

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	68
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	2.95V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8s207m8t6b

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The size of the UBC is programmable through the UBC option byte (*Table 13.*), in increments of 1 page (512 bytes) by programming the UBC option byte in ICP mode.

This divides the program memory into two areas:

- Main program memory: Up to 128 Kbytes minus UBC
- User-specific boot code (UBC): Configurable up to 128 Kbytes

The UBC area remains write-protected during in-application programming. This means that the MASS keys do not unlock the UBC area. It protects the memory used to store the boot program, specific code libraries, reset and interrupt vectors, the reset routine and usually the IAP and communication routines.

Figure 2. Flash memory organization

Read-out protection (ROP)

The read-out protection blocks reading and writing the Flash program memory and data EEPROM memory in ICP mode (and debug mode). Once the read-out protection is activated, any attempt to toggle its status triggers a global erase of the program and data memory. Even if no protection can be considered as totally unbreakable, the feature provides a very high level of protection for a general purpose microcontroller.

Asynchronous communication (UART mode)

- Full duplex communication NRZ standard format (mark/space)
- Programmable transmit and receive baud rates up to 1 Mbit/s (f_{CPU}/16) and capable of following any standard baud rate regardless of the input frequency
- Separate enable bits for transmitter and receiver
 - Two receiver wakeup modes:
 - Address bit (MSB)
 - Idle line (interrupt)
- Transmission error detection with interrupt generation
- Parity control

LIN master capability

- Emission: Generates 13-bit sync break frame
- Reception: Detects 11-bit break frame

LIN slave mode

- Autonomous header handling one single interrupt per valid message header
- Automatic baud rate synchronization maximum tolerated initial clock deviation ±15%
- Sync delimiter checking
- 11-bit LIN sync break detection break detection always active
- Parity check on the LIN identifier field
- LIN error management
- Hot plugging support

4.14.3 SPI

- Maximum speed: 10 Mbit/s (f_{MASTER}/2) both for master and slave
- Full duplex synchronous transfers
- Simplex synchronous transfers on two lines with a possible bidirectional data line
- Master or slave operation selectable by hardware or software
- CRC calculation
- 1 byte Tx and Rx buffer
- Slave/master selection input pin

1. (HS) high sink capability.

3. [] alternate function remapping option (If the same alternate function is shown twice, it indicates an exclusive choice not a duplication of the function).

4. CAN_RX and CAN_TX is available on STM8S208xx devices only.

^{2. (}T) True open drain (P-buffer and protection diode to $V_{\mbox{\scriptsize DD}}$ not implemented).

1. (HS) high sink capability.

2. [] alternate function remapping option (If the same alternate function is shown twice, it indicates an exclusive choice not a duplication of the function).

	Pin	num	nber					Inpu	t		Out	put				
LQFP80	rgfp64	LQFP48	LQFP44	LQFP32	Pin name	Type	floating	ndw	Ext. interrupt	High sink	Speed	QO	dd	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
31	27	19	18	13	PB3/AIN3	I/O	<u>x</u>	х	Х		01	х	х	Port B3	Analog input 3	TIM1_ETR [AFR5]
32	28	20	19	14	PB2/AIN2	I/O	<u>x</u>	х	х		01	Х	х	Port B2	Analog input 2	TIM1_ CH3N [AFR5]
33	29	21	20	15	PB1/AIN1	I/O	<u>X</u>	х	х		01	Х	х	Port B1	Analog input 1	TIM1_ CH2N [AFR5]
34	30	22	21	16	PB0/AIN0	I/O	<u>X</u>	х	х		01	Х	х	Port B0	Analog input 0	TIM1_ CH1N [AFR5]
35	-	-	-	-	PH4/TIM1_ETR	I/O	<u>x</u>	х			01	х	х	Port H4	Timer 1 - trigger input	
36	-	-	-	-	PH5/ TIM1_CH3N	I/O	<u>x</u>	х			01	Х	х	Port H5	Timer 1 - inverted channel 3	
37	-	-	-	-	PH6/ TIM1_CH2N	I/O	<u>X</u>	х			O1	х	х	Port H6	Timer 1 - inverted channel 2	
38	-	-	-	-	PH7/ TIM1_CH1N	I/O	<u>X</u>	х			01	Х	х	Port H7	Timer 1 - inverted channel 2	
39	31	23	-	-	PE7/AIN8	I/O	<u>X</u>	Х	Х		01	Х	Х	Port E7	Analog input 8	
40	32	24	22	-	PE6/AIN9	I/O	<u>X</u>	Х	Х		01	Х	Х	Port E6	Analog input 9	
41	33	25	23	17	PE5/SPI_NSS	I/O	X	х	Х		01	х	х	Port E5	SPI master/slave select	
42	-	-	-	-	PC0/ADC_ETR	I/O	<u>x</u>	Х	х		01	Х	х	Port C0	ADC trigger input	
43	34	26	24	18	PC1/TIM1_CH1	I/O	<u>x</u>	Х	Х	HS	O3	х	х	Port C1	Timer 1 - channel 1	
44	35	27	25	19	PC2/TIM1_CH2	I/O	X	х	Х	HS	O3	х	х	Port C2	Timer 1- channel 2	
45	36	28	26	20	PC3/TIM1_CH3	I/O	<u>x</u>	х	х	НS	О3	х	х	Port C3	Timer 1 - channel 3	

Table 6. Pin description (continued)

Address	Block	Register label	Register name	Reset status			
0x00 532B		TIM3_ARRH	TIM3 auto-reload register high	0xFF			
0x00 532C		TIM3_ARRL	TIM3 auto-reload register low	0xFF			
0x00 532D		TIM3_CCR1H	TIM3 capture/compare register 1 high	0x00			
0x00 532E	1 111/13	TIM3_CCR1L	TIM3 capture/compare register 1 low	0x00			
0x00 532F		TIM3_CCR2H	TIM3 capture/compare register 2 high	0x00			
0x00 5330		TIM3_CCR2L	TIM3 capture/compare register 2 low	0x00			
0x00 5331 to 0x00 533F		Reserved area (15 bytes)					
0x00 5340		TIM4_CR1	TIM4 control register 1	0x00			
0x00 5341		TIM4_IER	TIM4 interrupt enable register	0x00			
0x00 5342		TIM4_SR	TIM4 status register	0x00			
0x00 5343	TIM4	TIM4_EGR	TIM4 event generation register	0x00			
0x00 5344		TIM4_CNTR	TIM4 counter	0x00			
0x00 5345	-	TIM4_PSCR TIM4 prescaler register		0x00			
0x00 5346		TIM4_ARR	TIM4 auto-reload register	0xFF			
0x00 5347 to 0x00 53FF		Reserved area (185 bytes)					
0x00 5400		ADC _CSR	ADC control/status register	0x00			
0x00 5401		ADC_CR1	ADC configuration register 1	0x00			
0x00 5402		ADC_CR2	ADC configuration register 2	0x00			
0x00 5403		ADC_CR3	ADC configuration register 3	0x00			
0x00 5404	ADOZ	ADC_DRH	ADC data register high	0xXX			
0x00 5405		ADC_DRL	ADC data register low	0xXX			
0x00 5406		ADC_TDRH	ADC Schmitt trigger disable register high	0x00			
0x00 5407		ADC_TDRL	ADC Schmitt trigger disable register low	0x00			
0x00 5408 to 0x00 541F		I	Reserved area (24 bytes)				
0x00 5420		CAN_MCR	CAN master control register	0x02			
0x00 5421		CAN_MSR	CAN master status register	0x02			
0x00 5422	-	CAN_TSR	CAN transmit status register	0x00			
0x00 5423	boCAN	CAN_TPR	CAN transmit priority register	0x0C			
0x00 5424	DECAN	CAN_RFR	CAN receive FIFO register	0x00			
0x00 5425		CAN_IER	CAN interrupt enable register	0x00			
0x00 5426		CAN_DGR	CAN diagnosis register	0x0C			
0x00 5427	0x00 5427		CAN page selection register	0x00			

Table 0	Conorol	hardwara	register	mon	(aantinuad)	
Table 9.	General	naruware	register	map	(continued)	,

Address	Block	Register Label	Register Name	Reset Status				
0x00 7F00		А	Accumulator	0x00				
0x00 7F01		PCE	Program counter extended	0x00				
0x00 7F02		PCH	Program counter high	0x00				
0x00 7F03		PCL	Program counter low	0x00				
0x00 7F04		ХН	X index register high	0x00				
0x00 7F05	CPU ⁽¹⁾	XL	X index register low	0x00				
0x00 7F06		YH	Y index register high	0x00				
0x00 7F07		YL	Y index register low	0x00				
0x00 7F08		SPH	Stack pointer high	0x17 ⁽²⁾				
0x00 7F09		SPL	Stack pointer low	0xFF				
0x00 7F0A		CCR	Condition code register	0x28				
0x00 7F0B to 0x00 7F5F		Reserved area (85 bytes)						
0x00 7F60	CPU	CFG_GCR	Global configuration register	0x00				
0x00 7F70	ITC_SPR1		ITC_SPR1 Interrupt software priority register 1					
0x00 7F71		ITC_SPR2	Interrupt software priority register 2	0xFF				
0x00 7F72		ITC_SPR3	Interrupt software priority register 3	0xFF				
0x00 7F73	ITC	ITC_SPR4	Interrupt software priority register 4	0xFF				
0x00 7F74	ne	ITC_SPR5	Interrupt software priority register 5	0xFF				
0x00 7F75		ITC_SPR6	Interrupt software priority register 6	0xFF				
0x00 7F76		ITC_SPR7	Interrupt software priority register 7	0xFF				
0x00 7F77		ITC_SPR8	Interrupt software priority register 8	0xFF				
0x00 7F78 to 0x00 7F79			Reserved area (2 bytes)					
0x00 7F80	SWIM	SWIM_CSR	SWIM control status register	0x00				
0x00 7F81 to 0x00 7F8F			Reserved area (15 bytes)					
0x00 7F90		DM_BK1RE	DM breakpoint 1 register extended byte	0xFF				
0x00 7F91		DM_BK1RH	DM breakpoint 1 register high byte	0xFF				
0x00 7F92		DM_BK1RL	DM breakpoint 1 register low byte	0xFF				
0x00 7F93		DM_BK2RE	DM breakpoint 2 register extended byte	0xFF				
0x00 7F94		DM_BK2RH	DM breakpoint 2 register high byte	0xFF				
0x00 7F95		DM_BK2RL	DM breakpoint 2 register low byte	0xFF				
0x00 7F96		DM_CR1	DM debug module control register 1	0x00				
0x00 7F97		DM_CR2	DM debug module control register 2	0x00				

Table 10. CPU/SWIM/debug module/interrupt controller registers

Option byte no.	Description
	LSI_EN: Low speed internal clock enable 0: LSI clock is not available as CPU clock source 1: LSI clock is available as CPU clock source
	IWDG_HW: Independent watchdog 0: IWDG Independent watchdog activated by software 1: IWDG Independent watchdog activated by hardware
OP13	WWDG_HW: Window watchdog activation0: WWDG window watchdog activated by software1: WWDG window watchdog activated by hardware
	WWDG_HALT: Window watchdog reset on halt 0: No reset generated on halt if WWDG active 1: Reset generated on halt if WWDG active
	EXTCLK: External clock selection 0: External crystal connected to OSCIN/OSCOUT 1: External clock signal on OSCIN
OPT4	CKAWUSEL: Auto wakeup unit/clock 0: LSI clock source selected for AWU 1: HSE clock with prescaler selected as clock source for AWU
	PRSC[1:0] AWU clock prescaler 00: 24 MHz to 128 kHz prescaler 01: 16 MHz to 128 kHz prescaler 10: 8 MHz to 128 kHz prescaler 11: 4 MHz to 128 kHz prescaler
OPT5	HSECNT[7:0]: HSE crystal oscillator stabilization time This configures the stabilization time. 0x00: 2048 HSE cycles 0xB4: 128 HSE cycles 0xD2: 8 HSE cycles 0xE1: 0.5 HSE cycles
OPT6	Reserved
OPT7	 WAITSTATE Wait state configuration This option configures the number of wait states inserted when reading from the Flash/data EEPROM memory. 1 wait state is required if f_{CPU} > 16 MHz. 0: No wait state 1: 1 wait state

Table 13. O	ption byte	description ((continued)

9 Unique ID

The devices feature a 96-bit unique device identifier which provides a reference number that is unique for any device and in any context. The 96 bits of the identifier can never be altered by the user.

The unique device identifier can be read in single bytes and may then be concatenated using a custom algorithm.

The unique device identifier is ideally suited:

- For use as serial numbers
- For use as security keys to increase the code security in the program memory while using and combining this unique ID with software cryptographic primitives and protocols before programming the internal memory.
- To activate secure boot processes

Address	Content	Unique ID bits											
Address	description	7	6	5	4	3	2	1	0				
0x48CD	X co-ordinate on the	U_ID[7:0]											
0x48CE	wafer	U_ID[15:8]											
0x48CF	Y co-ordinate on the				U_I	D[23:16]							
0x48D0	wafer	U_ID[31:24]											
0x48D1	Wafer number	U_ID[39:32]											
0x48D2					U_I	D[47:40]							
0x48D3		U_ID[55:48]											
0x48D4					U_I	D[63:56]							
0x48D5	Lot number				U_I	D[71:64]							
0x48D6		U_ID[79:72]											
0x48D7					U_I	D[87:80]							
0x48D8		U_ID[95:88]											

Table 14. Unique ID registers (96 bits)

10 Electrical characteristics

10.1 Parameter conditions

Unless otherwise specified, all voltages are referred to V_{SS}.

10.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_{Amax}$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3 \Sigma$).

10.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 5$ V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2 \Sigma$).

10.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

10.1.4 Typical current consumption

For typical current consumption measurements, V_{DD} , V_{DDIO} and V_{DDA} are connected together in the configuration shown in *Figure 9*.

10.3.4 Internal clock sources and timing characteristics

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.~f_{\text{HSE}}$

High speed internal RC oscillator (HSI)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency			16		MHz
	Accuracy of HSI oscillator	Trimmed by the CLK_HSITRIMR register for given V_{DD} and T_A conditions	-1.0 ⁽¹⁾		1.0	
		V _{DD} = 5 V, T _A = 25 °C	-1.5		1.5	
ACC _{HSI}	Accuracy of HSI assillator		-2.2		2.2	%
	(factory calibrated)	$\begin{array}{l} 2.95 \text{ V} \leq \text{ V}_{DD} \leq \text{ 5.5 V}, \\ -40 \text{ °C} \leq \text{ T}_A \leq \text{ 125 °C} \end{array}$	-3.0 ⁽²⁾		3.0 ⁽²⁾	
t _{su(HSI)}	HSI oscillator wakeup time including calibration				1.0 ⁽¹⁾	μs
I _{DD(HSI)}	HSI oscillator power consumption			170	250 ⁽²⁾	μA

Table 33. HSI oscillator characteristics

1. Guaranteed by design, not tested in production.

2. Data based on characterization results, not tested in production

Figure 18. Typical HSI frequency variation vs V_{DD} at 4 temperatures

10.3.5 Memory characteristics

RAM and hardware registers

Table	35.	RAM	and	hardware	registers
Table	55.		and	narawarc	registers

Symbol	Parameter	Conditions	Min	Unit
V _{RM}	Data retention mode ⁽¹⁾	Halt mode (or reset)	V _{IT-max} ⁽²⁾	V

1. Minimum supply voltage without losing data stored in RAM (in halt mode or under reset) or in hardware registers (only in halt mode). Guaranteed by design, not tested in production.

2. Refer to Table 19 on page 57 for the value of V_{IT-max} .

Flash program memory/data EEPROM memory

General conditions: $T_A = -40$ to 125 °C.

Table 36. Flash	program	memory/data	EEPROM	memory
-----------------	---------	-------------	--------	--------

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max	Unit
V _{DD}	Operating voltage (all modes, execution/write/erase)	$f_{CPU} \le 24 \text{ MHz}$	2.95		5.5	V
t _{prog}	Standard programming time (including erase) for byte/word/block (1 byte/4 bytes/128 bytes)			6	6.6	ms
	Fast programming time for 1 block (128 bytes)			3	3.3	ms
t _{erase}	Erase time for 1 block (128 bytes)			3	3.3	ms
N _{RW}	Erase/write cycles ⁽²⁾ (program memory)	T _A = 85 °C	10 k			cycles
	Erase/write cycles (data memory) ⁽²⁾	T _A = 125 ° C	300 k	1M		
t _{RET}	Data retention (program memory) after 10 k erase/write cycles at $T_A = 85 \text{ °C}$	T _{RET} = 55° C	20			
	Data retention (data memory) after 10 k erase/write cycles at $T_A = 85$ °C	T _{RET} = 55° C	20			years
	Data retention (data memory) after 300k erase/write cycles at $T_A = 125 \text{ °C}$	T _{RET} = 85° C	1			
I _{DD}	Supply current (Flash programming or erasing for 1 to 128 bytes)			2		mA

1. Data based on characterization results, not tested in production.

2. The physical granularity of the memory is 4 bytes, so cycling is performed on 4 bytes even when a write/erase operation addresses a single byte.

Figure 34. Typical NRST pull-up resistance vs V_{DD} @ 4 temperatures

Figure 35. Typical NRST pull-up current vs V_{DD} @ 4 temperatures

The reset network shown in *Figure 36* protects the device against parasitic resets. The user must ensure that the level on the NRST pin can go below the V_{IL} max. level specified in *Table 41*. Otherwise the reset is not taken into account internally. For power consumption sensitive applications, the capacity of the external reset capacitor can be reduced to limit charge/discharge current. If the NRSTsignal is used to reset the external circuitry, care must be taken of the charge/discharge time of the external capacitor to fulfill the external device's reset timing conditions. The minimum recommended capacity is 10 nF.

Electromagnetic interference (EMI)

Emission tests conform to the SAE IEC 61967-2 standard for test software, board layout and pin loading.

Symbol		Conditions						
	Parameter	General conditions	Monitorod	Max f _{HSE} /f _{CPU} ⁽¹⁾			Unit	
			frequency band	8 MHz/ 8 MHz	8 MHz/ 16 MHz	8 MHz/ 24 MHz		
S _{EMI}		V _{DD} = 5 V T _A = 25 °C	0.1MHz to 30 MHz	15	20	24		
	Peak level		30 MHz to 130 MHz	18	21	16	dBµV	
		LQFP80 package	130 MHz to 1 GHz	-1	1	4		
	SAE EMI level	61967-2	SAE EMI level	2	2.5	2.5		

Table 48.	EMI data	
-----------	----------	--

1. Data based on characterization results, not tested in production.

Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

Electrostatic discharge (ESD)

Electrostatic discharges (3 positive then 3 negative pulses separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test conforms to the JESD22-A114A/A115A standard. For more details, refer to the application note AN1181.

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (Human body model)	$T_A = 25^{\circ}C$, conforming to JESD22-A114	А	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (Charge device model)	T _A = 25°C, conforming to JESD22-C101	IV	1000	V

Table 49. ESD absolute maximum ratings

1. Data based on characterization results, not tested in production.

Device marking

The following figure shows the marking for the LQFP80 package.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Symbol	mm			inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Max	
D	-	12.000	-	-	0.4724	-	
D1	-	10.000	-	-	0.3937	-	
D3	-	7.500	-	-	0.2953	-	
E	-	12.000	-	-	0.4724	-	
E1	-	10.000	-	-	0.3937	-	
E3	-	7.500	-	-	0.2953	-	
е	-	0.500	-	-	0.0197	-	
θ	0°	3.5°	7°	0°	3.5°	7°	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
CCC	-	-	0.080	-	-	0.0031	

Table 53. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanicaldata (continued)

1. Values in inches are converted from mm and rounded to four decimal places.

Figure 48. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint

DocID14733 Rev 13

Device marking

The following figure shows the marking for the LQFP48 package.

Figure 52. LQFP48 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Figure 54. LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat recommended footprint

1. Dimensions are expressed in millimeters.

Device marking

The following figure shows the marking for the LQFP44 package.

Figure 55. LQFP44 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

DocID14733 Rev 13

11.1.5 LQFP32 package information

Figure 56. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline

DocID14733 Rev 13

11.2.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the order code (see *Figure 59: STM8S207xx/208xx performance line ordering information scheme(1) on page 112*).

The following example shows how to calculate the temperature range needed for a given application.

Assuming the following application conditions:

- Maximum ambient temperature T_{Amax}= 82 °C (measured according to JESD51-2)
- $I_{DDmax} = 15 \text{ mA}, V_{DD} = 5.5 \text{ V}$
- Maximum eight standard I/Os used at the same time in output at low level with I_{OL} = 10 mA, V_{OL} = 2 V
- Maximum four high sink I/Os used at the same time in output at low level with $\rm I_{OL}$ = 20 mA, $\rm V_{OL}$ = 1.5 V
- Maximum two true open drain I/Os used at the same time in output at low level with I_{OL} = 20 mA, V_{OL} = 2 V

P_{INTmax =} 15 mA x 5.5 V = 82.5 mW

 $P_{IOmax} = (10 \text{ mA x } 2 \text{ V x } 8) + (20 \text{ mA x } 2 \text{ V x } 2) + (20 \text{ mA x } 1.5 \text{ V x } 4) = 360 \text{ mW}$ This gives: $P_{INTmax} = 82.5 \text{ mW}$ and $P_{IOmax} 360 \text{ mW}$:

 $P_{Dmax} = 82.5 \text{ mW} + 360 \text{ mW}$

Thus: P_{Dmax} = 443 mW

Using the values obtained in *Table 57: Thermal characteristics on page 108* T_{Jmax} is calculated as follows for LQFP64 10 x 10 mm = 46 °C/W:

T_{Jmax} = 82 °C + (46 °C/W x 443 mW) = 82 °C + 20 °C = 102 °C

This is within the range of the suffix 6 version parts (-40 < T_J < 105 °C).

In this case, parts must be ordered at least with the temperature range suffix 6.

