

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	2.95V ~ 5.5V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8s207k8t6c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 49. Table 50.	ESD absolute maximum ratings
Table 51.	LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package mechanical data
Table 52.	LQFP64 - 64-pin, 14 x 14 mm low-profile quad flat package mechanical data
Table 53.	LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data
Table 54. Table 55.	LQFP48 - 48-pin, 7x 7 mm low-profile quad flat package mechanical
Table 56.	data
Table 50.	data
Table 57. Table 58.	Thermal characteristics. 108 Document revision history 113

Figure 49.	LQFP64 marking example (package top view)9	8
Figure 50.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline)9
Figure 51.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint	0
Figure 52.	LQFP48 marking example (package top view)10)1
Figure 53.	LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat package outline)2
Figure 54.	LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat recommended footprint)4
Figure 55.	LQFP44 marking example (package top view)10)4
Figure 56.	LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline)5
Figure 57.	LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat recommended footprint)6
Figure 58.	LQFP32 marking example (package top view)10)7
Figure 59.	STM8S207xx/208xx performance line ordering information scheme ⁽¹⁾	2

1 Introduction

This datasheet contains the description of the STM8S20xxx features, pinout, electrical characteristics, mechanical data and ordering information.

- For complete information on the STM8S microcontroller memory, registers and peripherals, please refer to the STM8S microcontroller family reference manual (RM0016).
- For information on programming, erasing and protection of the internal Flash memory please refer to the STM8S Flash programming manual (PM0051).
- For information on the debug and SWIM (single wire interface module) refer to the STM8 SWIM communication protocol and debug module user manual (UM0470).
- For information on the STM8 core, please refer to the STM8 CPU programming manual (PM0044).

4.12 TIM4 - 8-bit basic timer

- 8-bit autoreload, adjustable prescaler ratio to any power of 2 from 1 to 128
- Clock source: CPU clock
- Interrupt source: 1 x overflow/update

Timer	Counter size (bits)	Prescaler	Counting mode	CAPCOM channels	Complem. outputs	Ext. trigger	Timer synchr- onization/ chaining
TIM1	16	Any integer from 1 to 65536	Up/down	4	3	Yes	
TIM2	16	Any power of 2 from 1 to 32768	Up	3	0	No	No
TIM3	16 Any power of 2 from 1 to 3276		Up	2	0	No	NU
TIM4	8	Any power of 2 from 1 to 128	Up	0	0	No	

Table 4. TIM timer features

4.13 Analog-to-digital converter (ADC2)

STM8S20xxx performance line products contain a 10-bit successive approximation A/D converter (ADC2) with up to 16 multiplexed input channels and the following main features:

- Input voltage range: 0 to V_{DDA}
- Dedicated voltage reference (VREF) pins available on 80 and 64-pin devices
- Conversion time: 14 clock cycles
- Single and continuous modes
- External trigger input
- Trigger from TIM1 TRGO
- End of conversion (EOC) interrupt

4.14 Communication interfaces

The following communication interfaces are implemented:

- UART1: Full feature UART, SPI emulation, LIN2.1 master capability, Smartcard mode, IrDA mode, single wire mode.
- UART3: Full feature UART, LIN2.1 master/slave capability
- SPI: Full and half-duplex, 10 Mbit/s
- I²C: Up to 400 Kbit/s
- beCAN (rev. 2.0A,B) 3 Tx mailboxes up to 1 Mbit/s

Туре	I= Input, O	= Output, S = Power supply									
Level	Input	CM = CMOS									
	Output	HS = High sink									
Output speed	O2 = Fast (O3 = Fast/s	up to 2 MHz) up to 10 MHz) low programmability with slow as default state after reset low programmability with fast as default state after reset									
Port and control	Input	float = floating, wpu = weak pull-up									
configuration	Output	T = True open drain, OD = Open drain, PP = Push pull									
Reset state	Bold \underline{X} (pin state after internal reset release) Unless otherwise specified, the pin state is the same during the reset phase and after the internal reset release.										

Table 5. Legend/abbreviations	for pinout table
-------------------------------	------------------

	Pin	num	ber					Inpu	t		Out	put				
LQFP80	LQFP64	LQFP48	LQFP44	LQFP32	Pin name	Type	floating	ndw	Ext. interrupt	High sink	Speed	QO	Ы	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
1	1	1	1	1	NRST	I/O		<u>X</u>						Reset		
2	2	2	2	2	PA1/OSCIN	I/O	<u>x</u>	х			01	х	х	Port A1	Resonator/ crystal in	
3	3	3	3	3	PA2/OSCOUT	I/O	X	х	х		01	х	х	Port A2	Resonator/ crystal out	
4	4	4	4	-	V _{SSIO_1}	S								I/O groun	d	
5	5	5	5	4	V _{SS}	S								Digital gro	ound	
6	6	6	6	5	VCAP	S								1.8 V reg	ulator capacitor	
7	7	7	7	6	V _{DD}	S								Digital po	wer supply	
8	8	8	8	7	V _{DDIO_1}	S								I/O powe	r supply	
9	9	9	-	-	PA3/TIM2_CH3	I/O	<u>x</u>	х	Х		01	х	х	Port A3	Timer 2 - channel3	TIM3_CH1 [AFR1]
10	10	10	9	-	PA4/UART1_RX	I/O	X	х	Х	HS	O3	х	Х	Port A4	UART1 receive	
11	11	11	10	-	PA5/UART1_TX	I/O	<u>x</u>	х	Х	HS	О3	Х	Х	Port A5	UART1 transmit	

Table 6. Pin description

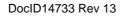

	Pin	num	ber					Inpu	t		Out			,		
LQFP80	LQFP64	LQFP48	LQFP44	LQFP32	Pin name	Type	floating	ndw	Ext. interrupt	High sink	Speed	OD	ЬР	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
12	12	12	11	-	PA6/UART1_CK	I/O	X	Х	х	HS	О3	х	х	Port A6	UART1 synchronous clock	
13	-	-	-	-	PH0	I/O	<u>X</u>	Х		HS	O3	Х	Х	Port H0		
14	-	-	-	-	PH1	I/O	<u>X</u>	Х		HS	O3	Х	Х	Port H1		
15	-	-	-	-	PH2	I/O	<u>X</u>	Х			01	Х	Х	Port H2		
16	-	-	-	-	PH3	I/O	<u>X</u>	Х			01	Х	Х	Port H3	A 1	
17	13	-	-	-	PF7/AIN15	I/O	<u>X</u>	Х			01	Х	Х	Port F7	Analog input 15	
18	14	-	-	-	PF6/AIN14	I/O	<u>X</u>	х			01	Х	Х	Port F6	Analog input 14	
19	15	-	-	-	PF5/AIN13	I/O	X	х			01	х	х	Port F5	Analog input 13	
20	16	-	-	8	PF4/AIN12	I/O	X	х			01	х	х	Port F4	Analog input 12	
21	17	-	-	-	PF3/AIN11	I/O	X	Х			01	х	х	Port F3	Analog input 11	
22	18	-	-	-	V _{REF+}	s								ADC pos voltage	tive reference	
23	19	13	12		V _{DDA}	S								Analog p	ower supply	
24	20	14	13	10	V _{SSA}	S								Analog gi	round	
25	21	-	-	-	V _{REF-}	S								ADC neg voltage	ative reference	
26	22	-	-	-	PF0/AIN10	I/O	<u>x</u>	х			01	х	х	Port F0 Analog input 10		
27	23	15	14	-	PB7/AIN7	I/O	X	х	Х		01	х	Х	Port B7	Analog input 7	
28	24	16	15	-	PB6/AIN6	I/O	X	х	Х		01	х	х	Port B6	Analog input 6	
29	25	17	16	11	PB5/AIN5	I/O	<u>x</u>	х	Х		01	х	х	Port B5	Analog input 5	l ² C_SDA [AFR6]
30	26	18	17	12	PB4/AIN4	I/O	X	х	х		01	х	х	Port B4	Analog input 4	I ² C_SCL [AFR6]

Table 6. Pin description (continued)

			vare register map (continued)	Reset
Address	Block	Register label	Register name	status
0x00 500F		PD_ODR	Port D data output latch register	0x00
0x00 5010		PD_IDR	Port D input pin value register	0x00
0x00 5011	Port D	PD_DDR	Port D data direction register	0x00
0x00 5012		PD_CR1	Port D control register 1	0x02
0x00 5013		PD_CR2	Port D control register 2	0x00
0x00 5014		PE_ODR	Port E data output latch register	0x00
0x00 5015		PE_IDR	Port E input pin value register	0x00
0x00 5016	Port E	PE_DDR	Port E data direction register	0x00
0x00 5017		PE_CR1	Port E control register 1	0x00
0x00 5018		PE_CR2	Port E control register 2	0x00
0x00 5019		PF_ODR	Port F data output latch register	0x00
0x00 501A	Port F	PF_IDR	Port F input pin value register	0x00
0x00 501B		rt F PF_DDR Port F data direction register		0x00
0x00 501C		PF_CR1	Port F control register 1	0x00
0x00 501D		PF_CR2	Port F control register 2	0x00
0x00 501E		PG_ODR	Port G data output latch register	0x00
0x00 501F		PG_IDR	Port G input pin value register	0x00
0x00 5020	Port G	PG_DDR	Port G data direction register	0x00
0x00 5021		PG_CR1	Port G control register 1	0x00
0x00 5022		PG_CR2	Port G control register 2	0x00
0x00 5023		PH_ODR	Port H data output latch register	0x00
0x00 5024		PH_IDR	Port H input pin value register	0x00
0x00 5025	Port H	PH_DDR	Port H data direction register	0x00
0x00 5026		PH_CR1	Port H control register 1	0x00
0x00 5027		PH_CR2	Port H control register 2	0x00
0x00 5028		PI_ODR	Port I data output latch register	0x00
0x00 5029		PI_IDR	Port I input pin value register	0x00
0x00 502A	Port I	PI_DDR	Port I data direction register	0x00
0x00 502B		PI_CR1	Port I control register 1	0x00
0x00 502C		PI_CR2	Port I control register 2	0x00

 Table 8. I/O port hardware register map (continued)

8 Option bytes

Option bytes contain configurations for device hardware features as well as the memory protection of the device. They are stored in a dedicated block of the memory. Except for the ROP (read-out protection) byte, each option byte has to be stored twice, in a regular form (OPTx) and a complemented one (NOPTx) for redundancy.

Option bytes can be modified in ICP mode (via SWIM) by accessing the EEPROM address shown in *Table 12: Option bytes* below. Option bytes can also be modified 'on the fly' by the application in IAP mode, except the ROP option that can only be modified in ICP mode (via SWIM).

Refer to the STM8S Flash programming manual (PM0051) and STM8 SWIM communication protocol and debug module user manual (UM0470) for information on SWIM programming procedures.

A .l.l.	Option	Option				Opt	ion bits				Factory
Addr.	name	byte no.	7	6	5	4	3	2	1	0	default setting
4800h	Read-out protection (ROP)	OPT0				R	OP[7:0]		·		00h
4801h	User boot	OPT1				U	BC[7:0]				00h
4802h	code (UBC)	NOPT1				NU	JBC[7:0]				FFh
4803h	Alternate	OPT2	AFR7	AFR6	AFR5	AFR4	AFR3	AFR2	AFR1	AFR0	00h
4804h	function remapping (AFR)	NOPT2	NAFR7	NAFR6	NAFR5	NAFR4	NAFR3	NAFR2	NAFR1	NAFR0	FFh
4805h	Watchdog	OPT3		Rese	erved		LSI _EN	IWDG _HW	WWDG _HW	WWDG _HALT	00h
4806h	option	NOPT3	Reserved				NLSI _EN	NIWDG _HW	NWWDG _HW	NWWDG _HALT	FFh
4807h	Oleale antian	OPT4		Rese	erved		EXT CLK	CKAWU SEL	PRS C1	PRS C0	00h
4808h	 Clock option 	NOPT4		Rese	erved		NEXT CLK	NCKAWU SEL	NPR SC1	NPR SC0	FFh
4809h	HSE clock	OPT5				HSE	CNT[7:0]			L	00h
480Ah	startup	NOPT5				NHS	ECNT[7:0]				FFh
480Bh		OPT6				R	eserved				00h
480Ch	Reserved	NOPT6				R	eserved				FFh
480Dh	Flash wait	OPT7		Reserved Wait state							
480Eh	states	NOPT7				Reserve	d			Nwait state	FFh
487Eh	Deatland	OPTBL				E	BL[7:0]				00h
487Fh	Bootloader	NOPTBL				N	BL[7:0]				FFh

Table 12. Option bytes

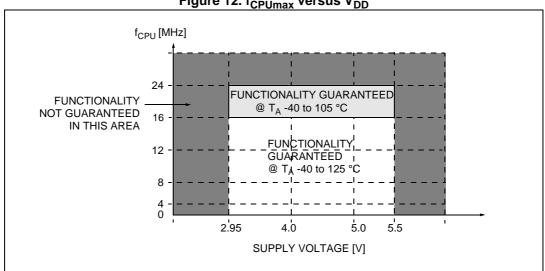
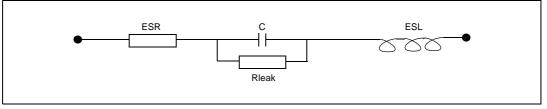


Figure 12. f_{CPUmax} versus V_{DD}

Table 19. Operating conditions at power-up/power-down


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
+	V _{DD} rise time rate		2 ⁽¹⁾		∞	μs/V
t _{VDD}	V _{DD} fall time rate		2 ⁽¹⁾		x	μ5/ ν
t _{TEMP}	Reset release delay	V _{DD} rising			1.7 ⁽¹⁾	ms
V _{IT+}	Power-on reset threshold		2.65	2.8	2.95	V
V _{IT-}	Brown-out reset threshold		2.58	2.73	2.88	V
V _{HYS(BOR)}	Brown-out reset hysteresis			70		mV

1. Guaranteed by design, not tested in production.

10.3.1 VCAP external capacitor

Stabilization for the main regulator is achieved connecting an external capacitor C_{EXT} to the V_{CAP} pin. C_{EXT} is specified in *Table 18*. Care should be taken to limit the series inductance to less than 15 nH.

Figure 13. External capacitor CEXT

1. Legend: ESR is the equivalent series resistance and ESL is the equivalent inductance.

Current consumption curves

Figure 14 and *Figure 15* show typical current consumption measured with code executing in RAM.

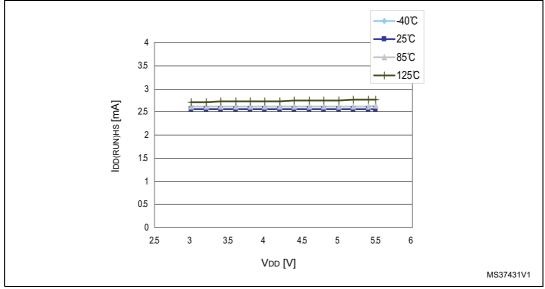
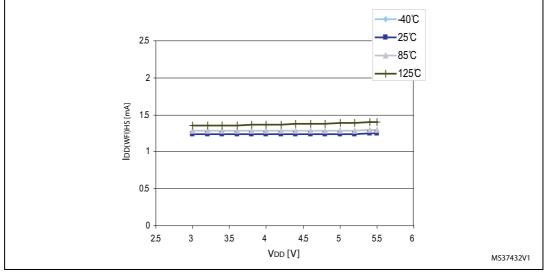
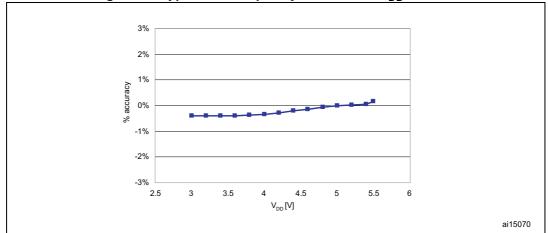



Figure 14. Typ. I_{DD(RUN)} vs V_{DD}, HSI RC osc, f_{CPU} = 16 MHz



Low speed internal RC oscillator (LSI)

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSI}	Frequency		110	128	146	kHz
t _{su(LSI)}	LSI oscillator wakeup time				7 ⁽¹⁾	μs
I _{DD(LSI)}	LSI oscillator power consumption			5		μA

1. Guaranteed by design, not tested in production.

Figure 19. Typical LSI frequency variation vs V_{DD} @ 25 °C

10.3.8 SPI serial peripheral interface

Unless otherwise specified, the parameters given in *Table 42* are derived from tests performed under ambient temperature, f_{MASTER} frequency and V_{DD} supply voltage conditions. $t_{MASTER} = 1/f_{MASTER}$.

Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions	Min	Max	Unit
f _{SCK}	CDL clock fraguency	Master mode	0	10	MHz
1/t _{c(SCK)}	SPI clock frequency	Slave mode	0	6	IVITIZ
t _{r(SCK)} t _{f(SCK)}	SPI clock rise and fall time	Capacitive load: C = 30 pF		25	
t _{su(NSS)} ⁽¹⁾	NSS setup time	Slave mode	4 x t _{MASTER}		
t _{h(NSS)} ⁽¹⁾	NSS hold time	Slave mode	70		
t _{w(SCKH)} (1) t _{w(SCKL)} (1)	SCK high and low time	Master mode	t _{SCK} /2 - 15	t _{SCK} /2 + 15	
t _{su(MI)} (1)	Data input actua tima	Master mode	5		
t _{su(SI)} (1)	Data input setup time	Slave mode	5		
t _{h(MI)} (1)	Data input hold time	Master mode	7		ns
t _{h(MI)} (1) t _{h(SI)} (1)		Slave mode	10		
t _{a(SO)} (1)(2)	Data output access time	Slave mode		3 x t _{MASTER}	
t _{dis(SO)} ⁽¹⁾⁽³⁾	Data output disable time	Slave mode	25		
t _{v(SO)} ⁽¹⁾	Data output valid time	Slave mode (after enable edge)		75	
t _{v(MO)} ⁽¹⁾	Data output valid time	Master mode (after enable edge)		30	
t _{h(SO)} ⁽¹⁾	Data autaut hald time	Slave mode (after enable edge)	31		
t _{h(MO)} ⁽¹⁾	Data output hold time	Master mode (after enable edge)	12		

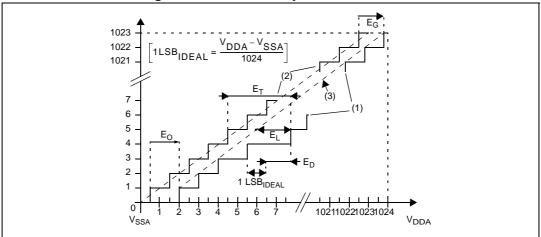
1. Values based on design simulation and/or characterization results, and not tested in production.

2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.

Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit
		$f_{ADC} = 2 \text{ MHz}$	1	2.5	
E _T	Total unadjusted error ⁽²⁾	f _{ADC} = 4 MHz	1.4	3	
		f _{ADC} = 6 MHz	1.6	3.5	
		f _{ADC} = 2 MHz	0.6	2	
E _O	Offset error ⁽²⁾	f _{ADC} = 4 MHz	1.1	2.5	
		f _{ADC} = 6 MHz	1.2	2.5	
	Gain error ⁽²⁾	f _{ADC} = 2 MHz	0.2	2	
E _G		f _{ADC} = 4 MHz	0.6	2.5	LSB
		f _{ADC} = 6 MHz	0.8	2.5	
		f _{ADC} = 2 MHz	0.7	1.5	
E _D	Differential linearity error ⁽²⁾	f _{ADC} = 4 MHz	0.7	1.5	
		f _{ADC} = 6 MHz	0.8	1.5	
		f _{ADC} = 2 MHz	0.6	1.5	
E _L	Integral linearity error (2)	$f_{ADC} = 4 \text{ MHz}$	0.6	1.5	
		f _{ADC} = 6 MHz	0.6	1.5	

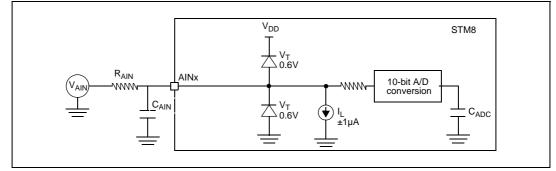
Table 45. ADC accuracy	y with R _{AIN} < 10) $\mathbf{k}\Omega$, $\mathbf{V}_{\mathbf{DDA}} = 5 \mathbf{V}$
------------------------	------------------------------	---


1. Data based on characterization results for LQFP80 device with V_{REF+}/V_{REF-} , not tested in production.

 ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 10.3.6 does not affect the ADC accuracy.

Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit
	Total unadjusted error ⁽²⁾	$f_{ADC} = 2 MHz$	1.1	2	
E _T		f _{ADC} = 4 MHz	1.6	2.5	
IEal	E _O Offset error ⁽²⁾	$f_{ADC} = 2 MHz$	0.7	1.5	
IFOI		f _{ADC} = 4 MHz	1.3	2	
	Gain error ⁽²⁾	f _{ADC} = 2 MHz	0.2	1.5	LSB
E _G	Gainenoi	$f_{ADC} = 4 \text{ MHz}$	0.5	2	LSD
	E _D Differential linearity error ⁽²⁾	f _{ADC} = 2 MHz	0.7	1	
E _D		f _{ADC} = 4 MHz	0.7	1	
E _L	Integral linearity error ⁽²⁾	$f_{ADC} = 2 MHz$	0.6	1.5	
וברו		f _{ADC} = 4 MHz	0.6	1.5	

Table 46. ADC accuracy	with R_{AIN} < 10 k Ω	$R_{AIN}, V_{DDA} = 3.3 V$



1. Example of an actual transfer curve.

- 2. The ideal transfer curve
- 3.

End point correlation line E_T = Total unadjusted error: maximum deviation between the actual and the ideal transfer curves. E_0 = Offset error: deviation between the first actual transition and the first ideal one. E_G = Gain error: deviation between the last ideal transition and the last actual one. E_D = Differential linearity error: maximum deviation between actual steps and the ideal one. E_L = Integral linearity error: maximum deviation between any actual transition and the end point correlation between any actual transition and the end point correlation line.

10.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during product characterization.

Functional EMS (electromagnetic susceptibility)

While executing a simple application (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).

- **ESD**: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 61000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709.

Designing hardened software to avoid noise problems

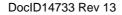
EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical data corruption (control registers...)


Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be recovered by applying a low state on the NRST pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Symbol	Parameter	Conditions	Level/class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	$V_{DD} = 5 V$, $T_A = 25 °C$, $f_{MASTER} = 16 MHz$, conforming to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$V_{DD} = 5 \text{ V}, T_A = 25 \text{ °C},$ $f_{MASTER} = 16 \text{ MHz},$ conforming to IEC 61000-4-4	4A

Table	47.	EMS	data
Table	T / .		uuu

Electromagnetic interference (EMI)

Emission tests conform to the SAE IEC 61967-2 standard for test software, board layout and pin loading.

Symbol		Conditions					
	Parameter	General conditions	Monitored frequency band	Max f _{HSE} /f _{CPU} ⁽¹⁾			Unit
				8 MHz/ 8 MHz	8 MHz/ 16 MHz	8 MHz/ 24 MHz	
		V _{DD} = 5 V T _A = 25 °C	0.1MHz to 30 MHz	15	20	24	dBµV
	Peak level		30 MHz to 130 MHz	18	21	16	
S _{EMI}		LQFP80 package		-1	1	4	
	SAE EMI level	conforming to SAE IEC 61967-2	SAE EMI level	2	2.5	2.5	

1. Data based on characterization results, not tested in production.

Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

Electrostatic discharge (ESD)

Electrostatic discharges (3 positive then 3 negative pulses separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test conforms to the JESD22-A114A/A115A standard. For more details, refer to the application note AN1181.

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (Human body model)	$T_A = 25^{\circ}C$, conforming to JESD22-A114	А	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (Charge device model)	T _A = 25°C, conforming to JESD22-C101	IV	1000	V

Table 49. ESD absolute maximum ratings

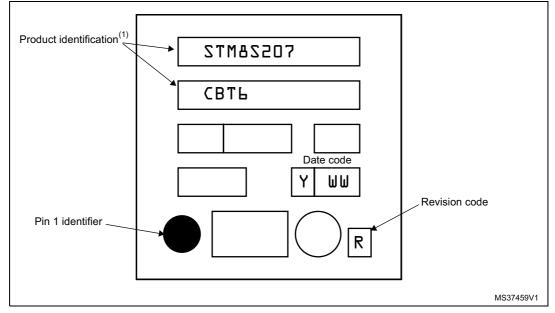
1. Data based on characterization results, not tested in production.

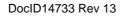
11 Package characteristics

To meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at *www.st.com*. ECOPACK® is an ST trademark.

Device marking

The following figure shows the marking for the LQFP48 package.




Figure 52. LQFP48 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Date	Revision	Changes
10-Jul-2009	8 cont'd	Section 10: Electrical characteristics: Added data for TBD values; updated Table 15: Voltage characteristics and Table 18: General operating conditions; updated VCAP specifications in Table 18 and in Section 10.3.1: VCAP external capacitor, updated Figure 18; replaced Figure 19; updated Table 35: RAM and hardware registers; updated Figure 22 and Figure 35; added Figure 40: Typical application with I2C bus and timing diagram. Removed Table 56: Junction temperature range. Added link between ordering information Figure 59 and STM8S20xx features Table 2.
13-Apr-2010	9	Document status changed from "preliminary data" to "datasheet". <i>Table 2: STM8S20xxx performance line features</i> : high sink I/O for STM8S207C8 is 16 (not 13). <i>Table 3: Peripheral clock gating bit assignments in</i> <i>CLK_PCKENR1/2 registers</i> : updated bit positions for TIM2 and TIM3. <i>Figure 5: LQFP 48-pin pinout</i> : added CAN_TX and CAN_RX to pins 35 and 36; noted that these pins are available only in STM8S208xx devices. <i>Figure 7: LQFP 32-pin pinout</i> : replaced uart2 with uart3. <i>Table 6: Pin description</i> : added footnotes concerning beCAN availability and UART1_RX and UART3_RX pins. <i>Table 13: Option byte description</i> : added description of STM8L bootloader option bytes to the option byte description table. Added <i>Section 9: Unique ID</i> (and listed this attribute in <i>Features</i>). <i>Section 10.3: Operating conditions</i> : replaced "C _{EXT} " with "VCAP" and added data for ESR and ESL; removed "low power dissipation" condition for T _A . <i>Table 26: Total current consumption in halt mode at VDD = 5 V</i> : replaced max value of I _{DD(H)} at 85 °C from 30 µA to 35 µA for the condition "Flash in power-down mode, HSI clock after wakeup". <i>Table 33: HSI oscillator characteristics</i> : updated the ACC _{HSI} factory calibrated values. <i>Functional EMS (electromagnetic susceptibility)</i> and <i>Table 47</i> : replaced "IEC 1000" with "IEC 61000". <i>Electromagnetic interference (EMI)</i> and <i>Table 48</i> : replaced "SAE J1752/3" with "IEC 61967-2". <i>Table 57: Thermal characteristics</i> : changed the thermal resistance junction-ambient value of LQFP32 (7x7 mm) from 59 °C/W to 60 °C/W.

Table 58. Document revision history (continued)

Date	Revision	Changes
14-Sep-2010	10	Added part number STM8S208M8 to <i>Table 1: Device summary</i> . Updated "reset state" of <i>Table 5: Legend/abbreviations for pinout</i> <i>table</i> . Added footnote <i>4</i> to <i>Table 6: Pin description</i> . <i>Table 9: General hardware register map</i> : standardized all reset state values; updated the reset state values of RST_SR, CLK_SWCR, CLK_HSITRIMR, CLK_SWIMCCR, IWDG_KR, and ADC_DRx registers; added the reset values of the CAN paged registers. <i>Figure 36: Recommended reset pin protection</i> : replaced 0.01 μF with 0.1 μF. <i>Figure 40: Typical application with I2C bus and timing diagram</i> : t _w (SCKH), t _w (SCKL), t _r (SCK), and t _f (SCK) replaced by t _w (SCLH), t _w (SCLL), t _r (SCL), and t _f (SCL) respectively.
22-Mar-2011	11	Table 1: Device summary: added STM8S207K8. Table 2: STM8S20xxx performance line features: added STM8S207K8 device and changed the RAM value of all other devices to 6 Kbytes. Figure 5, Figure 4, Figure 5, and Figure 7: removed TIM1_CH4 from pins 80, 64, 48, and 32 respectively. Table 6: Pin description: updated note 3 and added note 5. Table 9: General hardware register map: removed I2C_PECR register. Section 10.3.7: Reset pin characteristics: added text regarding the rest network.
10-Feb-2012	12	<i>Figure 1: STM8S20xxx block diagram</i> : updated POR/PDR and BOR; updated LINUART input; added legend. <i>Table 18: General operating conditions</i> : updated V _{CAP} . <i>Table 26: Total current consumption in halt mode at VDD = 5 V</i> : updated title, modified existing max column, and added new max column (at 125 °C) with data. <i>Table 37: I/O static characteristics</i> : added new condition and new max values for rise and fall time; added footnote <i>3</i> ; updated Typ and max pull-up resistor values. <i>Section 10.3.7: Reset pin characteristics</i> : updated cross reference in text below <i>Figure 35</i> <i>Table 41: NRST pin characteristics</i> : updated Typ and max values of the NRST pull-up resistor.

