

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	68
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	2.95V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8s207m8t3btr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

This datasheet contains the description of the STM8S20xxx features, pinout, electrical characteristics, mechanical data and ordering information.

- For complete information on the STM8S microcontroller memory, registers and peripherals, please refer to the STM8S microcontroller family reference manual (RM0016).
- For information on programming, erasing and protection of the internal Flash memory please refer to the STM8S Flash programming manual (PM0051).
- For information on the debug and SWIM (single wire interface module) refer to the STM8 SWIM communication protocol and debug module user manual (UM0470).
- For information on the STM8 core, please refer to the STM8 CPU programming manual (PM0044).

4.14.1 UART1

Main features

- One Mbit/s full duplex SCI
- SPI emulation
- High precision baud rate generator
- Smartcard emulation
- IrDA SIR encoder decoder
- LIN master mode
- Single wire half duplex mode

Asynchronous communication (UART mode)

- Full duplex communication NRZ standard format (mark/space)
- Programmable transmit and receive baud rates up to 1 Mbit/s (f_{CPU}/16) and capable of following any standard baud rate regardless of the input frequency
- Separate enable bits for transmitter and receiver
- Two receiver wakeup modes:
 - Address bit (MSB)
 - Idle line (interrupt)
- Transmission error detection with interrupt generation
- Parity control

Synchronous communication

- Full duplex synchronous transfers
- SPI master operation
- 8-bit data communication
- Maximum speed: 1 Mbit/s at 16 MHz (f_{CPU}/16)

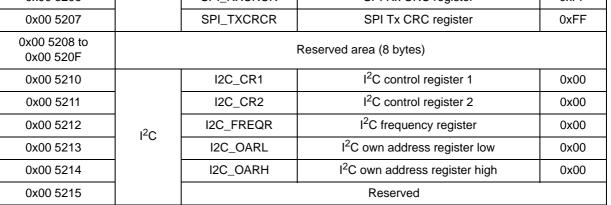
LIN master mode

- Emission: Generates 13-bit sync break frame
- Reception: Detects 11-bit break frame

4.14.2 UART3

Main features

- 1 Mbit/s full duplex SCI
- LIN master capable
- High precision baud rate generator



	Pin	num	ber					Inpu	t		Out			,		
LQFP80	LQFP64	LQFP48	LQFP44	LQFP32	Pin name	Type	floating	ndw	Ext. interrupt	High sink	Speed	OD	ЬР	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
12	12	12	11	-	PA6/UART1_CK	I/O	X	Х	х	HS	О3	х	х	Port A6	UART1 synchronous clock	
13	-	-	-	-	PH0	I/O	<u>X</u>	Х		HS	O3	Х	Х	Port H0		
14	-	-	-	-	PH1	I/O	<u>X</u>	Х		HS	O3	Х	Х	Port H1		
15	-	-	-	-	PH2	I/O	<u>X</u>	Х			01	Х	Х	Port H2		
16	-	-	-	-	PH3	I/O	<u>X</u>	Х			01	Х	Х	Port H3	A 1	
17	13	-	-	-	PF7/AIN15	I/O	<u>X</u>	Х			01	Х	Х	Port F7	Analog input 15	
18	14	-	-	-	PF6/AIN14	I/O	<u>X</u>	х			01	Х	х	Port F6	Analog input 14	
19	15	-	-	-	PF5/AIN13	I/O	X	х			01	х	х	Port F5	Analog input 13	
20	16	-	-	8	PF4/AIN12	I/O	X	х			01	х	х	Port F4	Analog input 12	
21	17	-	-	-	PF3/AIN11	I/O	X	Х			01	х	х	Port F3	Analog input 11	
22	18	-	-	-	V _{REF+}	s								ADC positive reference voltage		
23	19	13	12		V _{DDA}	S								Analog p	ower supply	
24	20	14	13	10	V _{SSA}	S								Analog gi	round	
25	21	-	-	-	V _{REF-}	S								ADC negative reference voltage		
26	22	-	-	-	PF0/AIN10	I/O	<u>x</u>	х			01	х	х	Port F0	Analog input 10	
27	23	15	14	-	PB7/AIN7	I/O	X	х	Х		01	х	Х	Port B7	Analog input 7	
28	24	16	15	-	PB6/AIN6	I/O	X	х	Х		01	х	х	Port B6	Analog input 6	
29	25	17	16	11	PB5/AIN5	I/O	<u>x</u>	х	Х		01	х	х	Port B5	Analog input 5	l ² C_SDA [AFR6]
30	26	18	17	12	PB4/AIN4	I/O	X	х	х		01	х	х	Port B4	Analog input 4	I ² C_SCL [AFR6]

Table 6. Pin description (continued)

Table 9. General hardware register map (continued)									
Address	Block	Register label	Register name	Reset status					
0x00 50CC		CLK_HSITRIMR	HSI clock calibration trimming register	0x00					
0x00 50CD	CLK	CLK_SWIMCCR	SWIM clock control register	0bXXXX XXX0					
0x00 50CE to 0x00 50D0		Reserved area (3 bytes)							
0x00 50D1	WWDG	WWDG_CR	WWDG control register	0x7F					
0x00 50D2	- www.DG	WWDG_WR	WWDR window register	0x7F					
0x00 50D3 to 0x00 50DF		Reserved area (13 bytes)							
0x00 50E0		IWDG_KR	IWDG key register	0xXX ⁽²⁾					
0x00 50E1	IWDG	IWDG_PR	IWDG prescaler register	0x00					
0x00 50E2		IWDG_RLR	IWDG reload register	0xFF					
0x00 50E3 to 0x00 50EF		Reserved area (13 bytes)							
0x00 50F0		AWU_CSR1	AWU control/status register 1	0x00					
0x00 50F1	AWU	AWU_APR	AWU asynchronous prescaler buffer register	0x3F					
0x00 50F2		AWU_TBR	AWU timebase selection register	0x00					
0x00 50F3	BEEP	BEEP_CSR	BEEP control/status register	0x1F					
0x00 50F4 to 0x00 50FF			Reserved area (12 bytes)						
0x00 5200		SPI_CR1	SPI control register 1	0x00					
0x00 5201		SPI_CR2	SPI control register 2	0x00					
0x00 5202		SPI_ICR	SPI interrupt control register	0x00					
0x00 5203	SPI	SPI_SR	SPI status register	0x02					
0x00 5204	551	SPI_DR	SPI data register	0x00					
0x00 5205		SPI_CRCPR	SPI CRC polynomial register	0x07					
0x00 5206		SPI_RXCRCR	SPI Rx CRC register	0xFF					
0x00 5207		SPI_TXCRCR	SPI Tx CRC register	0xFF					
0x00 5208 to 0x00 520F			Reserved area (8 bytes)						
0x00 5210		I2C_CR1	I ² C control register 1	0x00					
0x00 5211		12C CR2	I ² C control register 2	0x00					

Address	Block	Register label	Register name	Reset status			
0x00 5428		CAN_P0	CAN paged register 0	0xXX ⁽³⁾			
0x00 5429		CAN_P1	CAN paged register 1	0xXX ⁽³⁾			
0x00 542A		CAN_P2	CAN paged register 2	0xXX ⁽³⁾			
0x00 542B	_	CAN_P3	CAN paged register 3	0xXX ⁽³⁾			
0x00 542C	_	CAN_P4	CAN paged register 4	0xXX ⁽³⁾			
0x00 542D	_	CAN_P5	CAN paged register 5	0xXX ⁽³⁾			
0x00 542E	_	CAN_P6	CAN paged register 6	0xXX ⁽³⁾			
0x00 542F		CAN_P7	CAN paged register 7	0xXX ⁽³⁾			
0x00 5430	- beCAN	CAN_P8	CAN paged register 8	0xXX ⁽³⁾			
0x00 5431	_	CAN_P9	CAN paged register 9	0xXX ⁽³⁾			
0x00 5432	_	CAN_PA	CAN paged register A	0xXX ⁽³⁾			
0x00 5433	-	CAN_PB	CAN paged register B	0xXX ⁽³⁾			
0x00 5434	_	CAN_PC	CAN paged register C	0xXX ⁽³⁾			
0x00 5435	_	CAN_PD	CAN paged register D	0xXX ⁽³⁾			
0x00 5436	1	CAN_PE	CAN paged register E	0xXX ⁽³⁾			
0x00 5437		CAN_PF	CAN paged register F	0xXX ⁽³⁾			
0x00 5438 to 0x00 57FF		Reserved area (968 bytes)					

Table 0	Gonoral	hardwaro	rogistor	man	(continued)	
Table 9.	General	naruware	register	map	(continued)	,

1. Depends on the previous reset source.

2. Write only register.

3. If the bootloader is enabled, it is initialized to 0x00.

7 Interrupt vector mapping

Table 11. Interrupt mapping								
IRQ no.	Source block	Description	Wakeup from Halt mode	Wakeup from Active-halt mode	Vector address			
	RESET	Reset	Yes	Yes	0x00 8000			
	TRAP	Software interrupt	-	-	0x00 8004			
0	TLI	External top level interrupt	-	-	0x00 8008			
1	AWU	Auto wake up from halt	-	Yes	0x00 800C			
2	CLK	Clock controller	-	-	0x00 8010			
3	EXTI0	Port A external interrupts	Yes ⁽¹⁾	Yes ⁽¹⁾	0x00 8014			
4	EXTI1	Port B external interrupts	Yes	Yes	0x00 8018			
5	EXTI2	Port C external interrupts	Yes	Yes	0x00 801C			
6	EXTI3	Port D external interrupts	Yes	Yes	0x00 8020			
7	EXTI4	Port E external interrupts	Yes	Yes	0x00 8024			
8	beCAN	beCAN RX interrupt	Yes	Yes	0x00 8028			
9	beCAN	beCAN TX/ER/SC interrupt	-	-	0x00 802C			
10	SPI	End of transfer	Yes	Yes	0x00 8030			
11	TIM1	TIM1 update/overflow/underflow/ trigger/break	-	-	0x00 8034			
12	TIM1	TIM1 capture/compare	-	-	0x00 8038			
13	TIM2	TIM2 update /overflow	-	-	0x00 803C			
14	TIM2	TIM2 capture/compare	-	-	0x00 8040			
15	TIM3	Update/overflow	-	-	0x00 8044			
16	TIM3	Capture/compare	-	-	0x00 8048			
17	UART1	Tx complete	-	-	0x00 804C			
18	UART1	Receive register DATA FULL	-	-	0x00 8050			
19	l ² C	I ² C interrupt	Yes	Yes	0x00 8054			
20	UART3	Tx complete	-	-	0x00 8058			
21	UART3	Receive register DATA FULL	-	-	0x00 805C			
22	ADC2	ADC2 end of conversion	-	-	0x00 8060			
23	TIM4	TIM4 update/overflow	-	-	0x00 8064			
24	Flash	EOP/WR_PG_DIS	-	-	0x00 8068			
		Reserved			0x00 806C to 0x00 807C			

Table 11. Interrupt mapping

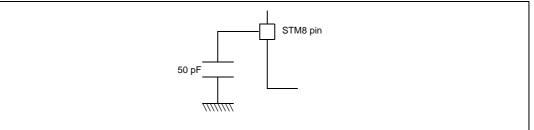
1. Except PA1

	Table 13. Option byte description
Option byte no.	Description
OPT0	ROP[7:0] <i>Memory readout protection (ROP)</i> 0xAA: Enable readout protection (write access via SWIM protocol) Note: Refer to the family reference manual (RM0016) section on Flash/EEPROM memory readout protection for details.
OPT1	UBC[7:0] User boot code area 0x00: no UBC, no write-protection 0x01: Pages 0 to 1 defined as UBC, memory write-protected 0x02: Pages 0 to 3 defined as UBC, memory write-protected 0x03: Pages 0 to 4 defined as UBC, memory write-protected 0xFE: Pages 0 to 255 defined as UBC, memory write-protected 0xFF: Reserved Note: Refer to the family reference manual (RM0016) section on Flash/EEPROM write protection for more details.
OPT2	 AFR7<i>Alternate function remapping option 7</i> 0: Port D4 alternate function = TIM2_CH1 1: Port D4 alternate function = BEEP AFR6 <i>Alternate function remapping option 6</i> 0: Port B5 alternate function = AIN5, port B4 alternate function = AIN4 1: Port B5 alternate function = l²C_SDA, port B4 alternate function = l²C_SCL AFR5 <i>Alternate function remapping option 5</i> 0: Port B3 alternate function = AIN3, port B2 alternate function = AIN2, port B1 alternate function = AIN1, port B0 alternate function = AIN0 1: Port B3 alternate function = TIM1_ETR, port B2 alternate function = TIM1_CH3N, port B1 alternate function = TIM1_CH2N, port B0 alternate function = TIM1_CH3N, port B1 alternate function = TIM1_CH2N, port B0 alternate function = TIM1_CH1N AFR4 <i>Alternate function remapping option 4</i> 0: Port D7 alternate function = TIM1_CH4 AFR3 <i>Alternate function remapping option 3</i> 0: Port D0 alternate function = TIM3_CH2 1: Port D0 alternate function = TIM3_CH2 1: Port D0 alternate function = CLK_CCO Note: AFR2 option has priority over AFR3 if both are activated AFR1 <i>Alternate function remapping option 1</i> 0: Port A3 alternate function = TIM3_CH1, port D2 alternate function TIM3_CH1 1: Port A3 alternate function = TIM3_CH1, port D2 alternate function TIM3_CH1 1: Port A3 alternate function = TIM3_CH1, port D2 alternate function TIM3_CH3 AFR0 <i>Alternate function remapping option 1</i> 0: Port A3 alternate function = TIM3_CH1, port D2 alternate function TIM3_CH1 1: Port A3 alternate function = TIM3_CH1, port D2 alternate function TIM3_CH1 1: Port A3 alternate function = TIM3_CH1, port D2 alternate function TIM3_CH3 AFR0 <i>Alternate function remapping option 0</i> 0: Port D3 alternate function = TIM3_CH2 1: Port D3 alternate function = TIM3_CH2 1: Port D3 alternate function = TIM3_CH2

Table 13. Option byte description

Option byte no.	Description
OPTBL	 BL[7:0] Bootloader option byte For STM8S products, this option is checked by the boot ROM code after reset. Depending on the content of addresses 0x487E, 0x487F, and 0x8000 (reset vector), the CPU jumps to the bootloader or to the reset vector. Refer to the UM0560 (STM8L/S bootloader manual) for more details. For STM8L products, the bootloader option bytes are on addresses 0xXXXX and 0xXXXX+1 (2 bytes). These option bytes control whether the bootloader is active or not. For more details, refer to the UM0560 (STM8L/S bootloader manual) for more details.

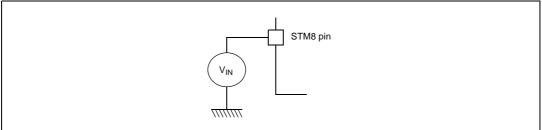
Table 13. Option byte description (continued)



10.1.5 Pin loading conditions

10.1.6 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 10.


Figure 10. Pin loading conditions

10.1.7 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 11*.

Figure 11. Pin input voltage

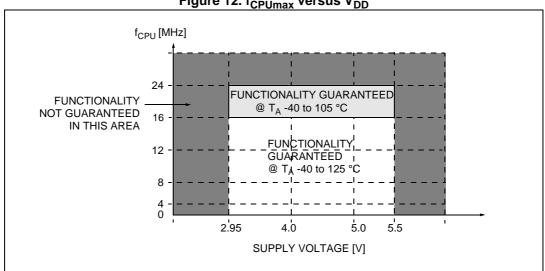
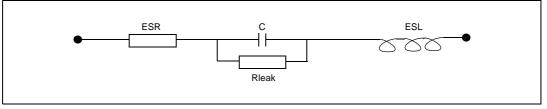


Figure 12. f_{CPUmax} versus V_{DD}

Table 19. Operating conditions at power-up/power-down


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
+	V _{DD} rise time rate		2 ⁽¹⁾		∞	μs/V
t _{VDD}	V _{DD} fall time rate		2 ⁽¹⁾		x	μ5/ ν
t _{TEMP}	Reset release delay	V _{DD} rising			1.7 ⁽¹⁾	ms
V _{IT+}	Power-on reset threshold		2.65	2.8	2.95	V
V _{IT-}	Brown-out reset threshold		2.58	2.73	2.88	V
V _{HYS(BOR)}	Brown-out reset hysteresis			70		mV

1. Guaranteed by design, not tested in production.

10.3.1 VCAP external capacitor

Stabilization for the main regulator is achieved connecting an external capacitor C_{EXT} to the V_{CAP} pin. C_{EXT} is specified in *Table 18*. Care should be taken to limit the series inductance to less than 15 nH.

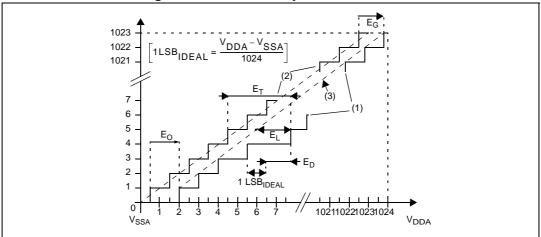
Figure 13. External capacitor CEXT

1. Legend: ESR is the equivalent series resistance and ESL is the equivalent inductance.

10.3.8 SPI serial peripheral interface

Unless otherwise specified, the parameters given in *Table 42* are derived from tests performed under ambient temperature, f_{MASTER} frequency and V_{DD} supply voltage conditions. $t_{MASTER} = 1/f_{MASTER}$.

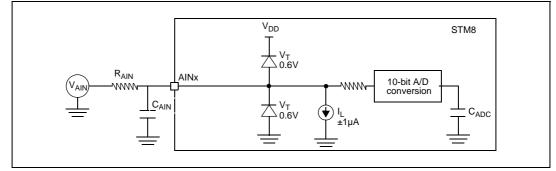
Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).


Symbol	Parameter	Conditions	Min	Max	Unit
f _{SCK}		Master mode		10	MHz
1/t _{c(SCK)}	SPI clock frequency	Slave mode	0	6	
t _{r(SCK)} t _{f(SCK)}	SPI clock rise and fall time	Capacitive load: C = 30 pF		25	
t _{su(NSS)} ⁽¹⁾	NSS setup time	Slave mode	4 x t _{MASTER}		
t _{h(NSS)} ⁽¹⁾	NSS hold time	Slave mode	70		
t _{w(SCKH)} ⁽¹⁾ t _{w(SCKL)} ⁽¹⁾	SCK high and low time	Master mode	t _{SCK} /2 - 15	t _{SCK} /2 + 15	
t _{su(MI)} (1)	Data input setup time	Master mode	5		
t _{su(SI)} (1)		Slave mode	5		
t _{h(MI)} (1) t _{h(SI)} (1)	Data input hold time	Master mode	7		ns
$t_{h(SI)}^{(1)}$		Slave mode	10		
t _{a(SO)} ⁽¹⁾⁽²⁾	Data output access time	Slave mode		3 x t _{MASTER}	
t _{dis(SO)} ⁽¹⁾⁽³⁾	Data output disable time	Slave mode	25		
t _{v(SO)} ⁽¹⁾	Data output valid time	Slave mode (after enable edge)		75	
t _{v(MO)} ⁽¹⁾	Data output valid time	Master mode (after enable edge)		30	
t _{h(SO)} ⁽¹⁾	Data output hold time	Slave mode (after enable edge)	31		
t _{h(MO)} ⁽¹⁾	Data output hold time	Master mode (after enable edge)	12		

1. Values based on design simulation and/or characterization results, and not tested in production.

2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

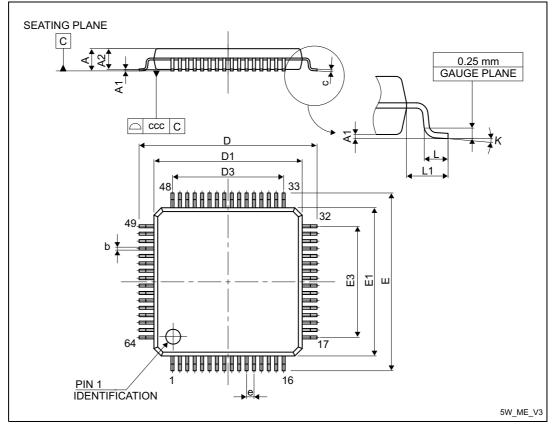
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.



1. Example of an actual transfer curve.

- 2. The ideal transfer curve
- 3.

End point correlation line E_T = Total unadjusted error: maximum deviation between the actual and the ideal transfer curves. E_0 = Offset error: deviation between the first actual transition and the first ideal one. E_G = Gain error: deviation between the last ideal transition and the last actual one. E_D = Differential linearity error: maximum deviation between actual steps and the ideal one. E_L = Integral linearity error: maximum deviation between any actual transition and the end point correlation between any actual transition and the end point correlation line.

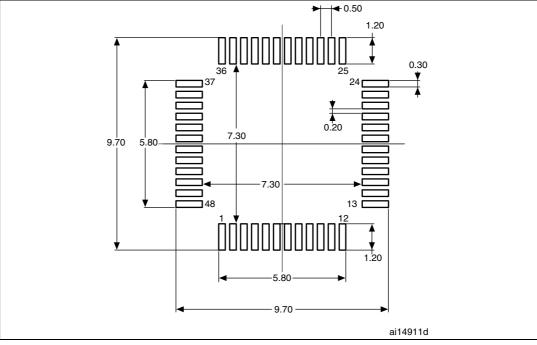

11 Package characteristics

To meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at *www.st.com*. ECOPACK® is an ST trademark.

Table 52. LQFP64 - 64-pin, 14 x 14 mm low-profile quad flat package mechanical					
data (continued)					

Symbol		mm		inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
k	0.0 °	3.5 °	7.0 °	0.0 °	3.5 °	7.0 °
CCC			0.100			0.0039

Figure 47. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline


Table 53. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data

data						
Symbol	mm			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079

(continued)						
Symbol	mm			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.500	-	-	0.2165	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.080	-	-	0.0031

Table 54. LQFP48 - 48-pin, 7x 7 mm low-profile quad flat package mechanical(continued)

1. Dimensions are expressed in millimeters.

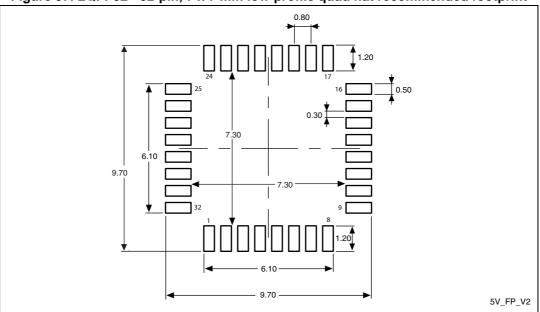

data						
Symbol		mm		inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.300	0.370	0.450	0.0118	0.0146	0.0177
С	0.090	-	0.200	0.0035		0.0079
D	11.800	12.000	12.200	0.4646	0.4724	0.4803
D1	9.800	10.000	10.200	0.3858	0.3937	0.4016
D3	-	8.000	-	-	0.3150	-
E	11.800	12.000	12.200	0.4646	0.4724	0.4803
E1	9.800	10.000	10.200	0.3858	0.3937	0.4016
E3	-	8.000	-	-	0.3150	-
е	-	0.800	-	-	0.0315	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0.0°	3.5°	7.0°	0.0°	3.5°	7.0°
CCC	-	-	0.100	-	-	0.0039

Table 55. LQFP44 - 44-pin. 10	x 10 mm low-profile quad flat package mechanical
· · · · · · · · · · · · · · · · · · ·	data

data						
Symbol	mm			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.300	0.370	0.450	0.0118	0.0146	0.0177
С	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.600	-	-	0.2205	-
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.600	-	-	0.2205	-
е	-	0.800	-	-	0.0315	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.100	-	-	0.0039

Table 56. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package mechanical data

Figure 57. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat recommended footprint

1. Dimensions are expressed in millimeters.

DocID14733 Rev 13

11.2.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the order code (see *Figure 59: STM8S207xx/208xx performance line ordering information scheme(1) on page 112*).

The following example shows how to calculate the temperature range needed for a given application.

Assuming the following application conditions:

- Maximum ambient temperature T_{Amax}= 82 °C (measured according to JESD51-2)
- $I_{DDmax} = 15 \text{ mA}, V_{DD} = 5.5 \text{ V}$
- Maximum eight standard I/Os used at the same time in output at low level with I_{OL} = 10 mA, V_{OL} = 2 V
- Maximum four high sink I/Os used at the same time in output at low level with $\rm I_{OL}$ = 20 mA, $\rm V_{OL}$ = 1.5 V
- Maximum two true open drain I/Os used at the same time in output at low level with I_{OL} = 20 mA, V_{OL} = 2 V

P_{INTmax =} 15 mA x 5.5 V = 82.5 mW

 $P_{IOmax} = (10 \text{ mA x } 2 \text{ V x } 8) + (20 \text{ mA x } 2 \text{ V x } 2) + (20 \text{ mA x } 1.5 \text{ V x } 4) = 360 \text{ mW}$ This gives: $P_{INTmax} = 82.5 \text{ mW}$ and $P_{IOmax} 360 \text{ mW}$:

 $P_{Dmax} = 82.5 \text{ mW} + 360 \text{ mW}$

Thus: P_{Dmax} = 443 mW

Using the values obtained in *Table 57: Thermal characteristics on page 108* T_{Jmax} is calculated as follows for LQFP64 10 x 10 mm = 46 °C/W:

T_{Jmax} = 82 °C + (46 °C/W x 443 mW) = 82 °C + 20 °C = 102 °C

This is within the range of the suffix 6 version parts (-40 < T_J < 105 °C).

In this case, parts must be ordered at least with the temperature range suffix 6.

12 STM8 development tools

Development tools for the STM8 microcontrollers include the full-featured STice emulation system supported by a complete software tool package including C compiler, assembler and integrated development environment with high-level language debugger. In addition, the STM8 is to be supported by a complete range of tools including starter kits, evaluation boards and a low-cost in-circuit debugger/programmer.

12.1 Emulation and in-circuit debugging tools

The STice emulation system offers a complete range of emulation and in-circuit debugging features on a platform that is designed for versatility and cost-effectiveness. In addition, STM8 application development is supported by a low-cost in-circuit debugger/programmer.

The STice is the fourth generation of full featured emulators from STMicroelectronics. It offers new advanced debugging capabilities including profiling and coverage to help detect and eliminate bottlenecks in application execution and dead code when fine tuning an application.

In addition, STice offers in-circuit debugging and programming of STM8 microcontrollers via the STM8 single wire interface module (SWIM), which allows non-intrusive debugging of an application while it runs on the target microcontroller.

For improved cost effectiveness, STice is based on a modular design that allows you to order exactly what you need to meet the development requirements and to adapt the emulation system to support existing and future ST microcontrollers.

STice key features

- Occurrence and time profiling and code coverage (new features)
- Advanced breakpoints with up to 4 levels of conditions
- Data breakpoints
- Program and data trace recording up to 128 KB records
- Read/write on the fly of memory during emulation
- In-circuit debugging/programming via SWIM protocol
- 8-bit probe analyzer
- 1 input and 2 output triggers
- Power supply follower managing application voltages between 1.62 to 5.5 V
- Modularity that allows you to specify the components you need to meet the development requirements and adapt to future requirements
- Supported by free software tools that include integrated development environment (IDE), programming software interface and assembler for STM8.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

DocID14733 Rev 13