

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	52
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	1.5K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	2.95V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8s207r8t6tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Asynchronous communication (UART mode)

- Full duplex communication NRZ standard format (mark/space)
- Programmable transmit and receive baud rates up to 1 Mbit/s (f_{CPU}/16) and capable of following any standard baud rate regardless of the input frequency
- Separate enable bits for transmitter and receiver
 - Two receiver wakeup modes:
 - Address bit (MSB)
 - Idle line (interrupt)
- Transmission error detection with interrupt generation
- Parity control

LIN master capability

- Emission: Generates 13-bit sync break frame
- Reception: Detects 11-bit break frame

LIN slave mode

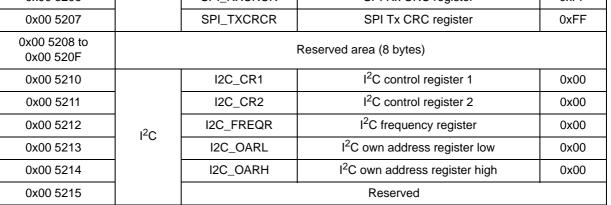
- Autonomous header handling one single interrupt per valid message header
- Automatic baud rate synchronization maximum tolerated initial clock deviation ±15%
- Sync delimiter checking
- 11-bit LIN sync break detection break detection always active
- Parity check on the LIN identifier field
- LIN error management
- Hot plugging support

4.14.3 SPI

- Maximum speed: 10 Mbit/s (f_{MASTER}/2) both for master and slave
- Full duplex synchronous transfers
- Simplex synchronous transfers on two lines with a possible bidirectional data line
- Master or slave operation selectable by hardware or software
- CRC calculation
- 1 byte Tx and Rx buffer
- Slave/master selection input pin

	Pin	num	ber					Inpu	t		Out			,		
LQFP80	LQFP64	LQFP48	LQFP44	LQFP32	Pin name	Type	floating	ndw	Ext. interrupt	High sink	Speed	OD	ЬР	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
12	12	12	11	-	PA6/UART1_CK	I/O	X	Х	х	HS	О3	х	х	Port A6	UART1 synchronous clock	
13	-	-	-	-	PH0	I/O	<u>X</u>	Х		HS	O3	Х	Х	Port H0		
14	-	-	-	-	PH1	I/O	<u>X</u>	Х		HS	O3	Х	Х	Port H1		
15	-	-	-	-	PH2	I/O	<u>X</u>	Х			01	Х	Х	Port H2		
16	-	-	-	-	PH3	I/O	<u>X</u>	Х			01	Х	Х	Port H3	A 1	
17	13	-	-	-	PF7/AIN15	I/O	<u>X</u>	Х			01	Х	Х	Port F7	Analog input 15	
18	14	-	-	-	PF6/AIN14	I/O	<u>X</u>	х			01	Х	Х	Port F6	Analog input 14	
19	15	-	-	-	PF5/AIN13	I/O	X	х			01	х	х	Port F5	Analog input 13	
20	16	-	-	8	PF4/AIN12	I/O	X	х			01	х	х	Port F4	Analog input 12	
21	17	-	-	-	PF3/AIN11	I/O	X	Х			01	х	х	Port F3	Analog input 11	
22	18	-	-	-	V _{REF+}	s								ADC pos voltage	tive reference	
23	19	13	12		V _{DDA}	S								Analog p	ower supply	
24	20	14	13	10	V _{SSA}	S								Analog gi	round	
25	21	-	-	-	V _{REF-}	S								ADC neg voltage	ative reference	
26	22	-	-	-	PF0/AIN10	I/O	<u>x</u>	х			01	х	х	Port F0	Analog input 10	
27	23	15	14	-	PB7/AIN7	I/O	X	х	Х		01	х	Х	Port B7	Analog input 7	
28	24	16	15	-	PB6/AIN6	I/O	X	х	Х		01	х	х	Port B6	Analog input 6	
29	25	17	16	11	PB5/AIN5	I/O	X	х	Х		01	х	х	Port B5	Analog input 5	l ² C_SDA [AFR6]
30	26	18	17	12	PB4/AIN4	I/O	X	х	х		01	х	х	Port B4	Analog input 4	I ² C_SCL [AFR6]

Table 6. Pin description (continued)



Address	Block	Register label	Register name	Reset status		
0x00 5050 to 0x00 5059			Reserved area (10 bytes)			
0x00 505A		FLASH_CR1	Flash control register 1	0x00		
0x00 505B		FLASH_CR2	Flash control register 2	0x00		
0x00 505C		FLASH_NCR2	Flash complementary control register 2	0xFF		
0x00 505D	Flash	FLASH _FPR	Flash protection register	0x00		
0x00 505E		FLASH _NFPR	Flash complementary protection register	0xFF		
0x00 505F		FLASH _IAPSR	Flash in-application programming status register	0x00		
0x00 5060 to 0x00 5061			Reserved area (2 bytes)			
0x00 5062	Flash	FLASH_PUKR	Flash Program memory unprotection register	0x00		
0x00 5063			Reserved area (1 byte)			
0x00 5064	Flash	FLASH _DUKR	FLASH _DUKR Data EEPROM unprotection register			
0x00 5065 to 0x00 509F			Reserved area (59 bytes)			
0x00 50A0	ІТС	EXTI_CR1	External interrupt control register 1	0x00		
0x00 50A1		EXTI_CR2	External interrupt control register 2	0x00		
0x00 50A2 to 0x00 50B2			Reserved area (17 bytes)			
0x00 50B3	RST	RST_SR	Reset status register	0xXX ⁽¹		
0x00 50B4 to 0x00 50BF			Reserved area (12 bytes)			
0x00 50C0	CLK	CLK_ICKR	Internal clock control register	0x01		
0x00 50C1	- CLK	CLK_ECKR	External clock control register	0x00		
0x00 50C2			Reserved area (1 byte)			
0x00 50C3		CLK_CMSR	Clock master status register	0xE1		
0x00 50C4]	CLK_SWR	Clock master switch register	0xE1		
0x00 50C5		CLK_SWCR	Clock switch control register	0xXX		
0x00 50C6		CLK_CKDIVR	Clock divider register	0x18		
0x00 50C7	CLK	CLK_PCKENR1	Peripheral clock gating register 1	0xFF		
0x00 50C8		CLK_CSSR	Clock security system register	0x00		
0x00 50C9		CLK_CCOR	Configurable clock control register	0x00		
0x00 50CA		CLK_PCKENR2	Peripheral clock gating register 2	0xFF		
0x00 50CB		CLK_CANCCR	CAN clock control register	0x00		

Table 9. General hardware register map

	Table 9	. General hardwar	e register map (continued)	
Address	Block	Register label	Register name	Reset status
0x00 50CC		CLK_HSITRIMR	HSI clock calibration trimming register	0x00
0x00 50CD	CLK	CLK_SWIMCCR	SWIM clock control register	0bXXXX XXX0
0x00 50CE to 0x00 50D0			Reserved area (3 bytes)	
0x00 50D1	WWDG	WWDG_CR	WWDG control register	0x7F
0x00 50D2	- www.DG	WWDG_WR	WWDR window register	0x7F
0x00 50D3 to 0x00 50DF			Reserved area (13 bytes)	
0x00 50E0		IWDG_KR	IWDG key register	0xXX ⁽²⁾
0x00 50E1	IWDG	IWDG_PR	IWDG prescaler register	0x00
0x00 50E2		IWDG_RLR	IWDG reload register	0xFF
0x00 50E3 to 0x00 50EF			Reserved area (13 bytes)	
0x00 50F0		AWU_CSR1	AWU control/status register 1	0x00
0x00 50F1	AWU	AWU_APR	AWU asynchronous prescaler buffer register	0x3F
0x00 50F2		AWU_TBR	AWU timebase selection register	0x00
0x00 50F3	BEEP	BEEP_CSR	BEEP control/status register	0x1F
0x00 50F4 to 0x00 50FF			Reserved area (12 bytes)	
0x00 5200		SPI_CR1	SPI control register 1	0x00
0x00 5201		SPI_CR2	SPI control register 2	0x00
0x00 5202		SPI_ICR	SPI interrupt control register	0x00
0x00 5203	SPI	SPI_SR	SPI status register	0x02
0x00 5204	551	SPI_DR	SPI data register	0x00
0x00 5205		SPI_CRCPR	SPI CRC polynomial register	0x07
0x00 5206		SPI_RXCRCR	SPI Rx CRC register	0xFF
0x00 5207		SPI_TXCRCR	SPI Tx CRC register	0xFF
0x00 5208 to 0x00 520F			Reserved area (8 bytes)	
0x00 5210		I2C_CR1	I ² C control register 1	0x00
0x00 5211		12C CR2	I ² C control register 2	0x00

Address	Block	Register label	Register name	Reset status		
0x00 5428		CAN_P0	CAN paged register 0	0xXX ⁽³⁾		
0x00 5429		CAN_P1	CAN paged register 1	0xXX ⁽³⁾		
0x00 542A		CAN_P2	CAN paged register 2	0xXX ⁽³⁾		
0x00 542B	_	CAN_P3	CAN paged register 3	0xXX ⁽³⁾		
0x00 542C	_	CAN_P4	CAN paged register 4	0xXX ⁽³⁾		
0x00 542D	_	CAN_P5	CAN paged register 5	0xXX ⁽³⁾		
0x00 542E	_	CAN_P6	CAN paged register 6	0xXX ⁽³⁾		
0x00 542F		CAN_P7	CAN paged register 7	0xXX ⁽³⁾		
0x00 5430	- beCAN	CAN_P8	CAN paged register 8	0xXX ⁽³⁾		
0x00 5431	_	CAN_P9	CAN paged register 9	0xXX ⁽³⁾		
0x00 5432	_	CAN_PA	CAN paged register A	0xXX ⁽³⁾		
0x00 5433	-	CAN_PB	CAN paged register B	0xXX ⁽³⁾		
0x00 5434	_	CAN_PC	CAN paged register C	0xXX ⁽³⁾		
0x00 5435	_	CAN_PD	CAN paged register D	0xXX ⁽³⁾		
0x00 5436	1	CAN_PE	CAN paged register E	0xXX ⁽³⁾		
0x00 5437		CAN_PF	CAN paged register F	0xXX ⁽³⁾		
0x00 5438 to 0x00 57FF		Reserved area (968 bytes)				

Table 0	Gonoral	hardwaro	rogistor	man	(continued)	
Table 9.	General	naruware	register	map	(continued)	,

1. Depends on the previous reset source.

2. Write only register.

3. If the bootloader is enabled, it is initialized to 0x00.

Option byte no.	Description
	LSI_EN: Low speed internal clock enable 0: LSI clock is not available as CPU clock source 1: LSI clock is available as CPU clock source
0070	IWDG_HW: Independent watchdog0: IWDG Independent watchdog activated by software1: IWDG Independent watchdog activated by hardware
OPT3	WWDG_HW: Window watchdog activation0: WWDG window watchdog activated by software1: WWDG window watchdog activated by hardware
	WWDG_HALT: Window watchdog reset on halt 0: No reset generated on halt if WWDG active 1: Reset generated on halt if WWDG active
	EXTCLK: <i>External clock selection</i> 0: External crystal connected to OSCIN/OSCOUT 1: External clock signal on OSCIN
OPT4	CKAWUSEL: Auto wakeup unit/clock 0: LSI clock source selected for AWU 1: HSE clock with prescaler selected as clock source for AWU
	PRSC[1:0] AWU clock prescaler 00: 24 MHz to 128 kHz prescaler 01: 16 MHz to 128 kHz prescaler 10: 8 MHz to 128 kHz prescaler 11: 4 MHz to 128 kHz prescaler
OPT5	HSECNT[7:0]: HSE crystal oscillator stabilization time This configures the stabilization time. 0x00: 2048 HSE cycles 0xB4: 128 HSE cycles 0xD2: 8 HSE cycles 0xE1: 0.5 HSE cycles
OPT6	Reserved
OPT7	 WAITSTATE Wait state configuration This option configures the number of wait states inserted when reading from the Flash/data EEPROM memory. 1 wait state is required if f_{CPU} > 16 MHz. 0: No wait state 1: 1 wait state

	Table 13. O	ption byte	description	(continued)
--	-------------	------------	-------------	-------------

Total current consumption and timing in forced reset state

Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit
I _{DD(R)}	Supply current in reset state	$V_{DD} = 5 V$	1.6		mA
	Supply current in reset state	V _{DD} = 3.3 V	0.8		ША
t _{RESETBL}	Reset release to bootloader vector fetch			150	μs

Table 29. Total current consumption and timing in forced reset state

1. Data guaranteed by design, not tested in production.

Current consumption of on-chip peripherals

Subject to general operating conditions for V_{DD} and T_A .

HSI internal RC/ $f_{CPU} = f_{MASTER} = 16$ MHz.

Table 30. Peripheral current consumption

Symbol	Parameter	Тур.	Unit
I _{DD(TIM1)}	TIM1 supply current ⁽¹⁾	220	
I _{DD(TIM2)}	TIM2 supply current ⁽¹⁾	120	
I _{DD(TIM3)}	TIM3 timer supply current ⁽¹⁾	100	
I _{DD(TIM4)}	TIM4 timer supply current ⁽¹⁾	25	
I _{DD(UART1)}	UART1 supply current ⁽²⁾	90	
I _{DD(UART3)}	UART3 supply current ⁽²⁾	110	μA
I _{DD(SPI)}	SPI supply current ⁽²⁾	40	
I _{DD(I} ² C)	I ² C supply current ⁽²⁾	50	
I _{DD(CAN)}	beCAN supply current ⁽²⁾	210	
I _{DD(ADC2)}	ADC2 supply current when converting ⁽³⁾	1000	

1. Data based on a differential I_{DD} measurement between reset configuration and timer counter running at 16 MHz. No IC/OC programmed (no I/O pads toggling). Not tested in production.

 Data based on a differential I_{DD} measurement between the on-chip peripheral when kept under reset and not clocked and the on-chip peripheral when clocked and not kept under reset. No I/O pads toggling. Not tested in production.

Data based on a differential I_{DD} measurement between reset configuration and continuous A/D conversions. Not tested in production.

Current consumption curves

Figure 14 and *Figure 15* show typical current consumption measured with code executing in RAM.

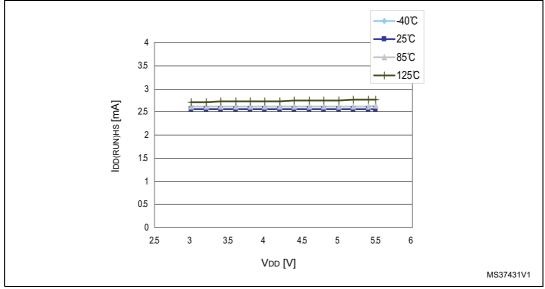
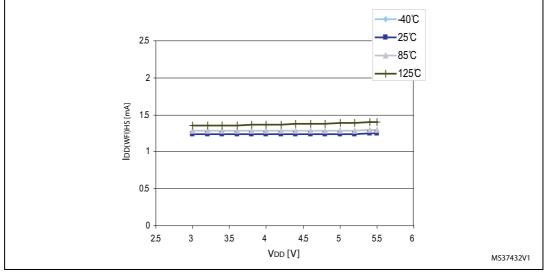



Figure 14. Typ. I_{DD(RUN)} vs V_{DD}, HSI RC osc, f_{CPU} = 16 MHz

10.3.3 External clock sources and timing characteristics

HSE user external clock

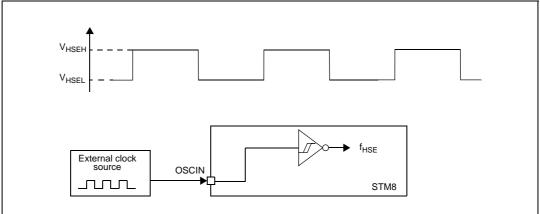

Subject to general operating conditions for V_{DD} and T_A .

Table 31. HSE us	ser external clock	characteristics
------------------	--------------------	-----------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency		0		24	MHz
V _{HSEH} ⁽¹⁾	OSCIN input pin high level voltage		0.7 x V _{DD}		V _{DD} + 0.3 V	V
V _{HSEL} ⁽¹⁾	OSCIN input pin low level voltage		V _{SS}		0.3 x V _{DD}	V
I _{LEAK_HSE}	OSCIN input leakage current	$V_{SS} < V_{IN} < V_{DD}$	-1		1	μA

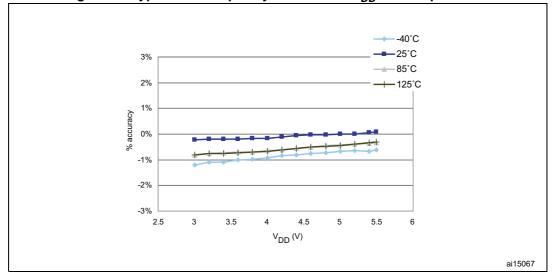
1. Data based on characterization results, not tested in production.

HSE crystal/ceramic resonator oscillator

The HSE clock can be supplied with a 1 to 24 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and start-up stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...).

10.3.4 Internal clock sources and timing characteristics

Subject to general operating conditions for V_{DD} and $T_{\text{A}}\text{.}\ f_{\text{HSE}}$


High speed internal RC oscillator (HSI)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency			16		MHz
	Accuracy of HSI oscillator	Trimmed by the CLK_HSITRIMR register for given V_{DD} and T_A conditions	-1.0 ⁽¹⁾		1.0	
		V _{DD} = 5 V, T _A = 25 °C	-1.5		1.5	
ACC _{HSI}	Accuracy of HSI assoillator		-2.2		2.2	%
	Accuracy of HSI oscillator (factory calibrated)	$\begin{array}{l} 2.95 \text{ V} \leq \text{ V}_{DD} \leq \text{ 5.5 V,} \\ \text{-40 °C} \leq \text{ T}_A \leq \text{ 125 °C} \end{array}$	-3.0 ⁽²⁾		3.0 ⁽²⁾	
t _{su(HSI)}	HSI oscillator wakeup time including calibration				1.0 ⁽¹⁾	μs
I _{DD(HSI)}	HSI oscillator power consumption			170	250 ⁽²⁾	μA

Table 33. HSI oscillator characteristics

1. Guaranteed by design, not tested in production.

2. Data based on characterization results, not tested in production

Figure 18. Typical HSI frequency variation vs V_{DD} at 4 temperatures

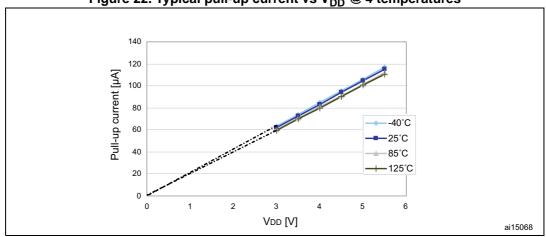


Figure 22. Typical pull-up current vs $V_{\text{DD}} @$ 4 temperatures

1. The pull-up is a pure resistor (slope goes through 0).

Symbol	Parameter	Conditions	Min	Max	Unit
M	Output low level with 8 pins sunk	$I_{IO} = 10 \text{ mA}, V_{DD} = 5 \text{ V}$		2	V
V _{OL}	Output low level with 4 pins sunk	I _{IO} = 4 mA, V _{DD} = 3.3 V		1 ⁽¹⁾	V
V	Output high level with 8 pins sourced	$I_{IO} = 10 \text{ mA}, V_{DD} = 5 \text{ V}$	2.8		V
V _{OH}	Output high level with 4 pins sourced	$I_{IO} = 4 \text{ mA}, V_{DD} = 3.3 \text{ V}$	2.1 ⁽¹⁾		v

Table 38. Output driving current (standard ports)

1. Data based on characterization results, not tested in production

Table 39.	Output driving	a current ((true oper	n drain ports)	
		,			

Symbol	Parameter	Conditions	Max	Unit
		$I_{IO} = 10 \text{ mA}, V_{DD} = 5 \text{ V}$	1	
V _{OL}	Output low level with 2 pins sunk	I _{IO} = 10 mA, V _{DD} = 3.3 V	1.5 ⁽¹⁾	V
		I _{IO} = 20 mA, V _{DD} = 5 V	2 ⁽¹⁾	

1. Data based on characterization results, not tested in production

Symbol	Parameter	Conditions	Min	Max	Unit
	Output low level with 8 pins sunk	$I_{IO} = 10 \text{ mA}, V_{DD} = 5 \text{ V}$		0.8	
V _{OL}	Output low level with 4 pins sunk	$I_{IO} = 10 \text{ mA}, V_{DD} = 3.3 \text{ V}$		1 ⁽¹⁾	
	Output low level with 4 pins sunk	$I_{IO} = 20 \text{ mA}, V_{DD} = 5 \text{ V}$		1.5 ⁽¹⁾	V
	Output high level with 8 pins sourced	$I_{IO} = 10 \text{ mA}, V_{DD} = 5 \text{ V}$	4.0		v
V _{OH}	Output high level with 4 pins sourced	$I_{IO} = 10 \text{ mA}, V_{DD} = 3.3 \text{ V}$	2.1 ⁽¹⁾		
	Output high level with 4 pins sourced	$I_{IO} = 20 \text{ mA}, V_{DD} = 5 \text{ V}$	3.3 ⁽¹⁾		

1. Data based on characterization results, not tested in production

10.3.7 Reset pin characteristics

Subject to general operating conditions for V_{DD} and T_{A} unless otherwise specified.

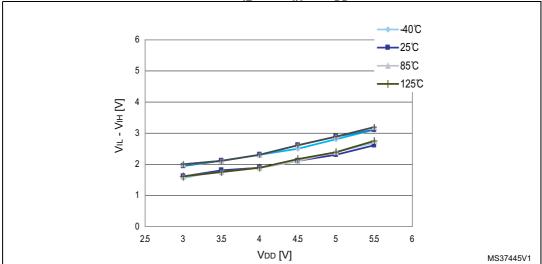
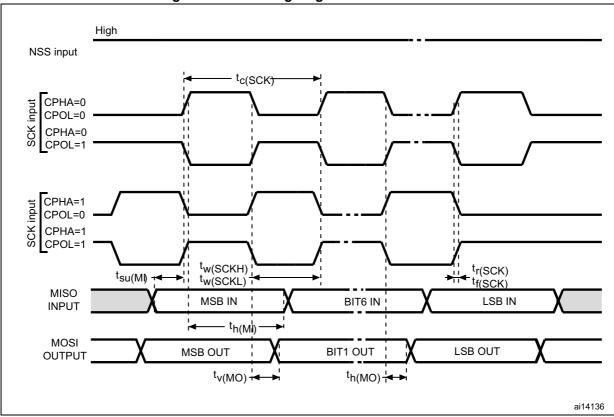

Symbol	Parameter	Conditions	Min	Typ ¹⁾	Max	Unit
V _{IL(NRST)}	NRST Input low level voltage ⁽¹⁾		-0.3 V		0.3 x V _{DD}	
V _{IH(NRST)}	NRST Input high level voltage ⁽¹⁾		$0.7 ext{ x V}_{ ext{DD}}$		V _{DD} + 0.3	V
V _{OL(NRST)}	NRST Output low level voltage (1)	I _{OL} = 2 mA			0.5	
R _{PU(NRST)}	NRST Pull-up resistor ⁽²⁾		30	55	80	kΩ
t _{IFP(NRST)}	NRST Input filtered pulse ⁽³⁾				75	ns
t _{INFP(NRST)}	NRST Input not filtered pulse ⁽³⁾		500			ns
t _{OP(NRST)}	NRST output pulse ⁽¹⁾		15			μs

Table 41.	NRST	pin	characteristics
		PIII	characteristics

1. Data based on characterization results, not tested in production.


2. The $\rm R_{\rm PU}$ pull-up equivalent resistor is based on a resistive transistor

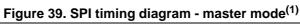

3. Data guaranteed by design, not tested in production.

Figure 33. Typical NRST $\rm V_{IL}$ and $\rm V_{IH}$ vs $\rm V_{DD}$ @ 4 temperatures

1. Measurement points are done at CMOS levels: 0.3 V_{DD} and 0.7 V_{DD}

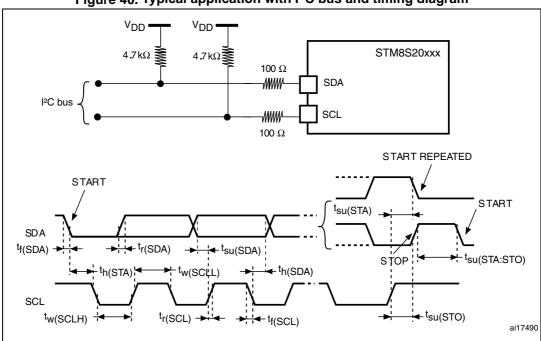
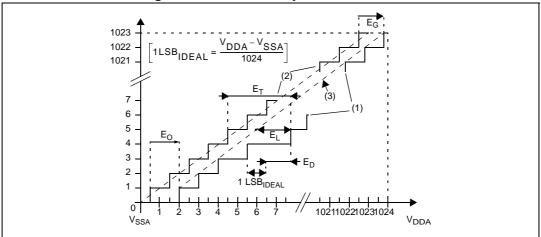
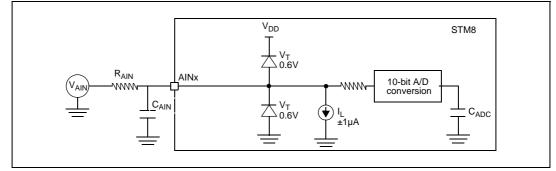



Figure 40. Typical application with I²C bus and timing diagram

1. Measurement points are made at CMOS levels: 0.3 x V_{DD} and 0.7 x V_{DD}



1. Example of an actual transfer curve.

- 2. The ideal transfer curve
- 3.

End point correlation line E_T = Total unadjusted error: maximum deviation between the actual and the ideal transfer curves. E_0 = Offset error: deviation between the first actual transition and the first ideal one. E_G = Gain error: deviation between the last ideal transition and the last actual one. E_D = Differential linearity error: maximum deviation between actual steps and the ideal one. E_L = Integral linearity error: maximum deviation between any actual transition and the end point correlation between any actual transition and the end point correlation line.

Static latch-up

Two complementary static tests are required on 10 parts to assess the latch-up performance:

- A supply overvoltage (applied to each power supply pin)
- A current injection (applied to each input, output and configurable I/O pin) is performed on each sample.

This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.

Symbol	Parameter	Conditions	Class ⁽¹⁾
		T _A = 25 °C	А
LU	LU Static latch-up class	$T_A = 85 \ ^{\circ}C$	А
		T _A = 125 °C	А

Table 50. I	Electrical	sensitivities
-------------	------------	---------------

1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B class strictly covers all the JEDEC criteria (international standard).

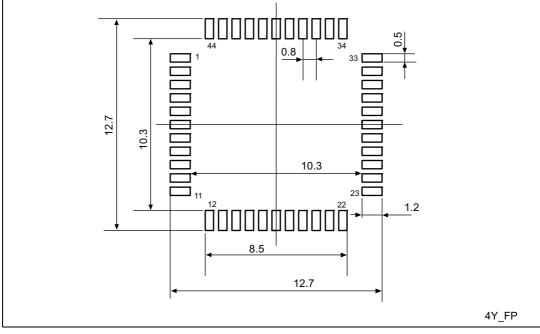


Figure 54. LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat recommended footprint

1. Dimensions are expressed in millimeters.

Device marking

The following figure shows the marking for the LQFP44 package.

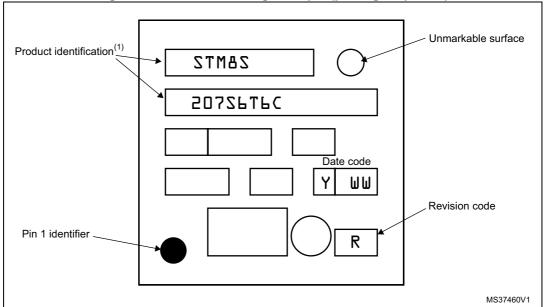


Figure 55. LQFP44 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

DocID14733 Rev 13

Device marking

The following figure shows the marking for the LQFP32 package.

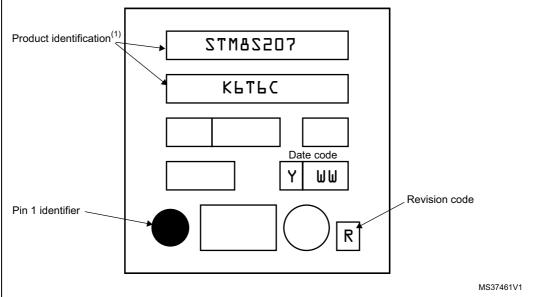


Figure 58. LQFP32 marking example (package top view)

Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. 1.

11.2 Thermal characteristics

The maximum chip junction temperature (T_{Jmax}) must never exceed the values given in *Table 18: General operating conditions on page 56.*

The maximum chip-junction temperature, T_{Jmax} , in degrees Celsius, may be calculated using the following equation:

 $T_{Jmax} = T_{Amax} + (P_{Dmax} \times \Theta_{JA})$

Where:

- T_{Amax} is the maximum ambient temperature in °C
- Θ_{JA} is the package junction-to-ambient thermal resistance in ° C/W
- P_{Dmax} is the sum of P_{INTmax} and P_{I/Omax} (P_{Dmax} = P_{INTmax} + P_{I/Omax})
- P_{INTmax} is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.
- $P_{I/Omax}$ represents the maximum power dissipation on output pins, where: $P_{I/Omax} = \Sigma (V_{OL}*I_{OL}) + \Sigma ((V_{DD}-V_{OH})*I_{OH})$, and taking account of the actual V_{OL}/I_{OL} and V_{OH}/I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
Θ_{JA}	Thermal resistance junction-ambient LQFP 80 - 14 x 14 mm	38	°C/W
Θ_{JA}	Thermal resistance junction-ambient LQFP 64 - 14 x 14 mm	45	°C/W
Θ_{JA}	Thermal resistance junction-ambient LQFP 64 - 10 x 10 mm	46	°C/W
Θ_{JA}	Thermal resistance junction-ambient LQFP 48 - 7 x 7 mm	57	°C/W
Θ_{JA}	Thermal resistance junction-ambient LQFP 44 - 10 x 10 mm	54	°C/W
Θ_{JA}	Thermal resistance junction-ambient LQFP 32 - 7 x 7 mm	60	°C/W

Table 57. Thermal characteristics	hermal characteristics ⁽¹⁾
-----------------------------------	---------------------------------------

1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection environment.

11.2.1 Reference document

JESD51-2 integrated circuits thermal test method environment conditions - natural convection (still air). Available from www.jedec.org.

13 Ordering information

Example:	STM8	S	208	М	В	т	6	В	TR
Product class -									
STM8 microcontroller									
Family type									
S = Standard									
Sub-family type ⁽²⁾									
208 = Full peripheral set									
207 = Intermediate peripheral set									
Pin count									
K = 32 pins									
S = 44 pins									
C = 48 pins									
R = 64 pins									
M = 80 pins									
Program memory size									
6 = 32 Kbyte									
8 = 64 Kbyte									
B = 128 Kbyte									
Package type									
T = LQFP									
Temperature range									
3 = -40 °C to 125 °C									
6 = -40 °C to 85 °C									
Package pitch]	
No character = 0.5 mm									
B = 0.65 mm									
C = 0.8 mm									
Packing –									
No character = Tray or tube									

 For a list of available options (e.g. memory size, package) and order-able part numbers or for further information on any aspect of this device, please go to <u>www.st.com</u> or contact the ST Sales Office nearest to you.

2. Refer to Table 2: STM8S20xxx performance line features for detailed description.

