

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	24MHz
Connectivity	I²C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	68
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	2.95V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8s207m8t6btr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1	Intro	duction	9
2	Desc	ription	D
3	Bloc	k diagram	2
4	Prod	uct overview	3
	4.1	Central processing unit STM8 13	3
	4.2	Single wire interface module (SWIM) and debug module (DM) 14	4
	4.3	Interrupt controller	4
	4.4	Flash program and data EEPROM memory 14	4
	4.5	Clock controller	6
	4.6	Power management 1	7
	4.7	Watchdog timers	7
	4.8	Auto wakeup counter	8
	4.9	Beeper	8
	4.10	TIM1 - 16-bit advanced control timer 18	8
	4.11	TIM2, TIM3 - 16-bit general purpose timers	8
	4.12	TIM4 - 8-bit basic timer 1	9
	4.13	Analog-to-digital converter (ADC2)	9
	4.14	Communication interfaces	9
		4.14.1 UART1	0
		4.14.2 UART3	0
		4.14.3 SPI	1
		4.14.4 l ² C	2
		4.14.5 beCAN	2
5	Pino	uts and pin description 23	3
	5.1	Package pinouts	3
	5.2	Alternate function remapping 3	2
6	Mem	ory and register map 34	4
	6.1	Memory map	4
2/117		DocID14733 Rev 13	

List of figures

Figure 1.	STM8S20xxx block diagram	. 12
Figure 2.	Flash memory organization	. 15
Figure 3.	LQFP 80-pin pinout.	. 23
Figure 4.	LQFP 64-pin pinout.	. 24
Figure 5.	LQFP 48-pin pinout.	. 25
Figure 6.	LQFP 44-pin pinout.	. 26
Figure 7.	LQFP 32-pin pinout.	. 27
Figure 8.	Memory map	. 34
Figure 9.	Supply current measurement conditions	. 52
Figure 10.	Pin loading conditions.	. 53
Figure 11.	Pin input voltage	.53
Figure 12.	for wersus Versus Von	57
Figure 13	External capacitor Crvt	57
Figure 14	Typ J_{DD} Values VS Vac. HSI BC OSC form = 16 MHz	64
Figure 15	Typ $I_{DD}(KUN)$ vs V_{DD} , HSI RC osc for $\mu = 16$ MHz	64
Figure 16	HSE external clock source	65
Figure 17	HSE oscillator circuit diagram	66
Figure 18	Typical HSI frequency variation vs V_{22} at 4 temperatures	. 00
Figure 10.	Typical I SI frequency variation vs V_{DD} at 4 temperatures	. 07
Figure 20	Typical Lot frequency variation vs $v_{DD} = 25 \circ 0 \dots \dots$. 00
Figure 20.	Typical v _{IL} and v _{IH} vs v _{DD} \ll 4 temperatures	. / 1
Figure 21.	Typical pull-up resistance vs $v_{DD} \ll 4$ temperatures	. / 1
Figure 22.	Typical pull-up current vs $v_{DD} = 4$ temperatures	. 72
Figure 23.	Typ. $v_{OL} @ v_{DD} = 5 v$ (standard ports)	. 73
Figure 24.	Typ. $v_{OL} @ v_{DD} = 3.3 v$ (standard ports).	. 73
Figure 25.	Typ. $V_{OL} @ V_{DD} = 5 V$ (true open drain ports)	. 74
Figure 26.	Typ. $V_{OL} @ V_{DD} = 3.3 V$ (true open drain ports)	. 74
Figure 27.	Typ. $V_{OL} @ V_{DD} = 5 V$ (high sink ports)	. 75
Figure 28.	Typ. $V_{OL} @ V_{DD} = 3.3 V$ (high sink ports)	. 75
Figure 29.	Typ. $V_{DD} - V_{OH} @ V_{DD} = 5 V$ (standard ports)	. 76
Figure 30.	Typ. V_{DD} - V_{OH} @ V_{DD} = 3.3 V (standard ports).	. 76
Figure 31.	Typ. V_{DD} - V_{OH} @ V_{DD} = 5 V (high sink ports)	. 77
Figure 32.	Typ. V_{DD} - V_{OH} @ V_{DD} = 3.3 V (high sink ports)	. 77
Figure 33.	Typical NRST V _{IL} and V _{IH} vs V _{DD} @ 4 temperatures	. 78
Figure 34.	Typical NRST pull-up resistance vs V _{DD} @ 4 temperatures	. 79
Figure 35.	Typical NRST pull-up current vs V _{DD} @ 4 temperatures	. 79
Figure 36.	Recommended reset pin protection	. 79
Figure 37.	SPI timing diagram - slave mode and CPHA = 0	. 81
Figure 38.	SPI timing diagram - slave mode and CPHA = 1 ⁽¹⁾	. 81
Figure 39.	SPI timing diagram - master mode ⁽¹⁾	. 82
Figure 40.	Typical application with I ² C bus and timing diagram	. 84
Figure 41.	ADC accuracy characteristics	. 87
Figure 42.	Typical application with ADC	. 87
Figure 43.	LQFP80 - 80-pin. 14 x 14 mm low-profile guad flat package outline	. 92
Figure 44.	LQFP80 recommended footprint	. 93
Figure 45	LQFP80 marking example (package top view)	. 94
Figure 46	LQFP64 - 64-pin 14 mm x 14 mm low-profile guad flat package outline	. 95
Figure 47	LQFP64 - 64-pin, 10 x 10 mm low-profile guad flat package outline	. 96
Figure 48	LQFP64 - 64-pin, 10 x 10 mm low-profile guad flat recommended footprint	. 97

Device	Pin count	Max. number of GPIOs (I/O)	Ext. interrupt pins	Timer CAPCOM channels	Timer complementary outputs	A/D converter channels	High sink I/Os	High density Flash program memory (bytes)	Data EEPROM (bytes	RAM (bytes)	beCAN interface
STM8S207MB	80	68	37	9	3	16	18	128 K	2048	6 K	
STM8S207M8	80	68	37	9	3	16	18	64 K	2048	6 K	
STM8S207RB	64	52	36	9	3	16	16	128 K	2048	6 K	
STM8S207R8	64	52	36	9	3	16	16	64 K	1536	6 K	
STM8S207R6	64	52	36	9	3	16	16	32 K	1024	6 K	
STM8S207CB	48	38	35	9	3	10	16	128 K	2048	6 K	
STM8S207C8	48	38	35	9	3	10	16	64 K	1536	6 K	No
STM8S207C6	48	38	35	9	3	10	16	32 K	1024	6 K	
STM8S207SB	44	34	31	8	3	9	15	128 K	1536	6 K	
STM8S207S8	44	34	31	8	3	9	15	64 K	1536	6 K	
STM8S207S6	44	34	31	8	3	9	15	32 K	1024	6 K	
STM8S207K8	32	25	23	8	3	7	12	64 K	1024	6 K	
STM8S207K6	32	25	23	8	3	7	12	32 K	1024	6 K	
STM8S208MB	80	68	37	9	3	16	18	128 K	2048	6 K	
STM8S208RB	64	52	37	9	3	16	16	128 K	2048	6 K	
STM8S208R8	64	52	37	9	3	16	16	64 K	2048	6 K	
STM8S208R6	64	52	37	9	3	16	16	32 K	2048	6 K	
STM8S208CB	48	38	35	9	3	10	16	128 K	2048	6 K	Vac
STM8S208C8	48	38	35	9	3	10	16	64 K	2048	6 K	103
STM8S208C6	48	38	35	9	3	10	16	32 K	2048	6 K	
STM8S208SB	44	34	31	8	3	9	15	128 K	1536	6 K	
STM8S208S8	44	34	31	8	3	9	15	64 K	1536	6 K	
STM8S208S6	44	34	31	8	3	9	15	32 K	1536	6 K	

Table 2. STM8S20xxx performance line features

4.6 **Power management**

For efficient power management, the application can be put in one of four different lowpower modes. You can configure each mode to obtain the best compromise between lowest power consumption, fastest start-up time and available wakeup sources.

- *Wait mode*: In this mode, the CPU is stopped, but peripherals are kept running. The wakeup is performed by an internal or external interrupt or reset.
- Active halt mode with regulator on: In this mode, the CPU and peripheral clocks are stopped. An internal wakeup is generated at programmable intervals by the auto wake up unit (AWU). The main voltage regulator is kept powered on, so current consumption is higher than in active halt mode with regulator off, but the wakeup time is faster. Wakeup is triggered by the internal AWU interrupt, external interrupt or reset.
- Active halt mode with regulator off: This mode is the same as active halt with regulator on, except that the main voltage regulator is powered off, so the wake up time is slower.
- *Halt mode*: In this mode the microcontroller uses the least power. The CPU and peripheral clocks are stopped, the main voltage regulator is powered off. Wakeup is triggered by external event or reset.

4.7 Watchdog timers

The watchdog system is based on two independent timers providing maximum security to the applications.

Activation of the watchdog timers is controlled by option bytes or by software. Once activated, the watchdogs cannot be disabled by the user program without performing a reset.

Window watchdog timer

The window watchdog is used to detect the occurrence of a software fault, usually generated by external interferences or by unexpected logical conditions, which cause the application program to abandon its normal sequence.

The window function can be used to trim the watchdog behavior to match the application perfectly.

The application software must refresh the counter before time-out and during a limited time window.

A reset is generated in two situations:

- 1. Timeout: At 16 MHz CPU clock the time-out period can be adjusted between 75 μ s up to 64 ms.
- 2. Refresh out of window: The downcounter is refreshed before its value is lower than the one stored in the window register.

Asynchronous communication (UART mode)

- Full duplex communication NRZ standard format (mark/space)
- Programmable transmit and receive baud rates up to 1 Mbit/s (f_{CPU}/16) and capable of following any standard baud rate regardless of the input frequency
- Separate enable bits for transmitter and receiver
 - Two receiver wakeup modes:
 - Address bit (MSB)
 - Idle line (interrupt)
- Transmission error detection with interrupt generation
- Parity control

LIN master capability

- Emission: Generates 13-bit sync break frame
- Reception: Detects 11-bit break frame

LIN slave mode

- Autonomous header handling one single interrupt per valid message header
- Automatic baud rate synchronization maximum tolerated initial clock deviation ±15%
- Sync delimiter checking
- 11-bit LIN sync break detection break detection always active
- Parity check on the LIN identifier field
- LIN error management
- Hot plugging support

4.14.3 SPI

- Maximum speed: 10 Mbit/s (f_{MASTER}/2) both for master and slave
- Full duplex synchronous transfers
- Simplex synchronous transfers on two lines with a possible bidirectional data line
- Master or slave operation selectable by hardware or software
- CRC calculation
- 1 byte Tx and Rx buffer
- Slave/master selection input pin

	Pin	num	ıber					Inpu	t		Out	put				
LQFP80	LQFP64	LQFP48	LQFP44	LQFP32	Pin name	Type	floating	ndw	Ext. interrupt	High sink	Speed	QO	dd	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
69	55	39	35	-	PE1/I ² C_SCL	I/O	<u>X</u>		Х		01	T ⁽³⁾		Port E1	I ² C clock	
70	56	40	36	-	PE0/CLK_CCO	I/O	<u>x</u>	Х	Х	НS	О3	х	х	Port E0	Configurable clock output	
71	-	-	-	-	PI6	I/O	<u>X</u>	Х			01	Х	Х	Port I6		
72	-	-	-	-	PI7	I/O	<u>X</u>	Х			01	Х	Х	Port I7		
73	57	41	37	25	PD0/TIM3_CH2	I/O	<u>x</u>	х	х	HS	О3	х	х	Port D0	Timer 3 - channel 2	TIM1_BKIN [AFR3]/ CLK_CCO [AFR2]
74	58	42	38	26	PD1/SWIM ⁽⁴⁾	I/O	х	<u>x</u>	Х	HS	04	х	х	Port D1	SWIM data interface	
75	59	43	39	27	PD2/TIM3_CH1	I/O	<u>x</u>	х	Х	HS	O3	х	х	Port D2	Timer 3 - channel 1	TIM2_CH3 [AFR1]
76	60	44	40	28	PD3/TIM2_CH2	I/O	<u>x</u>	х	Х	HS	О3	х	х	Port D3	Timer 2 - channel 2	ADC_ETR [AFR0]
77	61	45	41	29	PD4/TIM2_CH1/B EEP	I/O	<u>x</u>	х	Х	нs	О3	х	х	Port D4	Timer 2 - channel 1	BEEP output [AFR7]
78	62	46	42	30	PD5/ UART3_TX	I/O	<u>x</u>	х	х		01	х	х	Port D5	UART3 data transmit	
79	63	47	43	31	PD6/ UART3_RX ⁽¹⁾	I/O	<u>x</u>	х	х		01	х	х	Port D6	UART3 data receive	
80	64	48	44	32	PD7/TLI	I/O	<u>x</u>	х	х		01	Х	х	Port D7	Top level interrupt	TIM1_CH4 [AFR4] ⁽⁵⁾

Table 6.	Pin	descri	ption ((continued)	
		400011		ooninaoa)	

1. The default state of UART1_RX and UART3_RX pins is controlled by the ROM bootloader. These pins are pulled up as part of the bootloader activation process and returned to the floating state before a return from the bootloader.

2. The beCAN interface is available on STM8S208xx devices only

3. In the open-drain output column, 'T' defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to V_{DD} are not implemented).

4. The PD1 pin is in input pull-up during the reset phase and after the internal reset release.

5. Available in 44-pin package only. On other packages, the AFR4 bit is reserved and must be kept at 0.

5.2 Alternate function remapping

As shown in the rightmost column of the pin description table, some alternate functions can be remapped at different I/O ports by programming one of eight AFR (alternate function

Address	Block	Register label	Register name	Reset status			
0x00 532B		TIM3_ARRH	TIM3 auto-reload register high	0xFF			
0x00 532C		TIM3_ARRL	TIM3 auto-reload register low	0xFF			
0x00 532D		TIM3_CCR1H	TIM3 capture/compare register 1 high	0x00			
0x00 532E	1 111/13	TIM3_CCR1L	TIM3 capture/compare register 1 low	0x00			
0x00 532F		TIM3_CCR2H	TIM3 capture/compare register 2 high	0x00			
0x00 5330		TIM3_CCR2L	TIM3 capture/compare register 2 low	0x00			
0x00 5331 to 0x00 533F			Reserved area (15 bytes)				
0x00 5340		TIM4_CR1	TIM4 control register 1	0x00			
0x00 5341		TIM4_IER	TIM4 interrupt enable register	0x00			
0x00 5342		TIM4_SR	TIM4 status register	0x00			
0x00 5343	TIM4	TIM4_EGR	TIM4 event generation register	0x00			
0x00 5344		TIM4_CNTR	TIM4 counter	0x00			
0x00 5345	-	TIM4_PSCR TIM4 prescaler register					
0x00 5346		TIM4_ARR	TIM4 auto-reload register	0xFF			
0x00 5347 to 0x00 53FF		Reserved area (185 bytes)					
0x00 5400		ADC _CSR	ADC control/status register	0x00			
0x00 5401		ADC_CR1	ADC configuration register 1	0x00			
0x00 5402		ADC_CR2	ADC configuration register 2	0x00			
0x00 5403		ADC_CR3	ADC configuration register 3	0x00			
0x00 5404	ADOZ	ADC_DRH	ADC data register high	0xXX			
0x00 5405		ADC_DRL	ADC data register low	0xXX			
0x00 5406		ADC_TDRH	ADC Schmitt trigger disable register high	0x00			
0x00 5407		ADC_TDRL	ADC Schmitt trigger disable register low	0x00			
0x00 5408 to 0x00 541F		I	Reserved area (24 bytes)				
0x00 5420		CAN_MCR	CAN master control register	0x02			
0x00 5421		CAN_MSR	CAN master status register	0x02			
0x00 5422	-	CAN_TSR	CAN transmit status register	0x00			
0x00 5423	boCAN	CAN_TPR	CAN transmit priority register	0x0C			
0x00 5424	DECAN	CAN_RFR	CAN receive FIFO register	0x00			
0x00 5425		CAN_IER	CAN interrupt enable register	0x00			
0x00 5426		CAN_DGR	CAN diagnosis register	0x0C			
0x00 5427		CAN_FPSR	CAN page selection register	0x00			

Table 0	Conorol	hardwara	register	mon	(continued)	
Table 9.	General	naruware	register	map	(continued)	,

10.3.2 Supply current characteristics

The current consumption is measured as described in *Figure 9 on page 52*.

Total current consumption in run mode

The MCU is placed under the following conditions:

- All I/O pins in input mode with a static value at $V_{DD} \, \text{or} \, V_{SS}$ (no load)
- All peripherals are disabled (clock stopped by Peripheral Clock Gating registers) except if explicitly mentioned.
- When the MCU is clocked at 24 MHz, $T_A \le 105$ °C and the WAITSTATE option bit is set.

Subject to general operating conditions for V_{DD} and T_A .

Symbol	Parameter	Condit	Тур	Max	Unit	
		f _{CPU} = f _{MASTER} = 24 MHz,	HSE crystal osc. (24 MHz)	4.4		
		$T_A \leq 105 \ ^{\circ}C$	HSE user ext. clock (24 MHz)	3.7	7.3 ⁽¹⁾	
			HSE crystal osc. (16 MHz)	3.3		
	Supply current in	f _{CPU} = f _{MASTER} = 16 MHz	HSE user ext. clock (16 MHz)	2.7	5.8	
	run mode,		HSI RC osc. (16 MHz)	2.5	3.4	
	code executed	f _ f /129 _ 125 kHz	HSE user ext. clock (16 MHz)	1.2	4.1 ⁽¹⁾	
	from RAM	$1_{CPU} = 1_{MASTER}/120 = 123$ KHz	HSI RC osc. (16 MHz)	1.0	1.3 ⁽¹⁾	
		f _{CPU} = f _{MASTER} /128 = 15.625 kHz	HSI RC osc. (16 MHz/8)	0.55		
1		f _{CPU} = f _{MASTER} = 128 kHz	LSI RC osc. (128 kHz)	0.45		m۸
I _{DD(RUN)}		f _{CPU} = f _{MASTER} = 24 MHz,	HSE crystal osc. (24 MHz)	11.4		ШA
		$T_A \leq 105 \ ^{\circ}C$	HSE user ext. clock (24 MHz)	10.8	18 ⁽¹⁾	
			HSE crystal osc. (16 MHz)	9.0		
	Supply current in	f _{CPU} = f _{MASTER} = 16 MHz	HSE user ext. clock (16 MHz)	8.2	15.2 ⁽¹⁾	
	run mode,		HSI RC osc.(16 MHz)	8.1	13.2 ⁽¹⁾	
	code executed	f _{CPU} = f _{MASTER} = 2 MHz.	HSI RC osc. (16 MHz/8) ⁽²⁾	1.5		
	from Flash	f _{CPU} = f _{MASTER} /128 = 125 kHz	HSI RC osc. (16 MHz)	1.1		
		f _{CPU} = f _{MASTER} /128 = 15.625 kHz	HSI RC osc. (16 MHz/8)	0.6		
		f _{CPU} = f _{MASTER} = 128 kHz	LSI RC osc. (128 kHz)	0.55		

Table 20. Total current consumption with code execution in run mode at V_{DD} = 5 V

1. Data based on characterization results, not tested in production.

2. Default clock configuration measured with all peripherals off.

Total current consumption and timing in forced reset state

Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit	
I _{DD(R)}	Supply current in reset state	$V_{DD} = 5 V$	1.6		~^	
	Supply current in reset state	V _{DD} = 3.3 V	0.8			
t _{RESETBL}	Reset release to bootloader vector fetch			150	μs	

Table 29. Total current consumption and timing in forced reset state

1. Data guaranteed by design, not tested in production.

Current consumption of on-chip peripherals

Subject to general operating conditions for V_{DD} and T_A .

HSI internal RC/ $f_{CPU} = f_{MASTER} = 16$ MHz.

Table 30. Peripheral current consumption

Symbol	Parameter	Тур.	Unit	
I _{DD(TIM1)}	TIM1 supply current ⁽¹⁾	220		
I _{DD(TIM2)}	TIM2 supply current ⁽¹⁾	120		
I _{DD(TIM3)}	TIM3 timer supply current ⁽¹⁾	100		
I _{DD(TIM4)}	TIM4 timer supply current ⁽¹⁾	25		
I _{DD(UART1)}	DD(UART1) UART1 supply current ⁽²⁾		ıιΔ	
I _{DD(UART3)}	UART3 supply current ⁽²⁾	110	μΑ	
I _{DD(SPI)}	SPI supply current ⁽²⁾	40		
I _{DD(I} ² C)	I ² C supply current ⁽²⁾	50		
I _{DD(CAN)}	beCAN supply current ⁽²⁾	210		
I _{DD(ADC2)}	ADC2 supply current when converting ⁽³⁾	1000		

1. Data based on a differential I_{DD} measurement between reset configuration and timer counter running at 16 MHz. No IC/OC programmed (no I/O pads toggling). Not tested in production.

 Data based on a differential I_{DD} measurement between the on-chip peripheral when kept under reset and not clocked and the on-chip peripheral when clocked and not kept under reset. No I/O pads toggling. Not tested in production.

Data based on a differential I_{DD} measurement between reset configuration and continuous A/D conversions. Not tested in production.

Current consumption curves

Figure 14 and *Figure 15* show typical current consumption measured with code executing in RAM.

Figure 14. Typ. I_{DD(RUN)} vs V_{DD}, HSI RC osc, f_{CPU} = 16 MHz

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{HSE}	External high speed oscillator frequency		1		24	MHz
R _F	Feedback resistor			220		kΩ
C ⁽¹⁾	Recommended load capacitance (2)				20	pF
		C = 20 pF, f _{OSC} = 24 MHz			6 (startup) 2 (stabilized) ⁽³⁾	m۸
'DD(HSE)		C = 10 pF, f _{OSC} = 24 MHz			6 (startup) 1.5 (stabilized) ⁽³⁾	IIIA
9 _m	Oscillator transconductance		5			mA/V
t _{SU(HSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized		1		ms

Table 32. HS	E oscillator	characteristics
--------------	--------------	-----------------

1. C is approximately equivalent to 2 x crystal Cload.

2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small R_m value. Refer to crystal manufacturer for more details

3. Data based on characterization results, not tested in production.

 t_{SU(HSE)} is the start-up time measured from the moment it is enabled (by software) to a stabilized 24 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

Figure 17. HSE oscillator circuit diagram

HSE oscillator critical g_m formula

 $g_{mcrit} = (2 \times \Pi \times f_{HSE})^2 \times R_m (2Co + C)^2$

 $\begin{array}{l} {\sf R}_m: \mbox{ Notional resistance (see crystal specification)} \\ {\sf L}_m: \mbox{ Notional inductance (see crystal specification)} \\ {\sf C}_m: \mbox{ Notional capacitance (see crystal specification)} \\ {\sf Co: Shunt capacitance (see crystal specification)} \\ {\sf C}_{L1} = {\sf C}_{L2} = {\sf C}: \mbox{ Grounded external capacitance } \\ {\sf g}_m >> {\sf g}_{mcrit} \end{array}$

DocID14733 Rev 13

Low speed internal RC oscillator (LSI)

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{LSI}	Frequency		110	128	146	kHz
t _{su(LSI)}	LSI oscillator wakeup time				7 ⁽¹⁾	μs
I _{DD(LSI)}	LSI oscillator power consumption			5		μA

1. Guaranteed by design, not tested in production.

Figure 19. Typical LSI frequency variation vs V_{DD} @ 25 °C

10.3.5 Memory characteristics

RAM and hardware registers

Table	35.	RAM	and	hardware	registers
Table	55.		and	narawarc	registers

Symbol	Parameter	Conditions	Min	Unit
V _{RM}	Data retention mode ⁽¹⁾	Halt mode (or reset)	V _{IT-max} ⁽²⁾	V

1. Minimum supply voltage without losing data stored in RAM (in halt mode or under reset) or in hardware registers (only in halt mode). Guaranteed by design, not tested in production.

2. Refer to Table 19 on page 57 for the value of V_{IT-max} .

Flash program memory/data EEPROM memory

General conditions: $T_A = -40$ to 125 °C.

Table 36. Flash	program	memory/data	EEPROM	memory
-----------------	---------	-------------	--------	--------

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max	Unit
V _{DD}	Operating voltage (all modes, execution/write/erase)	$f_{CPU} \le 24 \text{ MHz}$	2.95		5.5	V
t _{prog}	Standard programming time (including erase) for byte/word/block (1 byte/4 bytes/128 bytes)			6	6.6	ms
prog	Fast programming time for 1 block (128 bytes)			3	3.3	ms
t _{erase}	Erase time for 1 block (128 bytes)			3	3.3	ms
N _{RW}	Erase/write cycles ⁽²⁾ (program memory)	T _A = 85 °C	10 k			cycles
	Erase/write cycles (data memory) ⁽²⁾	T _A = 125 ° C	300 k	1M		
	Data retention (program memory) after 10 k erase/write cycles at $T_A = 85 \text{ °C}$	T _{RET} = 55° C	20			
t _{RET}	Data retention (data memory) after 10 k erase/write cycles at $T_A = 85$ °C	T _{RET} = 55° C	20			years
	Data retention (data memory) after 300k erase/write cycles at $T_A = 125 \text{ °C}$	T _{RET} = 85° C	1			
I _{DD}	Supply current (Flash programming or erasing for 1 to 128 bytes)			2		mA

1. Data based on characterization results, not tested in production.

2. The physical granularity of the memory is 4 bytes, so cycling is performed on 4 bytes even when a write/erase operation addresses a single byte.

Figure 34. Typical NRST pull-up resistance vs V_{DD} @ 4 temperatures

Figure 35. Typical NRST pull-up current vs V_{DD} @ 4 temperatures

The reset network shown in *Figure 36* protects the device against parasitic resets. The user must ensure that the level on the NRST pin can go below the V_{IL} max. level specified in *Table 41*. Otherwise the reset is not taken into account internally. For power consumption sensitive applications, the capacity of the external reset capacitor can be reduced to limit charge/discharge current. If the NRSTsignal is used to reset the external circuitry, care must be taken of the charge/discharge time of the external capacitor to fulfill the external device's reset timing conditions. The minimum recommended capacity is 10 nF.

10.3.10 10-bit ADC characteristics

Subject to general operating conditions for $V_{\text{DDA}},\,f_{\text{MASTER}},$ and T_{A} unless otherwise specified.

Symbol	Parameter	Conditions	Min	Min Typ		Unit	
f	ADC clock frequency	V _{DDA} = 3 to 5.5 V	1		4		
'ADC	ADC clock nequency	V _{DDA} = 4.5 to 5.5 V	1		6		
V _{DDA}	Analog supply		3		5.5	V	
V _{REF+}	Positive reference voltage		2.75 ⁽¹⁾		V _{DDA}	V	
V _{REF-}	Negative reference voltage		V _{SSA}		0.5 ⁽¹⁾	V	
V _{AIN}			V _{SSA}		V_{DDA}	V	
	Conversion voltage range ⁽²⁾	Devices with external V _{REF+} /V _{REF-} pins	V _{REF-}	V _{REF-}	V_{REF+}	V	
C _{ADC}	Internal sample and hold capacitor			3		pF	
+ (2)	Sampling time	f _{ADC} = 4 MHz	0.75				
'S	Sampling time	f _{ADC} = 6 MHz		0.5	0.5		
t _{STAB}	Wakeup time from standby			7		μs	
		$f_{ADC} = 4 \text{ MHz}$		3.5		μs	
t _{CONV}	Iotal conversion time (including sampling time, 10-bit resolution)	$f_{ADC} = 6 \text{ MHz}$		2.33		μs	
				14		1/f _{ADC}	

Table 44.	ADC	characteristics
-----------	-----	-----------------

1. Data guaranteed by design, not tested in production.

2. During the sample time the input capacitance C_{AIN} (3 pF max) can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_S. After the end of the sample time t_S, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_S depend on programming.

Table 52. LQFP64 - 64-pin, 14 x 14 mm low-profile quad flat package mechanical
data (continued)

Symbol		mm		inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
k	0.0 °	3.5 °	7.0 °	0.0 °	3.5 °	7.0 °
CCC			0.100			0.0039

1. Values in inches are converted from mm and rounded to four decimal places.

Figure 47. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline

Table 53. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data

Symbol		mm			inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Max		
А	-	-	1.600	-	-	0.0630		
A1	0.050	-	0.150	0.0020	-	0.0059		
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571		
b	0.170	0.220	0.270	0.0067	0.0087	0.0106		
С	0.090	-	0.200	0.0035	-	0.0079		

11.1.4 LQFP44 package information

Figure 53. LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat package outline

11.1.5 LQFP32 package information

Figure 56. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline

DocID14733 Rev 13

11.2 Thermal characteristics

The maximum chip junction temperature (T_{Jmax}) must never exceed the values given in *Table 18: General operating conditions on page 56.*

The maximum chip-junction temperature, T_{Jmax} , in degrees Celsius, may be calculated using the following equation:

 $T_{Jmax} = T_{Amax} + (P_{Dmax} \times \Theta_{JA})$

Where:

- T_{Amax} is the maximum ambient temperature in °C
- Θ_{JA} is the package junction-to-ambient thermal resistance in ° C/W
- P_{Dmax} is the sum of P_{INTmax} and P_{I/Omax} (P_{Dmax} = P_{INTmax} + P_{I/Omax})
- P_{INTmax} is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.
- $P_{I/Omax}$ represents the maximum power dissipation on output pins, where: $P_{I/Omax} = \Sigma (V_{OL}*I_{OL}) + \Sigma ((V_{DD}-V_{OH})*I_{OH})$, and taking account of the actual V_{OL}/I_{OL} and V_{OH}/I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
Θ_{JA}	Thermal resistance junction-ambient LQFP 80 - 14 x 14 mm	38	°C/W
Θ_{JA}	Thermal resistance junction-ambient LQFP 64 - 14 x 14 mm	45	°C/W
Θ_{JA}	Thermal resistance junction-ambient LQFP 64 - 10 x 10 mm	46	°C/W
Θ_{JA}	Thermal resistance junction-ambient LQFP 48 - 7 x 7 mm	57	°C/W
Θ_{JA}	Thermal resistance junction-ambient LQFP 44 - 10 x 10 mm	54	°C/W
Θ_{JA}	Thermal resistance junction-ambient LQFP 32 - 7 x 7 mm	60	°C/W

Table 57. Thermal characteristics	Table 57.	Thermal	characteristics ⁽¹)
-----------------------------------	-----------	---------	-------------------------------	---

1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection environment.

11.2.1 Reference document

JESD51-2 integrated circuits thermal test method environment conditions - natural convection (still air). Available from www.jedec.org.

12.2 Software tools

STM8 development tools are supported by a complete, free software package from STMicroelectronics that includes ST Visual Develop (STVD) IDE and the ST Visual Programmer (STVP) software interface. STVD provides seamless integration of the Cosmic and Raisonance C compilers for STM8. A free version that outputs up to 32 Kbytes of code is available.

12.2.1 STM8 toolset

STM8 toolset with STVD integrated development environment and STVP programming software is available for free download at <u>www.st.com/mcu</u>. This package includes:

ST Visual Develop - Full-featured integrated development environment from ST, featuring

- Seamless integration of C and ASM toolsets
- Full-featured debugger
- Project management
- Syntax highlighting editor
- Integrated programming interface
- Support of advanced emulation features for STice such as code profiling and coverage

ST Visual Programmer (STVP) – Easy-to-use, unlimited graphical interface allowing read, write and verification of the STM8 microcontroller Flash program memory, data EEPROM and option bytes. STVP also offers project mode for saving programming configurations and automating programming sequences.

12.2.2 C and assembly toolchains

Control of C and assembly toolchains is seamlessly integrated into the STVD integrated development environment, making it possible to configure and control the building of the application directly from an easy-to-use graphical interface.

Available toolchains include:

- Cosmic C compiler for STM8 One free version that outputs up to 32 Kbytes of code is available. For more information, see www.cosmic-software.com.
- Raisonance C compiler for STM8 One free version that outputs up to 32 Kbytes of code. For more information, see www.raisonance.com.
- **STM8 assembler linker** Free assembly toolchain included in the STVD toolset, which allows you to assemble and link the application source code.

12.3 Programming tools

During the development cycle, STice provides in-circuit programming of the STM8 Flash microcontroller on the application board via the SWIM protocol. Additional tools are to include a low-cost in-circuit programmer as well as ST socket boards, which provide dedicated programming platforms with sockets for programming the STM8.

For production environments, programmers will include a complete range of gang and automated programming solutions from third-party tool developers already supplying programmers for the STM8 family.

