E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	52
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	2.95V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8s207rbt6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Device	Pin count	Max. number of GPIOs (I/O)	Ext. interrupt pins	Timer CAPCOM channels	Timer complementary outputs	A/D converter channels	High sink I/Os	High density Flash program memory (bytes)	Data EEPROM (bytes	RAM (bytes)	beCAN interface
STM8S207MB	80	68	37	9	3	16	18	128 K	2048	6 K	
STM8S207M8	80	68	37	9	3	16	18	64 K	2048	6 K	
STM8S207RB	64	52	36	9	3	16	16	128 K	2048	6 K	
STM8S207R8	64	52	36	9	3	16	16	64 K	1536	6 K	
STM8S207R6	64	52	36	9	3	16	16	32 K	1024	6 K	
STM8S207CB	48	38	35	9	3	10	16	128 K	2048	6 K	
STM8S207C8	48	38	35	9	3	10	16	64 K	1536	6 K	No
STM8S207C6	48	38	35	9	3	10	16	32 K	1024	6 K	
STM8S207SB	44	34	31	8	3	9	15	128 K	1536	6 K	
STM8S207S8	44	34	31	8	3	9	15	64 K	1536	6 K	
STM8S207S6	44	34	31	8	3	9	15	32 K	1024	6 K	
STM8S207K8	32	25	23	8	3	7	12	64 K	1024	6 K	
STM8S207K6	32	25	23	8	3	7	12	32 K	1024	6 K	
STM8S208MB	80	68	37	9	3	16	18	128 K	2048	6 K	
STM8S208RB	64	52	37	9	3	16	16	128 K	2048	6 K	
STM8S208R8	64	52	37	9	3	16	16	64 K	2048	6 K	
STM8S208R6	64	52	37	9	3	16	16	32 K	2048	6 K	
STM8S208CB	48	38	35	9	3	10	16	128 K	2048	6 K	Vac
STM8S208C8	48	38	35	9	3	10	16	64 K	2048	6 K	103
STM8S208C6	48	38	35	9	3	10	16	32 K	2048	6 K	
STM8S208SB	44	34	31	8	3	9	15	128 K	1536	6 K	
STM8S208S8	44	34	31	8	3	9	15	64 K	1536	6 K	
STM8S208S6	44	34	31	8	3	9	15	32 K	1536	6 K	

Table 2. STM8S20xxx performance line features

The size of the UBC is programmable through the UBC option byte (*Table 13.*), in increments of 1 page (512 bytes) by programming the UBC option byte in ICP mode.

This divides the program memory into two areas:

- Main program memory: Up to 128 Kbytes minus UBC
- User-specific boot code (UBC): Configurable up to 128 Kbytes

The UBC area remains write-protected during in-application programming. This means that the MASS keys do not unlock the UBC area. It protects the memory used to store the boot program, specific code libraries, reset and interrupt vectors, the reset routine and usually the IAP and communication routines.

Figure 2. Flash memory organization

Read-out protection (ROP)

The read-out protection blocks reading and writing the Flash program memory and data EEPROM memory in ICP mode (and debug mode). Once the read-out protection is activated, any attempt to toggle its status triggers a global erase of the program and data memory. Even if no protection can be considered as totally unbreakable, the feature provides a very high level of protection for a general purpose microcontroller.

Independent watchdog timer

The independent watchdog peripheral can be used to resolve processor malfunctions due to hardware or software failures.

It is clocked by the 128 kHz LSI internal RC clock source, and thus stays active even in case of a CPU clock failure

The IWDG time base spans from 60 μ s to 1 s.

4.8 Auto wakeup counter

- Used for auto wakeup from active halt mode
- Clock source: Internal 128 kHz internal low frequency RC oscillator or external clock
- LSI clock can be internally connected to TIM3 input capture channel 1 for calibration

4.9 Beeper

The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in the range of 1, 2 or 4 kHz.

4.10 TIM1 - 16-bit advanced control timer

This is a high-end timer designed for a wide range of control applications. With its complementary outputs, dead-time control and center-aligned PWM capability, the field of applications is extended to motor control, lighting and half-bridge driver

- 16-bit up, down and up/down autoreload counter with 16-bit prescaler
- Four independent capture/compare channels (CAPCOM) configurable as input capture, output compare, PWM generation (edge and center aligned mode) and single pulse mode output
- Synchronization module to control the timer with external signals
- Break input to force the timer outputs into a defined state
- Three complementary outputs with adjustable dead time
- Encoder mode
- Interrupt sources: 3 x input capture/output compare, 1 x overflow/update, 1 x break

4.11 TIM2, TIM3 - 16-bit general purpose timers

- 16-bit autoreload (AR) up-counter
- 15-bit prescaler adjustable to fixed power of 2 ratios 1...32768
- Timers with 3 or 2 individually configurable capture/compare channels
- PWM mode
- Interrupt sources: 2 or 3 x input capture/output compare, 1 x overflow/update

5 Pinouts and pin description

5.1 Package pinouts

1. (HS) high sink capability.

2. (T) True open drain (P-buffer and protection diode to $V_{\mbox{\scriptsize DD}}$ not implemented).

3. [] alternate function remapping option (If the same alternate function is shown twice, it indicates an exclusive choice not a duplication of the function).

4. CAN_RX and CAN_TX is available on STM8S208xx devices only.

	Pin	num	ıber					Inpu	t		Out	put				
LQFP80	LQFP64	LQFP48	LQFP44	LQFP32	Pin name	Type	floating	ndw	Ext. interrupt	High sink	Speed	QO	dd	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
69	55	39	35	-	PE1/I ² C_SCL	I/O	<u>X</u>		Х		01	T ⁽³⁾		Port E1	I ² C clock	
70	56	40	36	-	PE0/CLK_CCO	I/O	<u>x</u>	Х	Х	НS	О3	х	х	Port E0	Configurable clock output	
71	-	-	-	-	PI6	I/O	<u>X</u>	Х			01	Х	Х	Port I6		
72	-	-	-	-	PI7	I/O	<u>X</u>	Х			01	Х	Х	Port I7		
73	57	41	37	25	PD0/TIM3_CH2	I/O	<u>x</u>	х	х	HS	О3	х	х	Port D0	Timer 3 - channel 2	TIM1_BKIN [AFR3]/ CLK_CCO [AFR2]
74	58	42	38	26	PD1/SWIM ⁽⁴⁾	I/O	х	<u>x</u>	Х	HS	04	х	х	Port D1	SWIM data interface	
75	59	43	39	27	PD2/TIM3_CH1	I/O	<u>x</u>	х	Х	HS	O3	х	х	Port D2	Timer 3 - channel 1	TIM2_CH3 [AFR1]
76	60	44	40	28	PD3/TIM2_CH2	I/O	<u>x</u>	х	Х	HS	О3	х	х	Port D3	Timer 2 - channel 2	ADC_ETR [AFR0]
77	61	45	41	29	PD4/TIM2_CH1/B EEP	I/O	<u>x</u>	х	Х	нs	О3	х	х	Port D4	Timer 2 - channel 1	BEEP output [AFR7]
78	62	46	42	30	PD5/ UART3_TX	I/O	<u>x</u>	х	х		01	х	х	Port D5	UART3 data transmit	
79	63	47	43	31	PD6/ UART3_RX ⁽¹⁾	I/O	<u>x</u>	х	х		01	х	х	Port D6	UART3 data receive	
80	64	48	44	32	PD7/TLI	I/O	<u>x</u>	х	х		01	Х	х	Port D7	Top level interrupt	TIM1_CH4 [AFR4] ⁽⁵⁾

Table 6.	Pin	descri	ption ((continued)	
		400011		ooninaoa)	

1. The default state of UART1_RX and UART3_RX pins is controlled by the ROM bootloader. These pins are pulled up as part of the bootloader activation process and returned to the floating state before a return from the bootloader.

2. The beCAN interface is available on STM8S208xx devices only

3. In the open-drain output column, 'T' defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to V_{DD} are not implemented).

4. The PD1 pin is in input pull-up during the reset phase and after the internal reset release.

5. Available in 44-pin package only. On other packages, the AFR4 bit is reserved and must be kept at 0.

5.2 Alternate function remapping

As shown in the rightmost column of the pin description table, some alternate functions can be remapped at different I/O ports by programming one of eight AFR (alternate function

6 Memory and register map

6.1 Memory map

Figure 8. Memory map

Table 7 lists the boundary addresses for each memory size. The top of the stack is at the RAM end address in each case.

Memory area	Size (bytes)	Start address	End address
	128 K	0x00 8000	0x02 7FFF
Flash program memory	64 K	0x00 8000	0x01 7FFF
	32 K	0x00 8000	0x00 FFFF
	6 K	0x00 0000	0x00 17FF
RAM	4 K	0x00 0000	0x00 1000
	2 K	0x00 0000	0x00 07FF
	2048	0x00 4000	0x00 47FF
Data EEPROM	1536	0x00 4000	0x00 45FF
	1024	0x00 4000	0x00 43FF

Table 7. Flash, Data EEPROM and RAM boundary addresses

6.2 Register map

Table 8. I/O port hardware register map

Address	Block	Register label	Register name	Reset status
0x00 5000		PA_ODR	Port A data output latch register	0x00
0x00 5001		PA_IDR	Port A input pin value register	0x00
0x00 5002	Port A	PA_DDR	Port A data direction register	0x00
0x00 5003		PA_CR1	Port A control register 1	0x00
0x00 5004		PA_CR2	Port A control register 2	0x00
0x00 5005		PB_ODR	Port B data output latch register	0x00
0x00 5006		PB_IDR	Port B input pin value register	0x00
0x00 5007	Port B	PB_DDR	Port B data direction register	0x00
0x00 5008		PB_CR1	Port B control register 1	0x00
0x00 5009		PB_CR2	Port B control register 2	0x00
0x00 500A		PC_ODR	Port C data output latch register	0x00
0x00 500B		PB_IDR	Port C input pin value register	0x00
0x00 500C	Port C	PC_DDR	Port C data direction register	0x00
0x00 500D		PC_CR1	Port C control register 1	0x00
0x00 500E		PC_CR2	Port C control register 2	0x00

Address	Block	Register label	Register name	Reset status
0x00 500F		PD_ODR	Port D data output latch register	0x00
0x00 5010		PD_IDR	Port D input pin value register	0x00
0x00 5011	Port D	PD_DDR	Port D data direction register	0x00
0x00 5012		PD_CR1	Port D control register 1	0x02
0x00 5013		PD_CR2	Port D control register 2	0x00
0x00 5014		PE_ODR	Port E data output latch register	0x00
0x00 5015		PE_IDR	Port E input pin value register	0x00
0x00 5016	Port E	PE_DDR	Port E data direction register	0x00
0x00 5017		PE_CR1	Port E control register 1	0x00
0x00 5018		PE_CR2	Port E control register 2	0x00
0x00 5019		PF_ODR	Port F data output latch register	0x00
0x00 501A		PF_IDR	Port F input pin value register	0x00
0x00 501B	Port F	PF_DDR	Port F data direction register	0x00
0x00 501C		PF_CR1	Port F control register 1	0x00
0x00 501D		PF_CR2	Port F control register 2	0x00
0x00 501E		PG_ODR	Port G data output latch register	0x00
0x00 501F		PG_IDR	Port G input pin value register	0x00
0x00 5020	Port G	PG_DDR	Port G data direction register	0x00
0x00 5021		PG_CR1	Port G control register 1	0x00
0x00 5022		PG_CR2	Port G control register 2	0x00
0x00 5023		PH_ODR	Port H data output latch register	0x00
0x00 5024		PH_IDR	Port H input pin value register	0x00
0x00 5025	Port H	PH_DDR	Port H data direction register	0x00
0x00 5026		PH_CR1	Port H control register 1	0x00
0x00 5027		PH_CR2	Port H control register 2	0x00
0x00 5028		PI_ODR	Port I data output latch register	0x00
0x00 5029		PI_IDR	Port I input pin value register	0x00
0x00 502A	Port I	PI_DDR	Port I data direction register	0x00
0x00 502B		PI_CR1	Port I control register 1	0x00
0x00 502C		PI_CR2	Port I control register 2	0x00

 Table 8. I/O port hardware register map (continued)

Address	Block	Register label	Register name	Reset status				
0x00 5216		I2C_DR	I ² C data register	0x00				
0x00 5217		I2C_SR1	I ² C status register 1	0x00				
0x00 5218	-	I2C_SR2	l ² C status register 2	0x00				
0x00 5219	120	I2C_SR3	l ² C status register 3	0x00				
0x00 521A	- FC	I2C_ITR	I ² C interrupt control register	0x00				
0x00 521B		I2C_CCRL	I ² C clock control register low	0x00				
0x00 521C		I2C_CCRH	I ² C clock control register high	0x00				
0x00 521D		I2C_TRISER	I ² C TRISE register	0x02				
0x00 521E to 0x00 522F			Reserved area (18 bytes)	-				
0x00 5230		UART1_SR	UART1 status register	0xC0				
0x00 5231		UART1_DR	UART1 data register	0xXX				
0x00 5232		UART1_BRR1	UART1 baud rate register 1	0x00				
0x00 5233		UART1_BRR2	UART1 baud rate register 2	0x00				
0x00 5234		UART1_CR1	UART1 control register 1	0x00				
0x00 5235	UART1	UART1_CR2	UART1 control register 2	0x00				
0x00 5236		UART1_CR3	UART1 control register 3	0x00				
0x00 5237		UART1_CR4	UART1 control register 4	0x00				
0x00 5238		UART1_CR5	UART1 control register 5	0x00				
0x00 5239		UART1_GTR	UART1 guard time register	0x00				
0x00 523A		UART1_PSCR	UART1 prescaler register	0x00				
0x00 523B to 0x00 523F			Reserved area (5 bytes)					
0x00 5240		UART3_SR	UART3 status register	C0h				
0x00 5241		UART3_DR	UART3 data register	0xXX				
0x00 5242		UART3_BRR1	UART3 baud rate register 1	0x00				
0x00 5243		UART3_BRR2	UART3 baud rate register 2	0x00				
0x00 5244		UART3_CR1	UART3 control register 1	0x00				
0x00 5245	UARIS	UART3_CR2	UART3 control register 2	0x00				
0x00 5246		UART3_CR3	UART3 control register 3	0x00				
0x00 5247		UART3_CR4	UART3 control register 4	0x00				
0x00 5248]		Reserved					
0x00 5249]	UART3_CR6	UART3 control register 6	0x00				
0x00 524A to 0x00 524F			Reserved area (6 bytes)	Reserved area (6 bytes)				

	0	le a selecca se			(
Table 9.	General	nardware	register	map ((continuea))

Address	Block	Register Label	Register Name	Reset Status
0x00 7F98		DM_CSR1	DM debug module control/status register 1	0x10
0x00 7F99	DM	DM_CSR2	DM debug module control/status register 2	0x00
0x00 7F9A		DM_ENFCTR	DM enable function register	0xFF
0x00 7F9B to 0x00 7F9F			Reserved area (5 bytes)	

Table 10. CPU/SWIM/debug module/interrupt controller registers (continued)

1. Accessible by debug module only

2. Product dependent value, see Figure 8: Memory map.

7 Interrupt vector mapping

IRQ no.	Source block	Description	Wakeup from Halt mode	Wakeup from Active-halt mode	Vector address
	RESET	Reset	Yes	Yes	0x00 8000
	TRAP	Software interrupt	-	-	0x00 8004
0	TLI	External top level interrupt	-	-	0x00 8008
1	AWU	Auto wake up from halt	-	Yes	0x00 800C
2	CLK	Clock controller	-	-	0x00 8010
3	EXTI0	Port A external interrupts	Yes ⁽¹⁾	Yes ⁽¹⁾	0x00 8014
4	EXTI1	Port B external interrupts	Yes	Yes	0x00 8018
5	EXTI2	Port C external interrupts	Yes	Yes	0x00 801C
6	EXTI3	Port D external interrupts	Yes	Yes	0x00 8020
7	EXTI4	Port E external interrupts	Yes	Yes	0x00 8024
8	beCAN	beCAN RX interrupt	Yes	Yes	0x00 8028
9	beCAN	beCAN TX/ER/SC interrupt	-	-	0x00 802C
10	SPI	End of transfer	Yes	Yes	0x00 8030
11	TIM1	TIM1 update/overflow/underflow/ trigger/break	-	-	0x00 8034
12	TIM1	TIM1 capture/compare	-	-	0x00 8038
13	TIM2	TIM2 update /overflow	-	-	0x00 803C
14	TIM2	TIM2 capture/compare	-	-	0x00 8040
15	TIM3	Update/overflow	-	-	0x00 8044
16	TIM3	Capture/compare	-	-	0x00 8048
17	UART1	Tx complete	-	-	0x00 804C
18	UART1	Receive register DATA FULL	-	-	0x00 8050
19	l ² C	I ² C interrupt	Yes	Yes	0x00 8054
20	UART3	Tx complete	-	-	0x00 8058
21	UART3	Receive register DATA FULL	-	-	0x00 805C
22	ADC2	ADC2 end of conversion	-	-	0x00 8060
23	TIM4	TIM4 update/overflow	-	-	0x00 8064
24	Flash	EOP/WR_PG_DIS	-	-	0x00 8068
		Reserved			0x00 806C to 0x00 807C

Table 11. Interrupt mapping

1. Except PA1

Typical output level curves

Figure 24 to *Figure 31* show typical output level curves measured with output on a single pin.

Figure 24. Typ. $V_{OL} @ V_{DD} = 3.3 V$ (standard ports)

Figure 25. Typ. $V_{OL} @ V_{DD} = 5 V$ (true open drain ports)

1. Example of an actual transfer curve.

- 2. The ideal transfer curve
- 3.

End point correlation line E_T = Total unadjusted error: maximum deviation between the actual and the ideal transfer curves. E_0 = Offset error: deviation between the first actual transition and the first ideal one. E_G = Gain error: deviation between the last ideal transition and the last actual one. E_D = Differential linearity error: maximum deviation between actual steps and the ideal one. E_L = Integral linearity error: maximum deviation between any actual transition and the end point correlation between any actual transition and the end point correlation line.

Device marking

The following figure shows the marking for the LQFP80 package.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

11.1.2 LQFP64 package information

Figure 46. LQFP64 - 64-pin 14 mm x 14 mm low-profile quad flat package outline

Table 52. LQFP64 - 64-pin, 14 x 14 mm low-profile quad flat package mechanicaldata

Cumhal		mm		inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Max	
А			1.600			0.0630	
A1	0.050		0.150	0.0020		0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.300	0.370	0.450	0.0118	0.0146	0.0177	
С	0.090		0.200	0.0035		0.0079	
D	15.800	16.000	16.200	0.6220	0.6299	0.6378	
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
D3		12.000			0.4724		
E	15.800	16.000	16.200	0.6220	0.6299	0.6378	
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
E3		12.000			0.4724		
е		0.800			0.0315		
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1		1.000			0.0394		

Device marking

The following figure shows the marking for the LQFP64 package.

Figure 49. LQFP64 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

Device marking

The following figure shows the marking for the LQFP48 package.

Figure 52. LQFP48 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

12 STM8 development tools

Development tools for the STM8 microcontrollers include the full-featured STice emulation system supported by a complete software tool package including C compiler, assembler and integrated development environment with high-level language debugger. In addition, the STM8 is to be supported by a complete range of tools including starter kits, evaluation boards and a low-cost in-circuit debugger/programmer.

12.1 Emulation and in-circuit debugging tools

The STice emulation system offers a complete range of emulation and in-circuit debugging features on a platform that is designed for versatility and cost-effectiveness. In addition, STM8 application development is supported by a low-cost in-circuit debugger/programmer.

The STice is the fourth generation of full featured emulators from STMicroelectronics. It offers new advanced debugging capabilities including profiling and coverage to help detect and eliminate bottlenecks in application execution and dead code when fine tuning an application.

In addition, STice offers in-circuit debugging and programming of STM8 microcontrollers via the STM8 single wire interface module (SWIM), which allows non-intrusive debugging of an application while it runs on the target microcontroller.

For improved cost effectiveness, STice is based on a modular design that allows you to order exactly what you need to meet the development requirements and to adapt the emulation system to support existing and future ST microcontrollers.

STice key features

- Occurrence and time profiling and code coverage (new features)
- Advanced breakpoints with up to 4 levels of conditions
- Data breakpoints
- Program and data trace recording up to 128 KB records
- Read/write on the fly of memory during emulation
- In-circuit debugging/programming via SWIM protocol
- 8-bit probe analyzer
- 1 input and 2 output triggers
- Power supply follower managing application voltages between 1.62 to 5.5 V
- Modularity that allows you to specify the components you need to meet the development requirements and adapt to future requirements
- Supported by free software tools that include integrated development environment (IDE), programming software interface and assembler for STM8.

13 Ordering information

Figure 59. STM8S207xx/208xx performance line ordering information scheme ⁽¹⁾										
Example:		STM8	S	208	М	В	Т	6	В	TR
Product class STM8 microcontroller										
Family type S = Standard										
Sub-family type ⁽²⁾										
208 = Full peripheral set										
207 = Intermediate peripheral set	t									
Pin count										
K = 32 pins										
S = 44 pins										
C = 48 pins										
R = 64 pins										
M = 80 pins										
Program memory size										
6 = 32 Kbyte										
8 = 64 Kbyte										
B = 128 Kbyte										
Package type										
T = LQFP										
Temperature range 3 = -40 °C to 125 °C 6 = -40 °C to 85 °C										
Package pitch No character = 0.5 mm B = 0.65 mm C = 0.8 mm										
Packing No character = Tray or tube TR = Tape and reel										

 For a list of available options (e.g. memory size, package) and order-able part numbers or for further information on any aspect of this device, please go to <u>www.st.com</u> or contact the ST Sales Office nearest to you.

2. Refer to Table 2: STM8S20xxx performance line features for detailed description.

