

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	52
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	1.5K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	2.95V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8s207r8t6c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1	Intro	Introduction								
2	Desc	cription								
3	Bloc	Block diagram								
4	Prod	uct overview	3							
	4.1	Central processing unit STM8 13	3							
	4.2	Single wire interface module (SWIM) and debug module (DM) 14	4							
	4.3	Interrupt controller	4							
	4.4	Flash program and data EEPROM memory 14	4							
	4.5	Clock controller	6							
	4.6	Power management 1	7							
	4.7	Watchdog timers	7							
	4.8	Auto wakeup counter	8							
	4.9	Beeper	8							
	4.10	TIM1 - 16-bit advanced control timer 18								
	4.11	TIM2, TIM3 - 16-bit general purpose timers	8							
	4.12	TIM4 - 8-bit basic timer 1	9							
	4.13	Analog-to-digital converter (ADC2)								
	4.14	Communication interfaces 19	9							
		4.14.1 UART1	0							
		4.14.2 UART3	0							
		4.14.3 SPI	1							
		4.14.4 l ² C	2							
		4.14.5 beCAN	2							
5	Pino	uts and pin description 23	3							
	5.1	Package pinouts	3							
	5.2	Alternate function remapping 3	2							
6	Mem	ory and register map 34	4							
	6.1	Memory map	4							
2/117		DocID14733 Rev 13								

1 Introduction

This datasheet contains the description of the STM8S20xxx features, pinout, electrical characteristics, mechanical data and ordering information.

- For complete information on the STM8S microcontroller memory, registers and peripherals, please refer to the STM8S microcontroller family reference manual (RM0016).
- For information on programming, erasing and protection of the internal Flash memory please refer to the STM8S Flash programming manual (PM0051).
- For information on the debug and SWIM (single wire interface module) refer to the STM8 SWIM communication protocol and debug module user manual (UM0470).
- For information on the STM8 core, please refer to the STM8 CPU programming manual (PM0044).

4 **Product overview**

The following section intends to give an overview of the basic features of the STM8S20xxx functional modules and peripherals.

For more detailed information please refer to the corresponding family reference manual (RM0016).

4.1 Central processing unit STM8

The 8-bit STM8 core is designed for code efficiency and performance.

It contains 6 internal registers which are directly addressable in each execution context, 20 addressing modes including indexed indirect and relative addressing and 80 instructions.

Architecture and registers

- Harvard architecture
- 3-stage pipeline
- 32-bit wide program memory bus single cycle fetching for most instructions
- X and Y 16-bit index registers enabling indexed addressing modes with or without offset and read-modify-write type data manipulations
- 8-bit accumulator
- 24-bit program counter 16-Mbyte linear memory space
- 16-bit stack pointer access to a 64 K-level stack
- 8-bit condition code register 7 condition flags for the result of the last instruction

Addressing

- 20 addressing modes
- Indexed indirect addressing mode for look-up tables located anywhere in the address space
- Stack pointer relative addressing mode for local variables and parameter passing

Instruction set

- 80 instructions with 2-byte average instruction size
- Standard data movement and logic/arithmetic functions
- 8-bit by 8-bit multiplication
- 16-bit by 8-bit and 16-bit by 16-bit division
- Bit manipulation
- Data transfer between stack and accumulator (push/pop) with direct stack access
- Data transfer using the X and Y registers or direct memory-to-memory transfers

Independent watchdog timer

The independent watchdog peripheral can be used to resolve processor malfunctions due to hardware or software failures.

It is clocked by the 128 kHz LSI internal RC clock source, and thus stays active even in case of a CPU clock failure

The IWDG time base spans from 60 μ s to 1 s.

4.8 Auto wakeup counter

- Used for auto wakeup from active halt mode
- Clock source: Internal 128 kHz internal low frequency RC oscillator or external clock
- LSI clock can be internally connected to TIM3 input capture channel 1 for calibration

4.9 Beeper

The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in the range of 1, 2 or 4 kHz.

4.10 TIM1 - 16-bit advanced control timer

This is a high-end timer designed for a wide range of control applications. With its complementary outputs, dead-time control and center-aligned PWM capability, the field of applications is extended to motor control, lighting and half-bridge driver

- 16-bit up, down and up/down autoreload counter with 16-bit prescaler
- Four independent capture/compare channels (CAPCOM) configurable as input capture, output compare, PWM generation (edge and center aligned mode) and single pulse mode output
- Synchronization module to control the timer with external signals
- Break input to force the timer outputs into a defined state
- Three complementary outputs with adjustable dead time
- Encoder mode
- Interrupt sources: 3 x input capture/output compare, 1 x overflow/update, 1 x break

4.11 TIM2, TIM3 - 16-bit general purpose timers

- 16-bit autoreload (AR) up-counter
- 15-bit prescaler adjustable to fixed power of 2 ratios 1...32768
- Timers with 3 or 2 individually configurable capture/compare channels
- PWM mode
- Interrupt sources: 2 or 3 x input capture/output compare, 1 x overflow/update

	······································							
Туре	I= Input, O	I= Input, O = Output, S = Power supply						
Level	Input	CM = CMOS						
	Output	HS = High sink						
Output speed	01 = Slow 02 = Fast (03 = Fast/s 04 = Fast/s	(up to 2 MHz) up to 10 MHz) slow programmability with slow as default state after reset slow programmability with fast as default state after reset						
Port and control	Input	float = floating, wpu = weak pull-up						
configuration	Output	T = True open drain, OD = Open drain, PP = Push pull						
Reset state	set state Bold \underline{X} (pin state after internal reset release) Unless otherwise specified, the pin state is the same during the reset p after the internal reset release.							

|--|

	Pin	num	nber					Inpu	t		Out	put				
LQFP80	LQFP64	LQFP48	LQFP44	LQFP32	Pin name	Type	floating	ndw	Ext. interrupt	High sink	Speed	QO	Ч	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
1	1	1	1	1	NRST	I/O		X						Reset		
2	2	2	2	2	PA1/OSCIN	I/O	<u>x</u>	х			01	х	х	Port A1	Resonator/ crystal in	
3	3	3	3	3	PA2/OSCOUT	I/O	X	х	Х		01	х	х	Port A2	Resonator/ crystal out	
4	4	4	4	-	V _{SSIO_1}	S								I/O ground		
5	5	5	5	4	V _{SS}	S								Digital ground		
6	6	6	6	5	VCAP	S								1.8 V regulator capacitor		
7	7	7	7	6	V _{DD}	S								Digital power supply		
8	8	8	8	7	V _{DDIO_1}	S								I/O power supply		
9	9	9	-	-	PA3/TIM2_CH3	I/O	<u>x</u>	х	х		01	Х	х	Port A3	Timer 2 - channel3	TIM3_CH1 [AFR1]
10	10	10	9	-	PA4/UART1_RX	I/O	<u>x</u>	х	Х	HS	O3	х	x	Port A4	UART1 receive	
11	11	11	10	-	PA5/UART1_TX	I/O	<u>X</u>	х	Х	HS	O3	х	х	Port A5	UART1 transmit	

Table 6. Pin description

	Pin	num	nber					Inpu	t	Output						
LQFP80	LQFP64	LQFP48	LQFP44	LQFP32	Pin name	Type	floating	ndw	Ext. interrupt	High sink	Speed	OD	ЬР	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
12	12	12	11	-	PA6/UART1_CK	I/O	x	х	х	HS	О3	х	x	Port A6	UART1 synchronous clock	
13	-	-	-	-	PH0	I/O	<u>X</u>	Х		HS	O3	Х	Х	Port H0		
14	-	-	-	-	PH1	I/O	<u>X</u>	Х		HS	O3	Х	Х	Port H1		
15	-	-	-	-	PH2	I/O	<u>X</u>	Х			O1	Х	Х	Port H2		
16	-	-	-	-	РНЗ	I/O	<u>X</u>	Х			O1	Х	Х	Port H3		
17	13	-	-	-	PF7/AIN15	I/O	<u>x</u>	х			01	х	х	Port F7	Analog input 15	
18	14	-	-	-	PF6/AIN14	I/O	<u>x</u>	х			01	х	х	Port F6	Analog input 14	
19	15	-	-	-	PF5/AIN13	I/O	<u>x</u>	х			01	х	х	Port F5	Analog input 13	
20	16	-	-	8	PF4/AIN12	I/O	<u>x</u>	х			01	х	х	Port F4	Port F4 Analog input 12	
21	17	-	-	-	PF3/AIN11	I/O	<u>x</u>	х			01	х	х	Port F3	Analog input 11	
22	18	-	-	-	V _{REF+}	S								ADC positive reference voltage		
23	19	13	12	9	V _{DDA}	S								Analog power supply		
24	20	14	13	10	V _{SSA}	S								Analog ground		
25	21	-	-	-	V _{REF-}	S								ADC negative reference voltage		
26	22	-	-	-	PF0/AIN10	I/O	<u>x</u>	Х			01	Х	х	Port F0	Analog input 10	
27	23	15	14	-	PB7/AIN7	I/O	X	х	Х		01	х	х	Port B7	Analog input 7	
28	24	16	15	-	PB6/AIN6	I/O	<u>x</u>	х	Х		01	х	х	Port B6	Analog input 6	
29	25	17	16	11	PB5/AIN5	I/O	X	х	Х		01	х	х	Port B5	Analog input 5	I ² C_SDA [AFR6]
30	26	18	17	12	PB4/AIN4	I/O	<u>x</u>	х	Х		01	х	х	Port B4	Analog input 4	I ² C_SCL [AFR6]

Table 6. Pin description (continued)

Address	Block	Register label	Register name	Reset status			
0x00 5050 to 0x00 5059		Reserved area (10 bytes)					
0x00 505A		FLASH_CR1	Flash control register 1	0x00			
0x00 505B		FLASH_CR2	Flash control register 2	0x00			
0x00 505C		FLASH_NCR2	Flash complementary control register 2	0xFF			
0x00 505D	Flash	FLASH _FPR	Flash protection register	0x00			
0x00 505E		FLASH _NFPR	Flash complementary protection register	0xFF			
0x00 505F		FLASH _IAPSR	Flash in-application programming status register	0x00			
0x00 5060 to 0x00 5061			Reserved area (2 bytes)				
0x00 5062	Flash	FLASH_PUKR	Flash Program memory unprotection register	0x00			
0x00 5063		Reserved area (1 byte)					
0x00 5064	Flash	FLASH _DUKR	Data EEPROM unprotection register	0x00			
0x00 5065 to 0x00 509F			Reserved area (59 bytes)				
0x00 50A0	ITC	EXTI_CR1	External interrupt control register 1	0x00			
0x00 50A1		EXTI_CR2	External interrupt control register 2	0x00			
0x00 50A2 to 0x00 50B2			Reserved area (17 bytes)				
0x00 50B3	RST	RST_SR	Reset status register	0xXX ⁽¹⁾			
0x00 50B4 to 0x00 50BF			Reserved area (12 bytes)				
0x00 50C0		CLK_ICKR	Internal clock control register	0x01			
0x00 50C1		CLK_ECKR	External clock control register	0x00			
0x00 50C2		Reserved area (1 byte)					
0x00 50C3		CLK_CMSR	Clock master status register	0xE1			
0x00 50C4		CLK_SWR	Clock master switch register	0xE1			
0x00 50C5		CLK_SWCR	Clock switch control register	0xXX			
0x00 50C6		CLK_CKDIVR	Clock divider register	0x18			
0x00 50C7	CLK	CLK_PCKENR1	Peripheral clock gating register 1	0xFF			
0x00 50C8]	CLK_CSSR	Clock security system register	0x00			
0x00 50C9]	CLK_CCOR	Configurable clock control register	0x00			
0x00 50CA]	CLK_PCKENR2	Peripheral clock gating register 2	0xFF			
0x00 50CB		CLK_CANCCR	CAN clock control register	0x00			

Table 9. General hardware register map

			• • •	1
Address	Block	Register label	Register name	Reset status
0x00 5300		TIM2_CR1	TIM2 control register 1	0x00
0x00 5301		TIM2_IER	TIM2 interrupt enable register	0x00
0x00 5302		TIM2_SR1	TIM2 status register 1	0x00
0x00 5303		TIM2_SR2	TIM2 status register 2	0x00
0x00 5304		TIM2_EGR	TIM2 event generation register	0x00
0x00 5305		TIM2_CCMR1	TIM2 capture/compare mode register 1	0x00
0x00 5306		TIM2_CCMR2	TIM2 capture/compare mode register 2	0x00
0x00 5307		TIM2_CCMR3	TIM2 capture/compare mode register 3	0x00
0x00 5308		TIM2_CCER1	TIM2 capture/compare enable register 1	0x00
0x00 5309		TIM2_CCER2	TIM2 capture/compare enable register 2	0x00
0x00 530A	TIM2	TIM2_CNTRH	TIM2 counter high	0x00
0x00 530B		TIM2_CNTRL	TIM2 counter low	0x00
00 530C0x		TIM2_PSCR	TIM2 prescaler register	0x00
0x00 530D		TIM2_ARRH	TIM2 auto-reload register high	0xFF
0x00 530E		TIM2_ARRL	TIM2 auto-reload register low	0xFF
0x00 530F		TIM2_CCR1H	TIM2 capture/compare register 1 high	0x00
0x00 5310		TIM2_CCR1L	TIM2 capture/compare register 1 low	0x00
0x00 5311		TIM2_CCR2H	TIM2 capture/compare reg. 2 high	0x00
0x00 5312		TIM2_CCR2L	TIM2 capture/compare register 2 low	0x00
0x00 5313		TIM2_CCR3H	TIM2 capture/compare register 3 high	0x00
0x00 5314		TIM2_CCR3L	TIM2 capture/compare register 3 low	0x00
0x00 5315 to 0x00 531F			Reserved area (11 bytes)	
0x00 5320		TIM3_CR1	TIM3 control register 1	0x00
0x00 5321		TIM3_IER	TIM3 interrupt enable register	0x00
0x00 5322		TIM3_SR1	TIM3 status register 1	0x00
0x00 5323		TIM3_SR2	TIM3 status register 2	0x00
0x00 5324		TIM3_EGR	TIM3 event generation register	0x00
0x00 5325	TIM3	TIM3_CCMR1	TIM3 capture/compare mode register 1	0x00
0x00 5326		TIM3_CCMR2	TIM3 capture/compare mode register 2	0x00
0x00 5327	1	TIM3_CCER1	TIM3 capture/compare enable register 1	0x00
0x00 5328	1	TIM3_CNTRH	TIM3 counter high	0x00
0x00 5329]	TIM3_CNTRL TIM3 counter low		0x00
0x00 532A	1	TIM3_PSCR	TIM3 prescaler register	0x00

			_			
Table 9.	General	hardware	register	map	(continued))

Address	Block	Register Label	Register Name	Reset Status			
0x00 7F98		DM_CSR1	DM debug module control/status register 1	0x10			
0x00 7F99	DM	DM_CSR2	DM debug module control/status register 2	0x00			
0x00 7F9A		DM_ENFCTR	DM enable function register	0xFF			
0x00 7F9B to 0x00 7F9F		Reserved area (5 bytes)					

Table 10. CPU/SWIM/debug module/interrupt controller registers (continued)

1. Accessible by debug module only

2. Product dependent value, see Figure 8: Memory map.

Option byte no.	Description					
	LSI_EN: Low speed internal clock enable 0: LSI clock is not available as CPU clock source 1: LSI clock is available as CPU clock source					
	IWDG_HW: Independent watchdog 0: IWDG Independent watchdog activated by software 1: IWDG Independent watchdog activated by hardware					
OP13	WWDG_HW: Window watchdog activation0: WWDG window watchdog activated by software1: WWDG window watchdog activated by hardware					
	WWDG_HALT: Window watchdog reset on halt 0: No reset generated on halt if WWDG active 1: Reset generated on halt if WWDG active					
	EXTCLK: External clock selection 0: External crystal connected to OSCIN/OSCOUT 1: External clock signal on OSCIN					
OPT4	CKAWUSEL: Auto wakeup unit/clock 0: LSI clock source selected for AWU 1: HSE clock with prescaler selected as clock source for AWU					
	PRSC[1:0] AWU clock prescaler 00: 24 MHz to 128 kHz prescaler 01: 16 MHz to 128 kHz prescaler 10: 8 MHz to 128 kHz prescaler 11: 4 MHz to 128 kHz prescaler					
OPT5	HSECNT[7:0]: HSE crystal oscillator stabilization time This configures the stabilization time. 0x00: 2048 HSE cycles 0xB4: 128 HSE cycles 0xD2: 8 HSE cycles 0xE1: 0.5 HSE cycles					
OPT6	Reserved					
OPT7	 WAITSTATE Wait state configuration This option configures the number of wait states inserted when reading from the Flash/data EEPROM memory. 1 wait state is required if f_{CPU} > 16 MHz. 0: No wait state 1: 1 wait state 					

Table 13. O	ption byte	description ((continued)

Option byte no.	Description
OPTBL	 BL[7:0] Bootloader option byte For STM8S products, this option is checked by the boot ROM code after reset. Depending on the content of addresses 0x487E, 0x487F, and 0x8000 (reset vector), the CPU jumps to the bootloader or to the reset vector. Refer to the UM0560 (STM8L/S bootloader manual) for more details. For STM8L products, the bootloader option bytes are on addresses 0xXXXX and 0xXXX+1 (2 bytes). These option bytes control whether the bootloader is active or not. For more details, refer to the UM0560 (STM8L/S bootloader manual) for more details.

Table 13. Option byte description (continued)

9 Unique ID

The devices feature a 96-bit unique device identifier which provides a reference number that is unique for any device and in any context. The 96 bits of the identifier can never be altered by the user.

The unique device identifier can be read in single bytes and may then be concatenated using a custom algorithm.

The unique device identifier is ideally suited:

- For use as serial numbers
- For use as security keys to increase the code security in the program memory while using and combining this unique ID with software cryptographic primitives and protocols before programming the internal memory.
- To activate secure boot processes

Address	Content				Uniqu	ue ID bits	6		
Address	description	7	6	5	4	3	2	1	0
0x48CD	X co-ordinate on the				U_	_ID[7:0]			
0x48CE	wafer				U_	ID[15:8]			
0x48CF	Y co-ordinate on the				U_I	D[23:16]			
0x48D0	wafer				U_I	D[31:24]			
0x48D1	Wafer number				U_I	D[39:32]			
0x48D2					U_I	D[47:40]			
0x48D3					U_I	D[55:48]			
0x48D4					U_I	D[63:56]			
0x48D5	Lot number				U_I	D[71:64]			
0x48D6		U_ID[79:72]							
0x48D7					U_I	D[87:80]			
0x48D8					U_I	D[95:88]			

Table 14. Unique ID registers (96 bits)

10.3.2 Supply current characteristics

The current consumption is measured as described in *Figure 9 on page 52*.

Total current consumption in run mode

The MCU is placed under the following conditions:

- All I/O pins in input mode with a static value at $V_{DD} \, \text{or} \, V_{SS}$ (no load)
- All peripherals are disabled (clock stopped by Peripheral Clock Gating registers) except if explicitly mentioned.
- When the MCU is clocked at 24 MHz, $T_A \le 105$ °C and the WAITSTATE option bit is set.

Subject to general operating conditions for V_{DD} and T_A .

Symbol	Parameter	r Conditions			Max	Unit
		f _{CPU} = f _{MASTER} = 24 MHz,	HSE crystal osc. (24 MHz)	4.4		
		$T_A \leq 105 \ ^{\circ}C$	HSE user ext. clock (24 MHz)	3.7	7.3 ⁽¹⁾	
			HSE crystal osc. (16 MHz)	3.3		
	Supply current in	f _{CPU} = f _{MASTER} = 16 MHz	HSE user ext. clock (16 MHz)	2.7	5.8	
	run mode,		HSI RC osc. (16 MHz)	2.5	3.4	
	code executed	f _ f /129 _ 125 kHz	HSE user ext. clock (16 MHz)	1.2	4.1 ⁽¹⁾	
	from RAM	$1_{CPU} = 1_{MASTER}/120 = 123$ KHz	HSI RC osc. (16 MHz)	1.0	1.3 ⁽¹⁾	
		f _{CPU} = f _{MASTER} /128 = 15.625 kHz	HSI RC osc. (16 MHz/8)	0.55		
1		f _{CPU} = f _{MASTER} = 128 kHz	LSI RC osc. (128 kHz)	0.45		m۸
'DD(RUN)		f _{CPU} = f _{MASTER} = 24 MHz,	HSE crystal osc. (24 MHz)	11.4		ШA
		$T_A \leq 105 \ ^{\circ}C$	HSE user ext. clock (24 MHz)	10.8	18 ⁽¹⁾	
			HSE crystal osc. (16 MHz)	9.0		
	Supply current in	f _{CPU} = f _{MASTER} = 16 MHz	HSE user ext. clock (16 MHz)	8.2	15.2 ⁽¹⁾	
	run mode,		HSI RC osc.(16 MHz)	8.1	13.2 ⁽¹⁾	
	code executed	f _{CPU} = f _{MASTER} = 2 MHz.	HSI RC osc. (16 MHz/8) ⁽²⁾	1.5		
f	from Flash	f _{CPU} = f _{MASTER} /128 = 125 kHz	HSI RC osc. (16 MHz)	1.1		
		f _{CPU} = f _{MASTER} /128 = 15.625 kHz	HSI RC osc. (16 MHz/8)	0.6		
		f _{CPU} = f _{MASTER} = 128 kHz	LSI RC osc. (128 kHz)	0.55		

Table 20. Total current consumption with code execution in run mode at V_{DD} = 5 V

1. Data based on characterization results, not tested in production.

2. Default clock configuration measured with all peripherals off.

Figure 29. Typ. V_{DD} V_{OH} @ V_{DD} = 5 V (standard ports)

10.3.9 I²C interface characteristics

Symbol	Parameter	Standard	mode l ² C	Fast mod	l lasit	
Symbol	Falameter	Min ⁽²⁾	Max ⁽²⁾	Min ⁽²⁾	Max ⁽²⁾	Unit
t _{w(SCLL)}	SCL clock low time	4.7		1.3		
t _{w(SCLH)}	SCL clock high time	4.0		0.6		μs
t _{su(SDA)}	SDA setup time	250		100		
t _{h(SDA)}	SDA data hold time	0 ⁽³⁾		0 ⁽⁴⁾	900 ⁽³⁾	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time		1000		300	ns
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time		300		300	
t _{h(STA)}	START condition hold time	4.0		0.6		110
t _{su(STA)}	Repeated START condition setup time	4.7		0.6		μs
t _{su(STO)}	STOP condition setup time	4.0		0.6		μs
t _{w(STO:STA)}	STOP to START condition time (bus free)	4.7		1.3		μs
Cb	Capacitive load for each bus line		400		400	pF
	0					

Table 43. I²C characteristics

1. $f_{MASTER},$ must be at least 8 MHz to achieve max fast I^2C speed (400kHz) $\,$

2. Data based on standard I²C protocol requirement, not tested in production

3. The maximum hold time of the start condition has only to be met if the interface does not stretch the low time

4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL

Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit
		$f_{ADC} = 2 MHz$	1	2.5	
E _T	Total unadjusted error ⁽²⁾	$f_{ADC} = 4 \text{ MHz}$	1.4	3	
		f _{ADC} = 6 MHz	1.6	3.5	
		f _{ADC} = 2 MHz	0.6	2	
E _O	Offset error ⁽²⁾	f _{ADC} = 4 MHz	1.1	2.5	
		f _{ADC} = 6 MHz	1.2	2.5	
		f _{ADC} = 2 MHz	0.2	2	
E _G	Gain error ⁽²⁾	f _{ADC} = 4 MHz	0.6	2.5	LSB
		f _{ADC} = 6 MHz	0.8	2.5	
		$f_{ADC} = 2 MHz$	0.7	1.5	
E _D	Differential linearity error ⁽²⁾	f _{ADC} = 4 MHz	0.7	1.5	
		f _{ADC} = 6 MHz	0.8	1.5	
		f _{ADC} = 2 MHz	0.6	1.5	
E _L	Integral linearity error ⁽²⁾	$f_{ADC} = 4 \text{ MHz}$	0.6	1.5	
		f _{ADC} = 6 MHz	0.6	1.5	

Table 45. ADC	accuracy with	$R_{AIN} < 10 \ k\Omega$,	$V_{DDA} = 5 V$
---------------	---------------	----------------------------	-----------------

1. Data based on characterization results for LQFP80 device with V_{REF+}/V_{REF-} , not tested in production.

 ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 10.3.6 does not affect the ADC accuracy.

Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit
	Total upadjusted error ⁽²⁾	$f_{ADC} = 2 MHz$	1.1	2	
ILTI		f _{ADC} = 4 MHz	1.6	2.5	
IE - I	Offset $\operatorname{orror}^{(2)}$	$f_{ADC} = 2 MHz$	0.7	1.5	
I⊏OI	Oliset endly	f _{ADC} = 4 MHz	1.3	2	
IE . I	$Gain or ror^{(2)}$	f _{ADC} = 2 MHz	0.2	1.5	
I⊏GI	Gainenor	f _{ADC} = 4 MHz	0.5	2	LOD
	Differential linearity error ⁽²⁾	f _{ADC} = 2 MHz	0.7	1	
I⊏DI		f _{ADC} = 4 MHz	0.7	1	
	Integral linearity error ⁽²⁾	$f_{ADC} = 2 MHz$	0.6	1.5	
IFF		f _{ADC} = 4 MHz	0.6	1.5	

Table 46. ADC accuracy wit	h R $_{\Lambda IN}$ < 10 kΩ R $_{\Lambda II}$	$V_{\rm DDA} = 3.3 V$

10.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during product characterization.

Functional EMS (electromagnetic susceptibility)

While executing a simple application (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).

- **ESD**: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 61000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709.

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be recovered by applying a low state on the NRST pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Symbol	Parameter	Conditions	Level/class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	$\label{eq:VD} \begin{array}{l} V_{DD} = 5 \mbox{ V}, T_A = 25 ^\circ\mbox{C}, \\ f_{MASTER} = 16 \mbox{ MHz}, \\ \mbox{conforming to IEC 61000-4-2} \end{array}$	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$\label{eq:VD} \begin{array}{l} V_{DD} = 5 \mbox{ V, } T_A = 25 \mbox{ °C}, \\ f_{MASTER} = 16 \mbox{ MHz}, \\ \mbox{ conforming to IEC 61000-4-4} \end{array}$	4A

Table	47	FMS	data
Iabic	T /.		uala

uata						
Cumb al		mm		inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.300	0.370	0.450	0.0118	0.0146	0.0177
С	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.600	-	-	0.2205	-
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.600	-	-	0.2205	-
е	-	0.800	-	-	0.0315	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.100	-	-	0.0039

Table 56. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package mechanical data

1. Values in inches are converted from mm and rounded to four decimal places.

Figure 57. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat recommended footprint

1. Dimensions are expressed in millimeters.

DocID14733 Rev 13

12 STM8 development tools

Development tools for the STM8 microcontrollers include the full-featured STice emulation system supported by a complete software tool package including C compiler, assembler and integrated development environment with high-level language debugger. In addition, the STM8 is to be supported by a complete range of tools including starter kits, evaluation boards and a low-cost in-circuit debugger/programmer.

12.1 Emulation and in-circuit debugging tools

The STice emulation system offers a complete range of emulation and in-circuit debugging features on a platform that is designed for versatility and cost-effectiveness. In addition, STM8 application development is supported by a low-cost in-circuit debugger/programmer.

The STice is the fourth generation of full featured emulators from STMicroelectronics. It offers new advanced debugging capabilities including profiling and coverage to help detect and eliminate bottlenecks in application execution and dead code when fine tuning an application.

In addition, STice offers in-circuit debugging and programming of STM8 microcontrollers via the STM8 single wire interface module (SWIM), which allows non-intrusive debugging of an application while it runs on the target microcontroller.

For improved cost effectiveness, STice is based on a modular design that allows you to order exactly what you need to meet the development requirements and to adapt the emulation system to support existing and future ST microcontrollers.

STice key features

- Occurrence and time profiling and code coverage (new features)
- Advanced breakpoints with up to 4 levels of conditions
- Data breakpoints
- Program and data trace recording up to 128 KB records
- Read/write on the fly of memory during emulation
- In-circuit debugging/programming via SWIM protocol
- 8-bit probe analyzer
- 1 input and 2 output triggers
- Power supply follower managing application voltages between 1.62 to 5.5 V
- Modularity that allows you to specify the components you need to meet the development requirements and adapt to future requirements
- Supported by free software tools that include integrated development environment (IDE), programming software interface and assembler for STM8.

Date	Revision	Changes
14-Sep-2010	10	Added part number STM8S208M8 to <i>Table 1: Device summary</i> . Updated "reset state" of <i>Table 5: Legend/abbreviations for pinout table</i> . Added footnote <i>4</i> to <i>Table 6: Pin description</i> . <i>Table 9: General hardware register map</i> : standardized all reset state values; updated the reset state values of RST_SR, CLK_SWCR, CLK_HSITRIMR, CLK_SWIMCCR, IWDG_KR, and ADC_DRx registers; added the reset values of the CAN paged registers. <i>Figure 36: Recommended reset pin protection</i> : replaced 0.01 µF with 0.1 µF. <i>Figure 40: Typical application with I2C bus and timing diagram</i> : $t_{w(SCKH)}, t_{w(SCKL)}, t_{r(SCK)}, and t_{f(SCK)}$ replaced by $t_{w(SCLH)}, t_{w(SCLL)}, t_{w(SCLL)}$
22-Mar-2011	11	Table 1: Device summary: added STM8S207K8. Table 2: STM8S20xxx performance line features: added STM8S207K8 device and changed the RAM value of all other devices to 6 Kbytes. Figure 5, Figure 4, Figure 5, and Figure 7: removed TIM1_CH4 from pins 80, 64, 48, and 32 respectively. Table 6: Pin description: updated note 3 and added note 5. Table 9: General hardware register map: removed I2C_PECR register. Section 10.3.7: Reset pin characteristics: added text regarding the rest network.
10-Feb-2012	12	 Figure 1: STM8S20xxx block diagram: updated POR/PDR and BOR; updated LINUART input; added legend. Table 18: General operating conditions: updated V_{CAP}. Table 26: Total current consumption in halt mode at VDD = 5 V: updated title, modified existing max column, and added new max column (at 125 °C) with data. Table 37: I/O static characteristics: added new condition and new max values for rise and fall time; added footnote 3; updated Typ and max pull-up resistor values. Section 10.3.7: Reset pin characteristics: updated cross reference in text below Figure 35 Table 41: NRST pin characteristics: updated Typ and max values of the NRST pull-up resistor.

