E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	52
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	1.5K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	2.95V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	•
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8s207r8t3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of figures

Figure 1.	STM8S20xxx block diagram	. 12
Figure 2.	Flash memory organization	. 15
Figure 3.	LQFP 80-pin pinout.	. 23
Figure 4.	LQFP 64-pin pinout.	. 24
Figure 5.	LQFP 48-pin pinout.	. 25
Figure 6.	LQFP 44-pin pinout.	. 26
Figure 7.	LQFP 32-pin pinout.	. 27
Figure 8.	Memory map	. 34
Figure 9.	Supply current measurement conditions	. 52
Figure 10.	Pin loading conditions.	. 53
Figure 11.	Pin input voltage	.53
Figure 12.	for wersus Versus Von	57
Figure 13	External capacitor Crvt	57
Figure 14	Typ J_{DD} Values VS Vac. HSI BC OSC form = 16 MHz	64
Figure 15	Typ $I_{DD}(KUN)$ vs V_{DD} , HSI RC osc for $\mu = 16$ MHz	64
Figure 16	HSE external clock source	65
Figure 17	HSE oscillator circuit diagram	66
Figure 18	Typical HSI frequency variation vs V_{22} at 4 temperatures	. 00
Figure 10.	Typical I SI frequency variation vs V_{DD} at 4 temperatures	. 07
Figure 20	Typical Lot frequency variation vs $v_{DD} = 25 \circ 0 \dots \dots$. 00
Figure 20.	Typical v _{IL} and v _{IH} vs v _{DD} \ll 4 temperatures	. / 1
Figure 21.	Typical pull-up resistance vs $v_{DD} \ll 4$ temperatures	. / 1
Figure 22.	Typical pull-up current vs $v_{DD} = 4$ temperatures	. 72
Figure 23.	Typ. $v_{OL} @ v_{DD} = 5 v$ (standard ports)	. 73
Figure 24.	Typ. $v_{OL} @ v_{DD} = 3.3 v$ (standard ports).	. 73
Figure 25.	Typ. $V_{OL} @ V_{DD} = 5 V$ (true open drain ports)	. 74
Figure 26.	Typ. $V_{OL} @ V_{DD} = 3.3 V$ (true open drain ports)	. 74
Figure 27.	Typ. $V_{OL} @ V_{DD} = 5 V$ (high sink ports)	. 75
Figure 28.	Typ. $V_{OL} @ V_{DD} = 3.3 V$ (high sink ports)	. 75
Figure 29.	Typ. $V_{DD} - V_{OH} @ V_{DD} = 5 V$ (standard ports)	. 76
Figure 30.	Typ. V_{DD} - V_{OH} @ V_{DD} = 3.3 V (standard ports).	. 76
Figure 31.	Typ. V_{DD} - V_{OH} @ V_{DD} = 5 V (high sink ports)	. 77
Figure 32.	Typ. V_{DD} - V_{OH} @ V_{DD} = 3.3 V (high sink ports)	. 77
Figure 33.	Typical NRST V _{IL} and V _{IH} vs V _{DD} @ 4 temperatures	. 78
Figure 34.	Typical NRST pull-up resistance vs V _{DD} @ 4 temperatures	. 79
Figure 35.	Typical NRST pull-up current vs V _{DD} @ 4 temperatures	. 79
Figure 36.	Recommended reset pin protection	. 79
Figure 37.	SPI timing diagram - slave mode and CPHA = 0	. 81
Figure 38.	SPI timing diagram - slave mode and CPHA = 1 ⁽¹⁾	. 81
Figure 39.	SPI timing diagram - master mode ⁽¹⁾	. 82
Figure 40.	Typical application with I ² C bus and timing diagram	. 84
Figure 41.	ADC accuracy characteristics	. 87
Figure 42.	Typical application with ADC	. 87
Figure 43.	LQFP80 - 80-pin. 14 x 14 mm low-profile guad flat package outline	. 92
Figure 44.	LQFP80 recommended footprint	. 93
Figure 45	LQFP80 marking example (package top view)	. 94
Figure 46	LQFP64 - 64-pin 14 mm x 14 mm low-profile guad flat package outline	. 95
Figure 47	LQFP64 - 64-pin, 10 x 10 mm low-profile guad flat package outline	. 96
Figure 48	LQFP64 - 64-pin, 10 x 10 mm low-profile guad flat recommended footprint	. 97

2 Description

The STM8S20xxx performance line 8-bit microcontrollers offer from 32 to 128 Kbytes Flash program memory. They are referred to as high-density devices in the STM8S microcontroller family reference manual.

All STM8S20xxx devices provide the following benefits: reduced system cost, performance robustness, short development cycles, and product longevity.

The system cost is reduced thanks to an integrated true data EEPROM for up to 300 k write/erase cycles and a high system integration level with internal clock oscillators, watchdog, and brown-out reset.

Device performance is ensured by 20 MIPS at 24 MHz CPU clock frequency and enhanced characteristics which include robust I/O, independent watchdogs (with a separate clock source), and a clock security system.

Short development cycles are guaranteed due to application scalability across a common family product architecture with compatible pinout, memory map and modular peripherals. Full documentation is offered with a wide choice of development tools.

Product longevity is ensured in the STM8S family thanks to their advanced core which is made in a state-of-the art technology for applications with 2.95 V to 5.5 V operating supply.

4.2 Single wire interface module (SWIM) and debug module (DM)

The single wire interface module and debug module permits non-intrusive, real-time incircuit debugging and fast memory programming.

SWIM

Single wire interface module for direct access to the debug module and memory programming. The interface can be activated in all device operation modes. The maximum data transmission speed is 145 bytes/ms.

Debug module

The non-intrusive debugging module features a performance close to a full-featured emulator. Beside memory and peripherals, also CPU operation can be monitored in real-time by means of shadow registers.

- R/W to RAM and peripheral registers in real-time
- R/W access to all resources by stalling the CPU
- Breakpoints on all program-memory instructions (software breakpoints)
- Two advanced breakpoints, 23 predefined configurations

4.3 Interrupt controller

- Nested interrupts with three software priority levels
- 32 interrupt vectors with hardware priority
- Up to 37 external interrupts on six vectors including TLI
- Trap and reset interrupts

4.4 Flash program and data EEPROM memory

- Up to 128 Kbytes of high density Flash program single voltage Flash memory
- Up to 2K bytes true data EEPROM
- Read while write: Writing in data memory possible while executing code in program memory.
- User option byte area

Write protection (WP)

Write protection of Flash program memory and data EEPROM is provided to avoid unintentional overwriting of memory that could result from a user software malfunction.

There are two levels of write protection. The first level is known as MASS (memory access security system). MASS is always enabled and protects the main Flash program memory, data EEPROM and option bytes.

To perform in-application programming (IAP), this write protection can be removed by writing a MASS key sequence in a control register. This allows the application to write to data EEPROM, modify the contents of main program memory or the device option bytes.

A second level of write protection, can be enabled to further protect a specific area of memory known as UBC (user boot code). Refer to *Figure 2*.

DocID14733 Rev 13

4.5 Clock controller

The clock controller distributes the system clock (f_{MASTER}) coming from different oscillators to the core and the peripherals. It also manages clock gating for low power modes and ensures clock robustness.

Features

- **Clock prescaler:** To get the best compromise between speed and current consumption the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler.
- **Safe clock switching:** Clock sources can be changed safely on the fly in run mode through a configuration register. The clock signal is not switched until the new clock source is ready. The design guarantees glitch-free switching.
- **Clock management:** To reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- *Master clock sources*: Four different clock sources can be used to drive the master clock:
 - 1-24 MHz high-speed external crystal (HSE)
 - Up to 24 MHz high-speed user-external clock (HSE user-ext)
 - 16 MHz high-speed internal RC oscillator (HSI)
 - 128 kHz low-speed internal RC (LSI)
- **Startup clock:** After reset, the microcontroller restarts by default with an internal 2 MHz clock (HSI/8). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts.
- Clock security system (CSS): This feature can be enabled by software. If an HSE clock failure occurs, the internal RC (16 MHz/8) is automatically selected by the CSS and an interrupt can optionally be generated.
- **Configurable main clock output (CCO):** This outputs an external clock for use by the application.

Bit	Peripheral clock	Bit	Peripheral clock	Bit	Peripheral clock	Bit	Peripheral clock
PCKEN17	TIM1	PCKEN13	UART3	PCKEN27	beCAN	PCKEN23	ADC
PCKEN16	TIM3	PCKEN12	UART1	PCKEN26	Reserved	PCKEN22	AWU
PCKEN15	TIM2	PCKEN11	SPI	PCKEN25	Reserved	PCKEN21	Reserved
PCKEN14	TIM4	PCKEN10	l ² C	PCKEN24	Reserved	PCKEN20	Reserved

Table 3. Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers

4.14.1 UART1

Main features

- One Mbit/s full duplex SCI
- SPI emulation
- High precision baud rate generator
- Smartcard emulation
- IrDA SIR encoder decoder
- LIN master mode
- Single wire half duplex mode

Asynchronous communication (UART mode)

- Full duplex communication NRZ standard format (mark/space)
- Programmable transmit and receive baud rates up to 1 Mbit/s (f_{CPU}/16) and capable of following any standard baud rate regardless of the input frequency
- Separate enable bits for transmitter and receiver
- Two receiver wakeup modes:
 - Address bit (MSB)
 - Idle line (interrupt)
- Transmission error detection with interrupt generation
- Parity control

Synchronous communication

- Full duplex synchronous transfers
- SPI master operation
- 8-bit data communication
- Maximum speed: 1 Mbit/s at 16 MHz (f_{CPU}/16)

LIN master mode

- Emission: Generates 13-bit sync break frame
- Reception: Detects 11-bit break frame

4.14.2 UART3

Main features

- 1 Mbit/s full duplex SCI
- LIN master capable
- High precision baud rate generator

Table 7 lists the boundary addresses for each memory size. The top of the stack is at the RAM end address in each case.

Memory area	Size (bytes)	Start address	End address
	128 K	0x00 8000	0x02 7FFF
Flash program memory	64 K	0x00 8000	0x01 7FFF
	32 K	0x00 8000	0x00 FFFF
	6 K	0x00 0000	0x00 17FF
RAM	4 K	0x00 0000	0x00 1000
	2 K	0x00 0000	0x00 07FF
	2048	0x00 4000	0x00 47FF
Data EEPROM	1536	0x00 4000	0x00 45FF
	1024	0x00 4000	0x00 43FF

Table 7. Flash, Data EEPROM and RAM boundary addresses

6.2 Register map

Table 8. I/O port hardware register map

Address	Block	Register label Register name		Reset status
0x00 5000		PA_ODR	Port A data output latch register	0x00
0x00 5001		PA_IDR	Port A input pin value register	0x00
0x00 5002	Port A	PA_DDR	Port A data direction register	0x00
0x00 5003		PA_CR1	Port A control register 1	0x00
0x00 5004		PA_CR2	Port A control register 2	0x00
0x00 5005		PB_ODR	Port B data output latch register	0x00
0x00 5006		PB_IDR	Port B input pin value register	0x00
0x00 5007	Port B	PB_DDR	Port B data direction register	0x00
0x00 5008		PB_CR1	Port B control register 1	0x00
0x00 5009		PB_CR2	Port B control register 2	0x00
0x00 500A		PC_ODR	Port C data output latch register	0x00
0x00 500B		PB_IDR	Port C input pin value register	0x00
0x00 500C	Port C	PC_DDR	Port C data direction register	0x00
0x00 500D		PC_CR1	Port C control register 1	0x00
0x00 500E		PC_CR2	Port C control register 2	0x00

Address	Block	Register label	Register name	Reset status
0x00 5250		TIM1_CR1	TIM1 control register 1	0x00
0x00 5251		TIM1_CR2	TIM1 control register 2	0x00
0x00 5252		TIM1_SMCR	TIM1 slave mode control register	0x00
0x00 5253		TIM1_ETR	TIM1 external trigger register	0x00
0x00 5254		TIM1_IER	TIM1 Interrupt enable register	0x00
0x00 5255		TIM1_SR1	TIM1 status register 1	0x00
0x00 5256		TIM1_SR2	TIM1 status register 2	0x00
0x00 5257		TIM1_EGR	TIM1 event generation register	0x00
0x00 5258		TIM1_CCMR1	TIM1 capture/compare mode register 1	0x00
0x00 5259		TIM1_CCMR2	TIM1 capture/compare mode register 2	0x00
0x00 525A		TIM1_CCMR3	TIM1 capture/compare mode register 3	0x00
0x00 525B		TIM1_CCMR4	TIM1 capture/compare mode register 4	0x00
0x00 525C		TIM1_CCER1	TIM1 capture/compare enable register 1	0x00
0x00 525D		TIM1_CCER2	TIM1 capture/compare enable register 2	0x00
0x00 525E		TIM1_CNTRH	TIM1 counter high	0x00
0x00 525F	TIN44	TIM1_CNTRL	TIM1 counter low	0x00
0x00 5260	I IIVI I	TIM1_PSCRH	TIM1 prescaler register high	0x00
0x00 5261		TIM1_PSCRL	TIM1 prescaler register low	0x00
0x00 5262		TIM1_ARRH	TIM1 auto-reload register high	0xFF
0x00 5263		TIM1_ARRL	TIM1 auto-reload register low	0xFF
0x00 5264		TIM1_RCR	TIM1 repetition counter register	0x00
0x00 5265		TIM1_CCR1H	TIM1 capture/compare register 1 high	0x00
0x00 5266		TIM1_CCR1L	TIM1 capture/compare register 1 low	0x00
0x00 5267		TIM1_CCR2H	TIM1 capture/compare register 2 high	0x00
0x00 5268		TIM1_CCR2L	TIM1 capture/compare register 2 low	0x00
0x00 5269		TIM1_CCR3H	TIM1 capture/compare register 3 high	0x00
0x00 526A		TIM1_CCR3L	TIM1 capture/compare register 3 low	0x00
0x00 526B		TIM1_CCR4H	TIM1 capture/compare register 4 high	0x00
0x00 526C		TIM1_CCR4L	TIM1 capture/compare register 4 low	0x00
0x00 526D		TIM1_BKR	TIM1 break register	0x00
0x00 526E]	TIM1_DTR	TIM1 dead-time register	0x00
0x00 526F]	TIM1_OISR	TIM1 output idle state register	0x00
0x00 5270 to 0x00 52FF		F	Reserved area (147 bytes)	

Table 9. General	hardware register	map	(continued)	
	nu aware register	map ,	(ooninaca)	

DocID14733 Rev 13

Option byte no.	Description
	LSI_EN: Low speed internal clock enable 0: LSI clock is not available as CPU clock source 1: LSI clock is available as CPU clock source
	IWDG_HW: Independent watchdog 0: IWDG Independent watchdog activated by software 1: IWDG Independent watchdog activated by hardware
OP13	WWDG_HW: Window watchdog activation0: WWDG window watchdog activated by software1: WWDG window watchdog activated by hardware
	WWDG_HALT: Window watchdog reset on halt 0: No reset generated on halt if WWDG active 1: Reset generated on halt if WWDG active
	EXTCLK: External clock selection 0: External crystal connected to OSCIN/OSCOUT 1: External clock signal on OSCIN
OPT4	CKAWUSEL: Auto wakeup unit/clock 0: LSI clock source selected for AWU 1: HSE clock with prescaler selected as clock source for AWU
	PRSC[1:0] AWU clock prescaler 00: 24 MHz to 128 kHz prescaler 01: 16 MHz to 128 kHz prescaler 10: 8 MHz to 128 kHz prescaler 11: 4 MHz to 128 kHz prescaler
OPT5	HSECNT[7:0]: HSE crystal oscillator stabilization time This configures the stabilization time. 0x00: 2048 HSE cycles 0xB4: 128 HSE cycles 0xD2: 8 HSE cycles 0xE1: 0.5 HSE cycles
OPT6	Reserved
OPT7	 WAITSTATE Wait state configuration This option configures the number of wait states inserted when reading from the Flash/data EEPROM memory. 1 wait state is required if f_{CPU} > 16 MHz. 0: No wait state 1: 1 wait state

Table 13. O	ption byte	description ((continued)

Option byte no.	Description
OPTBL	 BL[7:0] Bootloader option byte For STM8S products, this option is checked by the boot ROM code after reset. Depending on the content of addresses 0x487E, 0x487F, and 0x8000 (reset vector), the CPU jumps to the bootloader or to the reset vector. Refer to the UM0560 (STM8L/S bootloader manual) for more details. For STM8L products, the bootloader option bytes are on addresses 0xXXXX and 0xXXX+1 (2 bytes). These option bytes control whether the bootloader is active or not. For more details, refer to the UM0560 (STM8L/S bootloader manual) for more details.

Table 13. Option byte description (continued)

9 Unique ID

The devices feature a 96-bit unique device identifier which provides a reference number that is unique for any device and in any context. The 96 bits of the identifier can never be altered by the user.

The unique device identifier can be read in single bytes and may then be concatenated using a custom algorithm.

The unique device identifier is ideally suited:

- For use as serial numbers
- For use as security keys to increase the code security in the program memory while using and combining this unique ID with software cryptographic primitives and protocols before programming the internal memory.
- To activate secure boot processes

Addroso	Content	t Unique ID bits								
Address	description	7	6	5	4	3	2	1	0	
0x48CD	X co-ordinate on the				U_	_ID[7:0]				
0x48CE	wafer				U_	ID[15:8]				
0x48CF	Y co-ordinate on the		U_ID[23							
0x48D0	wafer		U_ID[31:24]							
0x48D1	Wafer number	U_ID[39:32]								
0x48D2					U_I	D[47:40]				
0x48D3		U_ID[55:48]								
0x48D4		U_ID[63:56]								
0x48D5	Lot number				U_I	D[71:64]				
0x48D6		U_ID[79:72]								
0x48D7					U_I	D[87:80]				
0x48D8					U_I	D[95:88]				

Table 14. Unique ID registers (96 bits)

Figure 12. f_{CPUmax} versus V_{DD}

Table 19. Operating conditions at power-up/power-down

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
+	V_{DD} rise time rate		2 ⁽¹⁾		8	цеЛ/
٩VDD	V _{DD} fall time rate		2 ⁽¹⁾		8	μ5/ v
t _{TEMP}	Reset release delay	V _{DD} rising			1.7 ⁽¹⁾	ms
V _{IT+}	Power-on reset threshold		2.65	2.8	2.95	V
V _{IT-}	Brown-out reset threshold		2.58	2.73	2.88	V
V _{HYS(BOR)}	Brown-out reset hysteresis			70		mV

1. Guaranteed by design, not tested in production.

10.3.1 VCAP external capacitor

Stabilization for the main regulator is achieved connecting an external capacitor C_{EXT} to the V_{CAP} pin. C_{EXT} is specified in *Table 18*. Care should be taken to limit the series inductance to less than 15 nH.

Figure 13. External capacitor CEXT

1. Legend: ESR is the equivalent series resistance and ESL is the equivalent inductance.

10.3.3 External clock sources and timing characteristics

HSE user external clock

Subject to general operating conditions for V_{DD} and T_A .

Table 31. HSE	user external	clock charact	eristics
---------------	---------------	---------------	----------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency		0		24	MHz
V _{HSEH} ⁽¹⁾	OSCIN input pin high level voltage		0.7 x V _{DD}		V _{DD} + 0.3 V	V
V _{HSEL} ⁽¹⁾	OSCIN input pin low level voltage		V _{SS}		0.3 x V _{DD}	v
I _{LEAK_HSE}	OSCIN input leakage current	$V_{SS} < V_{IN} < V_{DD}$	-1		1	μA

1. Data based on characterization results, not tested in production.

HSE crystal/ceramic resonator oscillator

The HSE clock can be supplied with a 1 to 24 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and start-up stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...).

10.3.5 Memory characteristics

RAM and hardware registers

Table	35.	RAM	and	hardware	registers
Table	55.		and	narawarc	registers

Symbol	Parameter	Conditions	Min	Unit
V _{RM}	Data retention mode ⁽¹⁾	Halt mode (or reset)	V _{IT-max} ⁽²⁾	V

1. Minimum supply voltage without losing data stored in RAM (in halt mode or under reset) or in hardware registers (only in halt mode). Guaranteed by design, not tested in production.

2. Refer to Table 19 on page 57 for the value of V_{IT-max} .

Flash program memory/data EEPROM memory

General conditions: $T_A = -40$ to 125 °C.

Table 36. Flash	program	memory/data	EEPROM	memory
-----------------	---------	-------------	--------	--------

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max	Unit
V _{DD}	Operating voltage (all modes, execution/write/erase)	$f_{CPU} \le 24 \text{ MHz}$	2.95		5.5	V
t _{prog}	Standard programming time (including erase) for byte/word/block (1 byte/4 bytes/128 bytes)			6	6.6	ms
	Fast programming time for 1 block (128 bytes)			3	3.3	ms
t _{erase}	Erase time for 1 block (128 bytes)			3	3.3	ms
N _{RW}	Erase/write cycles ⁽²⁾ (program memory)	T _A = 85 °C	10 k			cycles
	Erase/write cycles (data memory) ⁽²⁾	T _A = 125 ° C	300 k	1M		
	Data retention (program memory) after 10 k erase/write cycles at $T_A = 85 \text{ °C}$	T _{RET} = 55° C	20			
t _{RET}	Data retention (data memory) after 10 k erase/write cycles at $T_A = 85$ °C	T _{RET} = 55° C	20			years
	Data retention (data memory) after 300k erase/write cycles at $T_A = 125 \text{ °C}$	T _{RET} = 85° C	1			
I _{DD}	Supply current (Flash programming or erasing for 1 to 128 bytes)			2		mA

1. Data based on characterization results, not tested in production.

2. The physical granularity of the memory is 4 bytes, so cycling is performed on 4 bytes even when a write/erase operation addresses a single byte.

Typical output level curves

Figure 24 to *Figure 31* show typical output level curves measured with output on a single pin.

Figure 24. Typ. $V_{OL} @ V_{DD} = 3.3 V$ (standard ports)

Figure 34. Typical NRST pull-up resistance vs V_{DD} @ 4 temperatures

Figure 35. Typical NRST pull-up current vs V_{DD} @ 4 temperatures

The reset network shown in *Figure 36* protects the device against parasitic resets. The user must ensure that the level on the NRST pin can go below the V_{IL} max. level specified in *Table 41*. Otherwise the reset is not taken into account internally. For power consumption sensitive applications, the capacity of the external reset capacitor can be reduced to limit charge/discharge current. If the NRSTsignal is used to reset the external circuitry, care must be taken of the charge/discharge time of the external capacitor to fulfill the external device's reset timing conditions. The minimum recommended capacity is 10 nF.

11 Package characteristics

To meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at *www.st.com*. ECOPACK® is an ST trademark.

11.2 Thermal characteristics

The maximum chip junction temperature (T_{Jmax}) must never exceed the values given in *Table 18: General operating conditions on page 56.*

The maximum chip-junction temperature, T_{Jmax} , in degrees Celsius, may be calculated using the following equation:

 $T_{Jmax} = T_{Amax} + (P_{Dmax} \times \Theta_{JA})$

Where:

- T_{Amax} is the maximum ambient temperature in °C
- Θ_{JA} is the package junction-to-ambient thermal resistance in ° C/W
- P_{Dmax} is the sum of P_{INTmax} and P_{I/Omax} (P_{Dmax} = P_{INTmax} + P_{I/Omax})
- P_{INTmax} is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.
- $P_{I/Omax}$ represents the maximum power dissipation on output pins, where: $P_{I/Omax} = \Sigma (V_{OL}*I_{OL}) + \Sigma ((V_{DD}-V_{OH})*I_{OH})$, and taking account of the actual V_{OL}/I_{OL} and V_{OH}/I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
Θ_{JA}	Thermal resistance junction-ambient LQFP 80 - 14 x 14 mm	38	°C/W
Θ_{JA}	Thermal resistance junction-ambient LQFP 64 - 14 x 14 mm	45	°C/W
Θ_{JA}	Thermal resistance junction-ambient LQFP 64 - 10 x 10 mm	46	°C/W
Θ_{JA}	Thermal resistance junction-ambient LQFP 48 - 7 x 7 mm	57	°C/W
Θ_{JA}	Thermal resistance junction-ambient LQFP 44 - 10 x 10 mm	54	°C/W
Θ_{JA}	Thermal resistance junction-ambient LQFP 32 - 7 x 7 mm	60	°C/W

Table 57. Thermal characteristics	Table 57.	Thermal	characteristics ⁽¹)
-----------------------------------	-----------	---------	-------------------------------	---

1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection environment.

11.2.1 Reference document

JESD51-2 integrated circuits thermal test method environment conditions - natural convection (still air). Available from www.jedec.org.

14 Revision history

Date	Revision	Changes
23-May-2008	1	Initial release.
05-Jun-2008	2	Added part numbers on page 1 and in <i>Table 2 on page 11</i> . Updated <i>Section 4: Product overview</i> . Updated <i>Section 10: Electrical characteristics</i> .
22-Jun-2008	3	Added part numbers on page 1 and in Table 2 on page 11.
12-Aug-2008	4	Added 32 pin device pinout and ordering information. Updated UBC option description in <i>Table 13 on page 48</i> . USART renamed UART1, LINUART renamed UART3. Max. ADC frequency increased to 6 MHz.
20-Oct-2008	5	Removed STM8S207K4 part number. Removed LQFP64 14 x 14 mm package. Added medium and high density Flash memory categories. Added Section 6: Memory and register map on page 34. Replaced beCAN3 by beCAN in Section 4.14.5: beCAN. Updated Section 10: Electrical characteristics on page 52. Updated LQFP44 (Figure 53 and Table 55), and LQFP32 outline and mechanical data (Figure 56, and Table 56).
08-Dec-2008	6	Changed V _{DD} minimum value from 3.0 to 2.95 V. Updated number of High Sink I/Os in pinout. Removed FLASH _NFPR and FLASH _FPR registers in <i>Table 9:</i> <i>General hardware register map</i> .
30-Jan-2009	7	Removed preliminary status. Removed VQFN32 package. Added STM8S207C6, STM8S207S6. Updated external interrupts in <i>Table 2 on page 11</i> . Updated <i>Section 10: Electrical characteristics</i> .
10-Jul-2009	8	Document status changed from "preliminary data" to "datasheet". Added LQFP64 14 x 14 mm package. Added STM8S207M8, STM8S207SB, STM8S208R8, STM8S208R6, STM8S208C8, and STM8S208C6, STM8S208SB, STM8S208S8, and STM8S208S6. Replaced "CAN" with "beCAN". Added <i>Table 3</i> to <i>Section 4.5: Clock controller</i> . Updated <i>Section 4.8: Auto wakeup counter</i> . Added beCAN peripheral (impacting <i>Table 1</i> and <i>Figure 6</i>). Added footnote about CAN_RX/TX to pinout figures 5, 4, and 6. <i>Table 6</i> : Removed 'X' from wpu column of I ² C pins (no wpu available). Added <i>Table 11: Interrupt mapping</i> .

Table 58. Document re	evision	history
-----------------------	---------	---------

Date	Revision	Changes
14-Sep-2010	10	Added part number STM8S208M8 to <i>Table 1: Device summary</i> . Updated "reset state" of <i>Table 5: Legend/abbreviations for pinout table</i> . Added footnote <i>4</i> to <i>Table 6: Pin description</i> . <i>Table 9: General hardware register map</i> : standardized all reset state values; updated the reset state values of RST_SR, CLK_SWCR, CLK_HSITRIMR, CLK_SWIMCCR, IWDG_KR, and ADC_DRx registers; added the reset values of the CAN paged registers. <i>Figure 36: Recommended reset pin protection</i> : replaced 0.01 µF with 0.1 µF. <i>Figure 40: Typical application with I2C bus and timing diagram</i> : $t_{w(SCKH)}, t_{w(SCKL)}, t_{r(SCK)}, and t_{f(SCK)}$ replaced by $t_{w(SCLH)}, t_{w(SCLL)}, t_{w(SCLL)}$
22-Mar-2011	11	Table 1: Device summary: added STM8S207K8. Table 2: STM8S20xxx performance line features: added STM8S207K8 device and changed the RAM value of all other devices to 6 Kbytes. Figure 5, Figure 4, Figure 5, and Figure 7: removed TIM1_CH4 from pins 80, 64, 48, and 32 respectively. Table 6: Pin description: updated note 3 and added note 5. Table 9: General hardware register map: removed I2C_PECR register. Section 10.3.7: Reset pin characteristics: added text regarding the rest network.
10-Feb-2012	12	 Figure 1: STM8S20xxx block diagram: updated POR/PDR and BOR; updated LINUART input; added legend. Table 18: General operating conditions: updated V_{CAP}. Table 26: Total current consumption in halt mode at VDD = 5 V: updated title, modified existing max column, and added new max column (at 125 °C) with data. Table 37: I/O static characteristics: added new condition and new max values for rise and fall time; added footnote 3; updated Typ and max pull-up resistor values. Section 10.3.7: Reset pin characteristics: updated cross reference in text below Figure 35 Table 41: NRST pin characteristics: updated Typ and max values of the NRST pull-up resistor.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

DocID14733 Rev 13