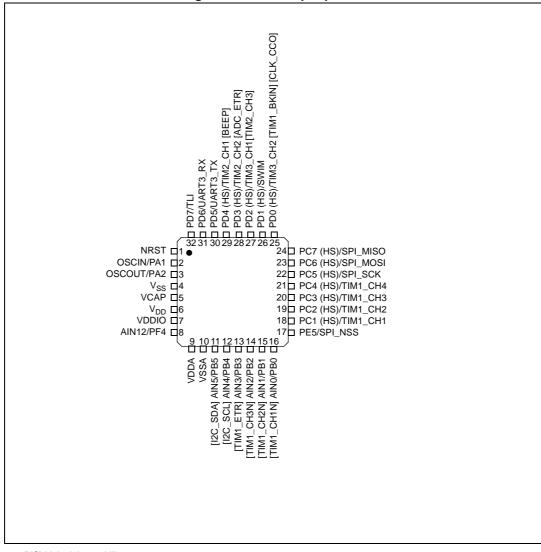
Timer	Counter size (bits)	Prescaler	Counting mode	CAPCOM channels	Complem. outputs	Ext. trigger	Timer synchr- onization/ chaining	
TIM1	16	Any integer from 1 to 65536	Up/down	4	3	Yes		
TIM2	16	Any power of 2 from 1 to 32768	Up	3	0	No	No	
TIM3	16	Any power of 2 from 1 to 32768	Up	2	0	No	NU	
TIM4	8	Any power of 2 from 1 to 128	Up	0	0	No		

Table 4. TIM timer features

4.13 Analog-to-digital converter (ADC2)

STM8S20xxx performance line products contain a 10-bit successive approximation A/D converter (ADC2) with up to 16 multiplexed input channels and the following main features:

- Input voltage range: 0 to V_{DDA}
- Dedicated voltage reference (VREF) pins available on 80 and 64-pin devices
- Conversion time: 14 clock cycles
- Single and continuous modes
- External trigger input
- Trigger from TIM1 TRGO
- End of conversion (EOC) interrupt


4.14 Communication interfaces

The following communication interfaces are implemented:

- UART1: Full feature UART, SPI emulation, LIN2.1 master capability, Smartcard mode, IrDA mode, single wire mode.
- UART3: Full feature UART, LIN2.1 master/slave capability
- SPI: Full and half-duplex, 10 Mbit/s
- I²C: Up to 400 Kbit/s
- beCAN (rev. 2.0A,B) 3 Tx mailboxes up to 1 Mbit/s

1. (HS) high sink capability.

2. [] alternate function remapping option (If the same alternate function is shown twice, it indicates an exclusive choice not a duplication of the function).

	Pin	num	nber					Inpu			Out					
LQFP80	LQFP64	LQFP48	LQFP44	LQFP32	Pin name	Type	floating	mdm	Ext. interrupt	High sink	Speed	OD	РР	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
46	37	29	-	21	PC4/TIM1_CH4	I/O	X	х	Х	HS	O3	х	х	Port C4	Timer 1 - channel 4	
47	38	30	27	22	PC5/SPI_SCK	I/O	<u>X</u>	Х	Х	HS	O3	Х	Х	Port C5	SPI clock	
48	39	31	28	-	V _{SSIO_2}	S								I/O groun	d	
49	40	32	29	-	V _{DDIO_2}	S								I/O powe	r supply	
50	41	33	30	23	PC6/SPI_MOSI	I/O	X	x	х	HS	О3	х	х	Port C6	SPI master out/ slave in	
51	42	34	31	24	PC7/SPI_MISO	I/O	<u>x</u>	х	Х	HS	O3	х	Х	Port C7	SPI master in/ slave out	
52	43	35	32	-	PG0/CAN_TX ⁽²⁾	I/O	<u>x</u>	х			01	х	Х	Port G0	beCAN transmit	
53	44	36	33	-	PG1/CAN_RX ⁽²⁾	I/O	<u>x</u>	х			01	х	Х	Port G1	beCAN receive	
54	45	-	-	-	PG2	I/O	X	Х			01	Х	Х	Port G2		
55	46	-	-	-	PG3	I/O	<u>X</u>	Х			O1	Х	Х	Port G3		
56	47	-	-	-	PG4	I/O	X	Х			O1	Х	Х	Port G4		
57	48	-	-	-	PI0	I/O	<u>X</u>	Х			O1	Х	Х	Port I0		
58	-	-	-	-	PI1	I/O	<u>X</u>	Х			O1	Х	Х	Port I1		
59	-	-	-	-	Pl2	I/O	<u>X</u>	Х			O1	Х	Х	Port I2		
60	-	-	-	-	PI3	I/O	X	Х			01	Х	Х	Port I3		
61	-	-	-	-	PI4	I/O	<u>X</u>	Х			O1	Х	Х	Port I4		
62	-	-	-	-	PI5	I/O	<u>X</u>	Х			O1	Х	Х	Port I5		
63	49	-	-	-	PG5	I/O	<u>X</u>	Х			O1	Х	Х	Port G5		
64	50	-	-	-	PG6	I/O	<u>X</u>	Х			O1	Х	Х	Port G6		
65	51	-	-	-	PG7	I/O	<u>X</u>	Х			01	Х	Х	Port G7		
66	52	-	-	-	PE4	I/O	<u>X</u>	Х	Х		01	Х	Х	Port E4		
67	53	37	-	-	PE3/TIM1_BKIN	I/O	X	х	Х		01	х	Х	Port E3	Timer 1 - break input	
68	54	38	34	-	PE2/I ² C_SDA	I/O	<u>X</u>		Х		01	T ⁽³⁾		Port E2	I ² C data	

Table 6. Pin description (continued)

6 Memory and register map

6.1 Memory map

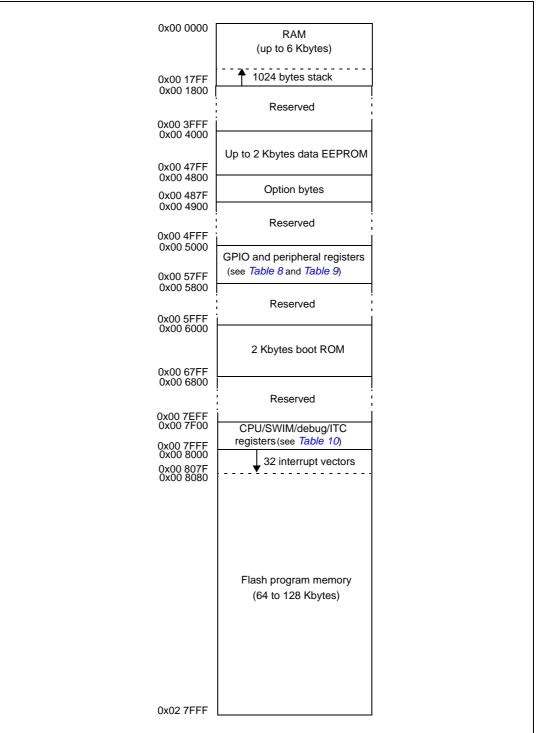


Figure 8. Memory map

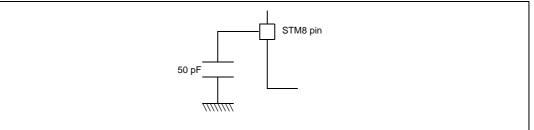
Address	Block	Register label	Register name	Reset status		
0x00 5428		CAN_P0	CAN paged register 0	0xXX ⁽³⁾		
0x00 5429		CAN_P1	CAN paged register 1	0xXX ⁽³⁾		
0x00 542A		CAN_P2	CAN paged register 2	0xXX ⁽³⁾		
0x00 542B	_	CAN_P3	CAN paged register 3	0xXX ⁽³⁾		
0x00 542C	_	CAN_P4	CAN paged register 4	0xXX ⁽³⁾		
0x00 542D	_	CAN_P5	CAN paged register 5	0xXX ⁽³⁾		
0x00 542E	_	CAN_P6	CAN paged register 6	0xXX ⁽³⁾		
0x00 542F		CAN_P7	CAN paged register 7	0xXX ⁽³⁾		
0x00 5430	- beCAN	CAN_P8	CAN paged register 8	0xXX ⁽³⁾		
0x00 5431	_	CAN_P9	CAN paged register 9	0xXX ⁽³⁾		
0x00 5432	_	CAN_PA	CAN paged register A	0xXX ⁽³⁾		
0x00 5433	-	CAN_PB	CAN paged register B	0xXX ⁽³⁾		
0x00 5434	_	CAN_PC	CAN paged register C	0xXX ⁽³⁾		
0x00 5435	_	CAN_PD	CAN paged register D	0xXX ⁽³⁾		
0x00 5436	1	CAN_PE	CAN paged register E	0xXX ⁽³⁾		
0x00 5437		CAN_PF	CAN paged register F	0xXX ⁽³⁾		
0x00 5438 to 0x00 57FF		Reserved area (968 bytes)				

Table 0	Gonoral	hardwaro	rogistor	man	(continued)	
Table 9.	General	naruware	register	map	(continued)	,

1. Depends on the previous reset source.

2. Write only register.

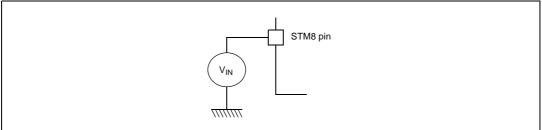
3. If the bootloader is enabled, it is initialized to 0x00.



10.1.5 Pin loading conditions

10.1.6 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 10.


Figure 10. Pin loading conditions

10.1.7 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 11*.

Figure 11. Pin input voltage

10.2 Absolute maximum ratings

Stresses above those listed as 'absolute maximum ratings' may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Max	Unit
V _{DDx} - V _{SS}	Supply voltage (including $V_{DDA and} V_{DDIO}$) ⁽¹⁾	-0.3	6.5	
V	Input voltage on true open drain pins (PE1, PE2) ⁽²⁾	V _{SS} - 0.3	6.5	V
V _{IN}	Input voltage on any other pin ⁽²⁾	V _{SS} - 0.3	V _{DD} + 0.3	
V _{DDx} - V _{DD}	Variations between different power pins		50	mV
V _{SSx} - V _{SS}	Variations between all the different ground pins		50	IIIV
V _{ESD}	V _{ESD} Electrostatic discharge voltage		te maximum ´electrical on page 89	

Table 15.	Voltage	characteristics
-----------	---------	-----------------

1. All power (V_{DD}, V_{DDIO}, V_{DDA}) and ground (V_{SS}, V_{SSIO}, V_{SSA}) pins must always be connected to the external power supply

2. I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN}<V_{SS}. For true open-drain pads, there is no positive injection current, and the corresponding V_{IN} maximum must always be respected

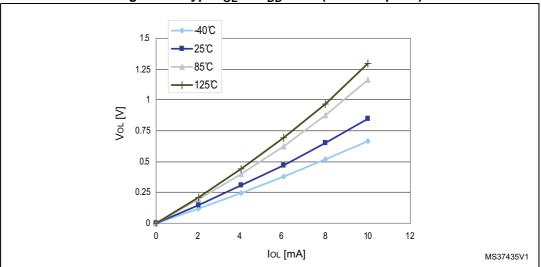
10.3.6 I/O port pin characteristics

General characteristics

Subject to general operating conditions for V_{DD} and T_A unless otherwise specified. All unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL}	Input low level voltage		-0.3		0.3 x V _{DD}	V
V _{IH}	Input high level voltage	$V_{DD} = 5 V$	0.7 x V _{DD}		V _{DD} + 0.3 V	v
V _{hys}	Hysteresis ⁽¹⁾			700		mV
R _{pu}	Pull-up resistor	V_{DD} = 5 V, V_{IN} = V_{SS}	30	55	80	kΩ
		Fast I/Os Load = 50 pF			20 ⁽²⁾	
	Rise and fall time (10% - 90%)	Standard and high sink I/Os Load = 50 pF			125 ⁽²⁾	20
t _R , t _F		Fast I/Os Load = 20 pF			35 ⁽³⁾	ns
		Standard and high sink I/Os Load = 20 pF			125 ⁽³⁾	
l _{lkg}	Input leakage current, analog and digital	$V_{SS} \leq V_{IN} \leq V_{DD}$			±1	μA
l _{ikg ana}	Analog input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$			±250 ⁽²⁾	nA
l _{lkg(inj)}	Leakage current in adjacent I/O ⁽²⁾	Injection current ±4 mA			±1 ⁽²⁾	μA

1. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested in production.


2. Data based on characterization results, not tested in production.

3. Guaranteed by design.

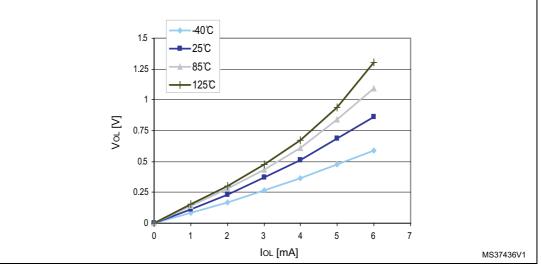

Typical output level curves

Figure 24 to *Figure 31* show typical output level curves measured with output on a single pin.

Figure 24. Typ. $V_{OL} @ V_{DD} = 3.3 V$ (standard ports)

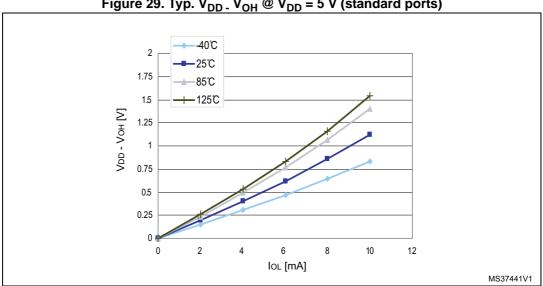
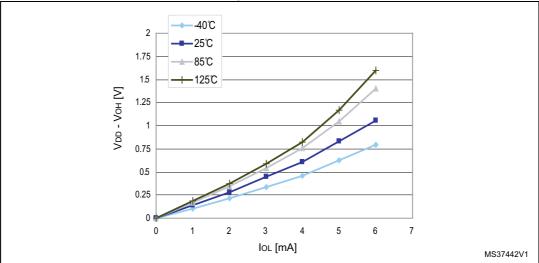



Figure 29. Typ. V_{DD} V_{OH} @ V_{DD} = 5 V (standard ports)

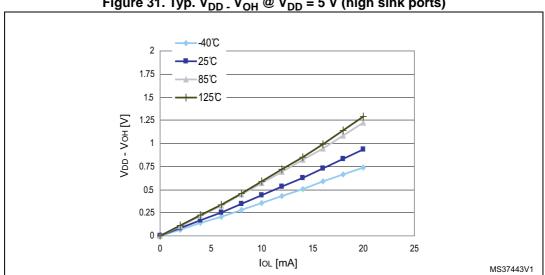
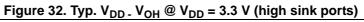
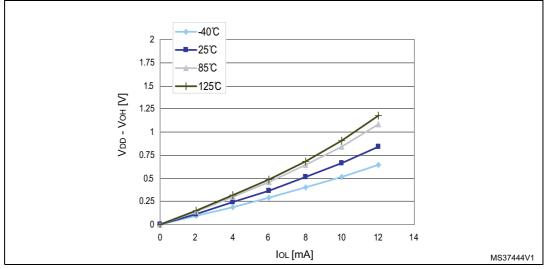




Figure 31. Typ. V_{DD} - V_{OH} @ V_{DD} = 5 V (high sink ports)

10.3.7 Reset pin characteristics

Subject to general operating conditions for V_{DD} and T_{A} unless otherwise specified.

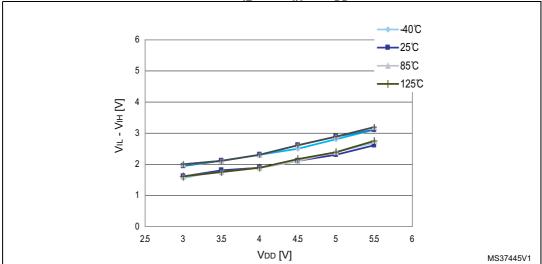

Symbol	Parameter	Conditions	Min	Typ ¹⁾	Max	Unit
V _{IL(NRST)}	NRST Input low level voltage ⁽¹⁾		-0.3 V		0.3 x V _{DD}	
V _{IH(NRST)}	NRST Input high level voltage ⁽¹⁾		$0.7 ext{ x V}_{ ext{DD}}$		V _{DD} + 0.3	V
V _{OL(NRST)}	NRST Output low level voltage (1)	I _{OL} = 2 mA			0.5	
R _{PU(NRST)}	NRST Pull-up resistor ⁽²⁾		30	55	80	kΩ
t _{IFP(NRST)}	NRST Input filtered pulse ⁽³⁾				75	ns
t _{INFP(NRST)}	NRST Input not filtered pulse ⁽³⁾		500			ns
t _{OP(NRST)}	NRST output pulse ⁽¹⁾		15			μs

Table 41.	NRST	pin	characteristics
		PIII	character istics

1. Data based on characterization results, not tested in production.

2. The $\rm R_{\rm PU}$ pull-up equivalent resistor is based on a resistive transistor

3. Data guaranteed by design, not tested in production.

Figure 33. Typical NRST $\rm V_{IL}$ and $\rm V_{IH}$ vs $\rm V_{DD}$ @ 4 temperatures

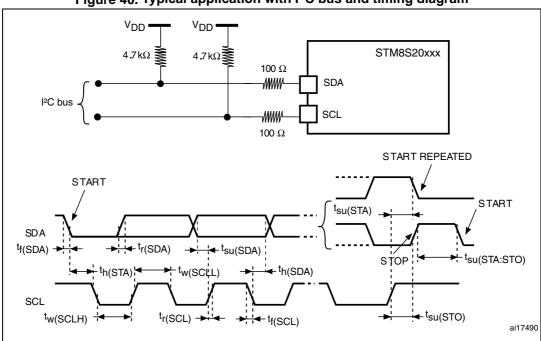


Figure 40. Typical application with I²C bus and timing diagram

1. Measurement points are made at CMOS levels: 0.3 x V_{DD} and 0.7 x V_{DD}

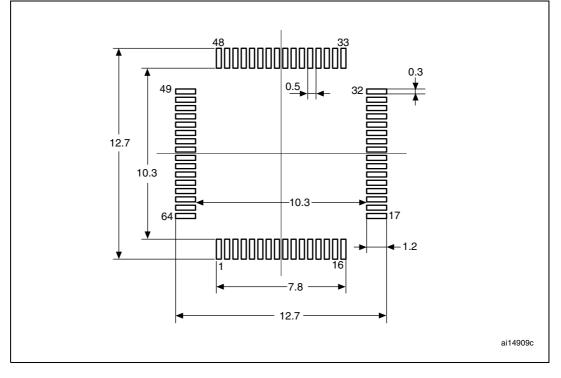
Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit	
		$f_{ADC} = 2 MHz$	1	2.5		
E _T	Total unadjusted error ⁽²⁾	f _{ADC} = 4 MHz	1.4	3		
		f _{ADC} = 6 MHz	1.6	3.5		
		f _{ADC} = 2 MHz	0.6	2		
E _O	Offset error ⁽²⁾	f _{ADC} = 4 MHz	1.1	2.5		
		f _{ADC} = 6 MHz	1.2	2.5		
		f _{ADC} = 2 MHz	0.2	2		
E _G	Gain error ⁽²⁾	f _{ADC} = 4 MHz	0.6	2.5	LSB	
		f _{ADC} = 6 MHz	0.8	2.5		
		f _{ADC} = 2 MHz	0.7	1.5		
E _D	Differential linearity error ⁽²⁾	f _{ADC} = 4 MHz	0.7	1.5		
		f _{ADC} = 6 MHz	0.8	1.5		
		f _{ADC} = 2 MHz	0.6	1.5		
E _L	Integral linearity error (2)	egral linearity error ⁽²⁾ $f_{ADC} = 4 \text{ MHz}$	0.6	1.5		
		f _{ADC} = 6 MHz	0.6	1.5		

1. Data based on characterization results for LQFP80 device with V_{REF+}/V_{REF-} , not tested in production.

 ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 10.3.6 does not affect the ADC accuracy.

Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit	
E _T	Total unadjusted error ⁽²⁾	$f_{ADC} = 2 MHz$	1.1	2		
I⊢ŢI		f _{ADC} = 4 MHz	1.6	2.5		
IEal	Offset error ⁽²⁾	$f_{ADC} = 2 MHz$	0.7	1.5		
E _O		f _{ADC} = 4 MHz	1.3	2		
IE . I	Gain error ⁽²⁾	f _{ADC} = 2 MHz	0.2	1.5	LSB	
E _G	Gainenor	f _{ADC} = 4 MHz	0.5	2	LSD	
	Differential linearity error ⁽²⁾	f _{ADC} = 2 MHz	0.7	1		
E _D		f _{ADC} = 4 MHz	0.7	1		
IE. I	Integral linearity error ⁽²⁾	$f_{ADC} = 2 MHz$	0.6	1.5		
E _L		f _{ADC} = 4 MHz	0.6	1.5		

Table 46. ADC accuracy	with R_{AIN} < 10 k Ω	$R_{AIN}, V_{DDA} = 3.3 V$



			a (continuou	/				
Symbol		mm		inches ⁽¹⁾				
	Min	Тур	Max	Min	Тур	Max		
D	-	12.000	-	-	0.4724	-		
D1	-	10.000	-	-	0.3937	-		
D3	-	7.500	-	-	0.2953	-		
E	-	12.000	-	-	0.4724	-		
E1	-	10.000	-	-	0.3937	-		
E3	-	7.500	-	-	0.2953	-		
е	-	0.500	-	-	0.0197	-		
θ	0°	3.5°	7°	0°	3.5°	7°		
L	0.450	0.600	0.750	0.0177	0.0236	0.0295		
L1	-	1.000	-	-	0.0394	-		
CCC	-	-	0.080	-	-	0.0031		

Table 53. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanicaldata (continued)

1. Values in inches are converted from mm and rounded to four decimal places.

Figure 48. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint

DocID14733 Rev 13

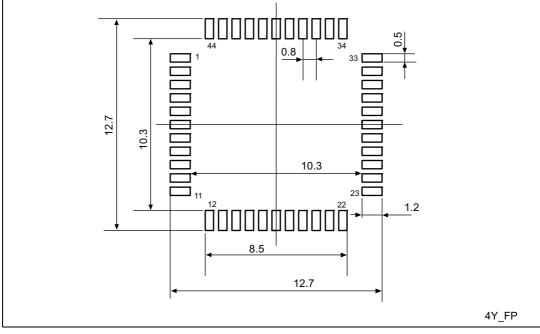


Figure 54. LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat recommended footprint

1. Dimensions are expressed in millimeters.

Device marking

The following figure shows the marking for the LQFP44 package.

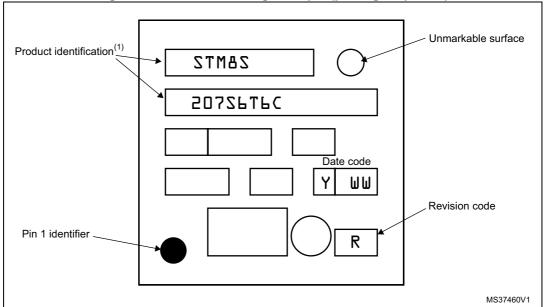


Figure 55. LQFP44 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

DocID14733 Rev 13

12 STM8 development tools

Development tools for the STM8 microcontrollers include the full-featured STice emulation system supported by a complete software tool package including C compiler, assembler and integrated development environment with high-level language debugger. In addition, the STM8 is to be supported by a complete range of tools including starter kits, evaluation boards and a low-cost in-circuit debugger/programmer.

12.1 Emulation and in-circuit debugging tools

The STice emulation system offers a complete range of emulation and in-circuit debugging features on a platform that is designed for versatility and cost-effectiveness. In addition, STM8 application development is supported by a low-cost in-circuit debugger/programmer.

The STice is the fourth generation of full featured emulators from STMicroelectronics. It offers new advanced debugging capabilities including profiling and coverage to help detect and eliminate bottlenecks in application execution and dead code when fine tuning an application.

In addition, STice offers in-circuit debugging and programming of STM8 microcontrollers via the STM8 single wire interface module (SWIM), which allows non-intrusive debugging of an application while it runs on the target microcontroller.

For improved cost effectiveness, STice is based on a modular design that allows you to order exactly what you need to meet the development requirements and to adapt the emulation system to support existing and future ST microcontrollers.

STice key features

- Occurrence and time profiling and code coverage (new features)
- Advanced breakpoints with up to 4 levels of conditions
- Data breakpoints
- Program and data trace recording up to 128 KB records
- Read/write on the fly of memory during emulation
- In-circuit debugging/programming via SWIM protocol
- 8-bit probe analyzer
- 1 input and 2 output triggers
- Power supply follower managing application voltages between 1.62 to 5.5 V
- Modularity that allows you to specify the components you need to meet the development requirements and adapt to future requirements
- Supported by free software tools that include integrated development environment (IDE), programming software interface and assembler for STM8.

13 Ordering information

Example:	STM8	S	208	М	В	т	6	В	TR
						I			
Product class	ı								
STM8 microcontroller									
Family type -									
S = Standard									
Sub-family type ⁽²⁾									
208 = Full peripheral set									
207 = Intermediate peripheral set									
Pin count									
K = 32 pins									
S = 44 pins									
C = 48 pins									
R = 64 pins									
M = 80 pins									
Program memory size -									
6 = 32 Kbyte									
8 = 64 Kbyte									
B = 128 Kbyte									
Package type									
T = LQFP									
Temperature range									
3 = -40 °C to 125 °C									
6 = -40 °C to 85 °C									
Package pitch –]	
No character = 0.5 mm									
B = 0.65 mm									
C = 0.8 mm									
Packing –									
No character = Tray or tube									

 For a list of available options (e.g. memory size, package) and order-able part numbers or for further information on any aspect of this device, please go to <u>www.st.com</u> or contact the ST Sales Office nearest to you.

2. Refer to Table 2: STM8S20xxx performance line features for detailed description.

