E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	52
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	2.95V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8s207rbt3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Description

The STM8S20xxx performance line 8-bit microcontrollers offer from 32 to 128 Kbytes Flash program memory. They are referred to as high-density devices in the STM8S microcontroller family reference manual.

All STM8S20xxx devices provide the following benefits: reduced system cost, performance robustness, short development cycles, and product longevity.

The system cost is reduced thanks to an integrated true data EEPROM for up to 300 k write/erase cycles and a high system integration level with internal clock oscillators, watchdog, and brown-out reset.

Device performance is ensured by 20 MIPS at 24 MHz CPU clock frequency and enhanced characteristics which include robust I/O, independent watchdogs (with a separate clock source), and a clock security system.

Short development cycles are guaranteed due to application scalability across a common family product architecture with compatible pinout, memory map and modular peripherals. Full documentation is offered with a wide choice of development tools.

Product longevity is ensured in the STM8S family thanks to their advanced core which is made in a state-of-the art technology for applications with 2.95 V to 5.5 V operating supply.

Device	Pin count	Max. number of GPIOs (I/O)	Ext. interrupt pins	Timer CAPCOM channels	Timer complementary outputs	A/D converter channels	High sink I/Os	High density Flash program memory (bytes)	Data EEPROM (bytes	RAM (bytes)	beCAN interface
STM8S207MB	80	68	37	9	3	16	18	128 K	2048	6 K	
STM8S207M8	80	68	37	9	3	16	18	64 K	2048	6 K	
STM8S207RB	64	52	36	9	3	16	16	128 K	2048	6 K	
STM8S207R8	64	52	36	9	3	16	16	64 K	1536	6 K	
STM8S207R6	64	52	36	9	3	16	16	32 K	1024	6 K	
STM8S207CB	48	38	35	9	3	10	16	128 K	2048	6 K	
STM8S207C8	48	38	35	9	3	10	16	64 K	1536	6 K	No
STM8S207C6	48	38	35	9	3	10	16	32 K	1024	6 K	
STM8S207SB	44	34	31	8	3	9	15	128 K	1536	6 K	
STM8S207S8	44	34	31	8	3	9	15	64 K	1536	6 K	
STM8S207S6	44	34	31	8	3	9	15	32 K	1024	6 K	
STM8S207K8	32	25	23	8	3	7	12	64 K	1024	6 K	
STM8S207K6	32	25	23	8	3	7	12	32 K	1024	6 K	
STM8S208MB	80	68	37	9	3	16	18	128 K	2048	6 K	
STM8S208RB	64	52	37	9	3	16	16	128 K	2048	6 K	
STM8S208R8	64	52	37	9	3	16	16	64 K	2048	6 K	
STM8S208R6	64	52	37	9	3	16	16	32 K	2048	6 K	
STM8S208CB	48	38	35	9	3	10	16	128 K	2048	6 K	Vac
STM8S208C8	48	38	35	9	3	10	16	64 K	2048	6 K	103
STM8S208C6	48	38	35	9	3	10	16	32 K	2048	6 K	
STM8S208SB	44	34	31	8	3	9	15	128 K	1536	6 K	
STM8S208S8	44	34	31	8	3	9	15	64 K	1536	6 K	
STM8S208S6	44	34	31	8	3	9	15	32 K	1536	6 K	

Table 2. STM8S20xxx performance line features

4.2 Single wire interface module (SWIM) and debug module (DM)

The single wire interface module and debug module permits non-intrusive, real-time incircuit debugging and fast memory programming.

SWIM

Single wire interface module for direct access to the debug module and memory programming. The interface can be activated in all device operation modes. The maximum data transmission speed is 145 bytes/ms.

Debug module

The non-intrusive debugging module features a performance close to a full-featured emulator. Beside memory and peripherals, also CPU operation can be monitored in real-time by means of shadow registers.

- R/W to RAM and peripheral registers in real-time
- R/W access to all resources by stalling the CPU
- Breakpoints on all program-memory instructions (software breakpoints)
- Two advanced breakpoints, 23 predefined configurations

4.3 Interrupt controller

- Nested interrupts with three software priority levels
- 32 interrupt vectors with hardware priority
- Up to 37 external interrupts on six vectors including TLI
- Trap and reset interrupts

4.4 Flash program and data EEPROM memory

- Up to 128 Kbytes of high density Flash program single voltage Flash memory
- Up to 2K bytes true data EEPROM
- Read while write: Writing in data memory possible while executing code in program memory.
- User option byte area

Write protection (WP)

Write protection of Flash program memory and data EEPROM is provided to avoid unintentional overwriting of memory that could result from a user software malfunction.

There are two levels of write protection. The first level is known as MASS (memory access security system). MASS is always enabled and protects the main Flash program memory, data EEPROM and option bytes.

To perform in-application programming (IAP), this write protection can be removed by writing a MASS key sequence in a control register. This allows the application to write to data EEPROM, modify the contents of main program memory or the device option bytes.

A second level of write protection, can be enabled to further protect a specific area of memory known as UBC (user boot code). Refer to *Figure 2*.

DocID14733 Rev 13

4.6 **Power management**

For efficient power management, the application can be put in one of four different lowpower modes. You can configure each mode to obtain the best compromise between lowest power consumption, fastest start-up time and available wakeup sources.

- *Wait mode*: In this mode, the CPU is stopped, but peripherals are kept running. The wakeup is performed by an internal or external interrupt or reset.
- Active halt mode with regulator on: In this mode, the CPU and peripheral clocks are stopped. An internal wakeup is generated at programmable intervals by the auto wake up unit (AWU). The main voltage regulator is kept powered on, so current consumption is higher than in active halt mode with regulator off, but the wakeup time is faster. Wakeup is triggered by the internal AWU interrupt, external interrupt or reset.
- Active halt mode with regulator off: This mode is the same as active halt with regulator on, except that the main voltage regulator is powered off, so the wake up time is slower.
- *Halt mode*: In this mode the microcontroller uses the least power. The CPU and peripheral clocks are stopped, the main voltage regulator is powered off. Wakeup is triggered by external event or reset.

4.7 Watchdog timers

The watchdog system is based on two independent timers providing maximum security to the applications.

Activation of the watchdog timers is controlled by option bytes or by software. Once activated, the watchdogs cannot be disabled by the user program without performing a reset.

Window watchdog timer

The window watchdog is used to detect the occurrence of a software fault, usually generated by external interferences or by unexpected logical conditions, which cause the application program to abandon its normal sequence.

The window function can be used to trim the watchdog behavior to match the application perfectly.

The application software must refresh the counter before time-out and during a limited time window.

A reset is generated in two situations:

- 1. Timeout: At 16 MHz CPU clock the time-out period can be adjusted between 75 μ s up to 64 ms.
- 2. Refresh out of window: The downcounter is refreshed before its value is lower than the one stored in the window register.

Independent watchdog timer

The independent watchdog peripheral can be used to resolve processor malfunctions due to hardware or software failures.

It is clocked by the 128 kHz LSI internal RC clock source, and thus stays active even in case of a CPU clock failure

The IWDG time base spans from 60 μ s to 1 s.

4.8 Auto wakeup counter

- Used for auto wakeup from active halt mode
- Clock source: Internal 128 kHz internal low frequency RC oscillator or external clock
- LSI clock can be internally connected to TIM3 input capture channel 1 for calibration

4.9 Beeper

The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in the range of 1, 2 or 4 kHz.

4.10 TIM1 - 16-bit advanced control timer

This is a high-end timer designed for a wide range of control applications. With its complementary outputs, dead-time control and center-aligned PWM capability, the field of applications is extended to motor control, lighting and half-bridge driver

- 16-bit up, down and up/down autoreload counter with 16-bit prescaler
- Four independent capture/compare channels (CAPCOM) configurable as input capture, output compare, PWM generation (edge and center aligned mode) and single pulse mode output
- Synchronization module to control the timer with external signals
- Break input to force the timer outputs into a defined state
- Three complementary outputs with adjustable dead time
- Encoder mode
- Interrupt sources: 3 x input capture/output compare, 1 x overflow/update, 1 x break

4.11 TIM2, TIM3 - 16-bit general purpose timers

- 16-bit autoreload (AR) up-counter
- 15-bit prescaler adjustable to fixed power of 2 ratios 1...32768
- Timers with 3 or 2 individually configurable capture/compare channels
- PWM mode
- Interrupt sources: 2 or 3 x input capture/output compare, 1 x overflow/update

Address	Block	Register label	Register name	Reset status
0x00 532B		TIM3_ARRH	TIM3 auto-reload register high	0xFF
0x00 532C		TIM3_ARRL	TIM3 auto-reload register low	0xFF
0x00 532D		TIM3_CCR1H	TIM3 capture/compare register 1 high	0x00
0x00 532E	1 111/13	TIM3_CCR1L	TIM3 capture/compare register 1 low	0x00
0x00 532F		TIM3_CCR2H	TIM3 capture/compare register 2 high	0x00
0x00 5330		TIM3_CCR2L	TIM3 capture/compare register 2 low	0x00
0x00 5331 to 0x00 533F			Reserved area (15 bytes)	
0x00 5340		TIM4_CR1	TIM4 control register 1	0x00
0x00 5341		TIM4_IER	TIM4 interrupt enable register	0x00
0x00 5342		TIM4_SR	TIM4 status register	0x00
0x00 5343	TIM4	TIM4_EGR	TIM4 event generation register	0x00
0x00 5344		TIM4_CNTR	TIM4 counter	0x00
0x00 5345	-	TIM4_PSCR	TIM4 prescaler register	0x00
0x00 5346		TIM4_ARR	TIM4 auto-reload register	0xFF
0x00 5347 to 0x00 53FF		F	Reserved area (185 bytes)	
0x00 5400		ADC _CSR	ADC control/status register	0x00
0x00 5401		ADC_CR1	ADC configuration register 1	0x00
0x00 5402		ADC_CR2	ADC configuration register 2	0x00
0x00 5403		ADC_CR3	ADC configuration register 3	0x00
0x00 5404	ADOZ	ADC_DRH	ADC data register high	0xXX
0x00 5405		ADC_DRL	ADC data register low	0xXX
0x00 5406		ADC_TDRH	ADC Schmitt trigger disable register high	0x00
0x00 5407		ADC_TDRL	ADC Schmitt trigger disable register low	0x00
0x00 5408 to 0x00 541F		I	Reserved area (24 bytes)	
0x00 5420		CAN_MCR	CAN master control register	0x02
0x00 5421		CAN_MSR	CAN master status register	0x02
0x00 5422	-	CAN_TSR	CAN transmit status register	0x00
0x00 5423	boCAN	CAN_TPR	CAN_TPR CAN transmit priority register	
0x00 5424	DECAN	CAN_RFR	CAN receive FIFO register	0x00
0x00 5425		CAN_IER	CAN interrupt enable register	0x00
0x00 5426		CAN_DGR	CAN diagnosis register	0x0C
0x00 5427		CAN_FPSR	CAN page selection register	0x00

Table 0	Conorol	hardwara	register	mon	(continued)	
Table 9.	General	naruware	register	map	(continued)	,

Address	Block	Register Label	Register Name	Reset Status
0x00 7F98		DM_CSR1	DM debug module control/status register 1	0x10
0x00 7F99	DM	DM_CSR2	DM debug module control/status register 2	0x00
0x00 7F9A		DM_ENFCTR	DM enable function register	0xFF
0x00 7F9B to 0x00 7F9F			Reserved area (5 bytes)	

Table 10. CPU/SWIM/debug module/interrupt controller registers (continued)

1. Accessible by debug module only

2. Product dependent value, see Figure 8: Memory map.

Symbol	Parameter	Conditions			Max ⁽¹⁾	Unit
		f _{CPU} = f _{MASTER} = 24 MHz,	HSE crystal osc. (24 MHz)	4.0		
		T _A ≤ 105 °C	HSE user ext. clock (24 MHz)	3.7	7.3	
			HSE crystal osc. (16 MHz)	2.9		
	Supply current in	f _{CPU} = f _{MASTER} = 16 MHz	HSE user ext. clock (16 MHz)	2.7	5.8	
	run mode,		HSI RC osc. (16 MHz)	2.5	3.4	
	code executed	f _ f _ /128 _ 125 kHz	HSE user ext. clock (16 MHz)	1.2	4.1	
	from RAM	$1_{CPU} = 1_{MASTER}/120 = 123$ KHz	HSI RC osc. (16 MHz)	1.0	1.3	
		f _{CPU} = f _{MASTER} /128 = 15.625 kHz	HSI RC osc. (16MHz/8)	0.55		
I		f _{CPU} = f _{MASTER} = 128 kHz	LSI RC osc. (128 kHz)	0.45		m۸
'DD(RUN)		f _{CPU} = f _{MASTER} = 24 MHz,	HSE crystal osc. (24 MHz)	11.0		ша
		T _A ≤ 105 °C	HSE user ext. clock (24 MHz)	10.8	18.0	
			HSE crystal osc. (16 MHz)	8.4		
	Supply current in	f _{CPU} = f _{MASTER} = 16 MHz	HSE user ext. clock (16 MHz)	8.2	15.2	
	run mode,		HSI RC osc. (16 MHz)	8.1	13.2	
	code executed	f _{CPU} = f _{MASTER} = 2 MHz.	HSI RC osc. (16 MHz/8) ⁽²⁾	1.5		
	from Flash	f _{CPU} = f _{MASTER} /128 = 125 kHz	HSI RC osc. (16 MHz)	1.1		
		f _{CPU} = f _{MASTER} /128 = 15.625 kHz	HSI RC osc. (16 MHz/8)	0.6		
		f _{CPU} = f _{MASTER} = 128 kHz	LSI RC osc. (128 kHz)	0.55		

Table 21	Total current	concumption	with code	ovocution in	run modo at	V _ 2 2 V
Table ZT.	Total current	consumption	with code	execution in	run mode at	v c.c = ddv

1. Data based on characterization results, not tested in production.

2. Default clock configuration.

Figure 27. Typ. V_{OL} @ V_{DD} = 5 V (high sink ports)

Figure 31. Typ. V_{DD} - V_{OH} @ V_{DD} = 5 V (high sink ports)

10.3.9 I²C interface characteristics

Symbol	Parameter	Standard	mode l ² C	Fast mod	Unit			
Symbol	Falameter	Min ⁽²⁾	Max ⁽²⁾	Min ⁽²⁾	Max ⁽²⁾	Unit		
t _{w(SCLL)}	SCL clock low time	4.7		1.3				
t _{w(SCLH)}	SCL clock high time	4.0		0.6		μs		
t _{su(SDA)}	SDA setup time	250		100				
t _{h(SDA)}	SDA data hold time	0 ⁽³⁾		0 ⁽⁴⁾	900 ⁽³⁾			
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time		1000		300	ns		
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time		300		300			
t _{h(STA)}	START condition hold time	4.0		0.6		110		
t _{su(STA)}	Repeated START condition setup time	4.7		0.6		μs		
t _{su(STO)}	STOP condition setup time	4.0		0.6		μs		
t _{w(STO:STA)}	STOP to START condition time (bus free)	4.7		1.3		μs		
Cb	Capacitive load for each bus line		400		400	pF		
	0							

Table 43. I²C characteristics

1. $f_{MASTER},$ must be at least 8 MHz to achieve max fast I^2C speed (400kHz) $\,$

2. Data based on standard I²C protocol requirement, not tested in production

3. The maximum hold time of the start condition has only to be met if the interface does not stretch the low time

4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL

Electromagnetic interference (EMI)

Emission tests conform to the SAE IEC 61967-2 standard for test software, board layout and pin loading.

		Conditions						
Symbol	Parameter		Monitorod	Max f _{HSE} /f _{CPU} ⁽¹⁾			Unit	
		General conditions	frequency band	8 MHz/ 8 MHz	8 MHz/ 16 MHz	8 MHz/ 24 MHz		
		$V_{DD} = 5 V$ $T_A = 25 °C$ LQFP80 package conforming to SAE LEC	0.1MHz to 30 MHz	15	20	24		
	Peak level		30 MHz to 130 MHz	18	21	16	dBµV	
S _{EMI}			130 MHz to 1 GHz	-1	1	4		
	SAE EMI 61967-2 level		SAE EMI level	2	2.5	2.5		

Table 48.	EMI data	
-----------	----------	--

1. Data based on characterization results, not tested in production.

Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

Electrostatic discharge (ESD)

Electrostatic discharges (3 positive then 3 negative pulses separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test conforms to the JESD22-A114A/A115A standard. For more details, refer to the application note AN1181.

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (Human body model)	$T_A = 25^{\circ}C$, conforming to JESD22-A114	А	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (Charge device model)	T _A = 25°C, conforming to JESD22-C101	IV	1000	V

Table 49. ESD absolute maximum ratings

1. Data based on characterization results, not tested in production.

11 Package characteristics

To meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at *www.st.com*. ECOPACK® is an ST trademark.

11.1 Package information

11.1.1 LQFP80 package information

Figure 43. LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package outline

1. Drawing is not to scale.

Symbol		millimeters		inches			
Symbol	Min	Тур	Max	Min	Тур	Max	
A	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.220	0.320	0.380	0.0087	0.0126	0.0150	
С	0.090	-	0.200	0.0035	-	0.0079	

Table 52. LQFP64 - 64-pin, 14 x 14 mm low-profile quad flat package mechanical
data (continued)

Symbol	mm			inches ⁽¹⁾		
Зупрог	Min	Тур	Max	Min	Тур	Max
k	0.0 °	3.5 °	7.0 °	0.0 °	3.5 °	7.0 °
CCC			0.100			0.0039

1. Values in inches are converted from mm and rounded to four decimal places.

Figure 47. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline

Table 53. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data

Symbol	mm			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079

Symbol	mm			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
D	-	12.000	-	-	0.4724	-
D1	-	10.000	-	-	0.3937	-
D3	-	7.500	-	-	0.2953	-
E	-	12.000	-	-	0.4724	-
E1	-	10.000	-	-	0.3937	-
E3	-	7.500	-	-	0.2953	-
е	-	0.500	-	-	0.0197	-
θ	0°	3.5°	7°	0°	3.5°	7°
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
CCC	-	-	0.080	-	-	0.0031

Table 53. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanicaldata (continued)

1. Values in inches are converted from mm and rounded to four decimal places.

Figure 48. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint

DocID14733 Rev 13

Device marking

The following figure shows the marking for the LQFP64 package.

Figure 49. LQFP64 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

(0011111100)						
Symbol	mm			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.500	-	-	0.2165	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.080	-	-	0.0031

Table 54. LQFP48 - 48-pin, 7x 7 mm low-profile quad flat package mechanical(continued)

1. Values in inches are converted from mm and rounded to four decimal places.

1. Dimensions are expressed in millimeters.

11.1.4 LQFP44 package information

Figure 53. LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat package outline

Date	Revision	Changes
18-Feb-2015	13	 Updated: Figure 43: LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package outline Table 51: LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package mechanical data Figure 51: LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package mechanical data Figure 51: LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline Table 53: LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data Figure 50: LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline Table 54: LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline Table 54: LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical Figure 56: LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package mechanical Figure 56: LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package mechanical Figure 44: LQFP80 recommended footprint Figure 45: LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data Added: Figure 49: LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint Figure 51: LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint Figure 51: LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint Figure 51: LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat recommended footprint Figure 52: LQFP48 marking example (package top view) Figure 52: LQFP48 marking example (package top view) Figure 52: LQFP48 marking example (package top view) Figure 55: LQFP43 - 32-pin, 7 x 7 mm low-profile quad flat recommended footprint Figure 55: LQFP43 marking example (package top view) Figure 55: LQFP44 marking example (package top view) Figure 55: LQFP42 - 32-pin, 7 x 7 mm low-profile quad flat recommended footprint Figure 55: LQFP42 - 32-pin, 7 x 7 mm low-profile quad flat recommended footprint Figure 55: LQFP42 marking example (pa

Table 58. Document revision history (continued)

