E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	2.95V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8s207s6t3ctr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 49.	LQFP64 marking example (package top view)9	8
Figure 50.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline	9
Figure 51.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint	0
Figure 52.	LQFP48 marking example (package top view)10)1
Figure 53.	LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat package outline)2
Figure 54.	LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat recommended footprint)4
Figure 55.	LQFP44 marking example (package top view)10)4
Figure 56.	LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline)5
Figure 57.	LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat recommended footprint)6
Figure 58.	LQFP32 marking example (package top view)10)7
Figure 59.	STM8S207xx/208xx performance line ordering information scheme ⁽¹⁾	2

1 Introduction

This datasheet contains the description of the STM8S20xxx features, pinout, electrical characteristics, mechanical data and ordering information.

- For complete information on the STM8S microcontroller memory, registers and peripherals, please refer to the STM8S microcontroller family reference manual (RM0016).
- For information on programming, erasing and protection of the internal Flash memory please refer to the STM8S Flash programming manual (PM0051).
- For information on the debug and SWIM (single wire interface module) refer to the STM8 SWIM communication protocol and debug module user manual (UM0470).
- For information on the STM8 core, please refer to the STM8 CPU programming manual (PM0044).

2 Description

The STM8S20xxx performance line 8-bit microcontrollers offer from 32 to 128 Kbytes Flash program memory. They are referred to as high-density devices in the STM8S microcontroller family reference manual.

All STM8S20xxx devices provide the following benefits: reduced system cost, performance robustness, short development cycles, and product longevity.

The system cost is reduced thanks to an integrated true data EEPROM for up to 300 k write/erase cycles and a high system integration level with internal clock oscillators, watchdog, and brown-out reset.

Device performance is ensured by 20 MIPS at 24 MHz CPU clock frequency and enhanced characteristics which include robust I/O, independent watchdogs (with a separate clock source), and a clock security system.

Short development cycles are guaranteed due to application scalability across a common family product architecture with compatible pinout, memory map and modular peripherals. Full documentation is offered with a wide choice of development tools.

Product longevity is ensured in the STM8S family thanks to their advanced core which is made in a state-of-the art technology for applications with 2.95 V to 5.5 V operating supply.

The size of the UBC is programmable through the UBC option byte (*Table 13.*), in increments of 1 page (512 bytes) by programming the UBC option byte in ICP mode.

This divides the program memory into two areas:

- Main program memory: Up to 128 Kbytes minus UBC
- User-specific boot code (UBC): Configurable up to 128 Kbytes

The UBC area remains write-protected during in-application programming. This means that the MASS keys do not unlock the UBC area. It protects the memory used to store the boot program, specific code libraries, reset and interrupt vectors, the reset routine and usually the IAP and communication routines.

Figure 2. Flash memory organization

Read-out protection (ROP)

The read-out protection blocks reading and writing the Flash program memory and data EEPROM memory in ICP mode (and debug mode). Once the read-out protection is activated, any attempt to toggle its status triggers a global erase of the program and data memory. Even if no protection can be considered as totally unbreakable, the feature provides a very high level of protection for a general purpose microcontroller.

Туре	I= Input, O	I= Input, O = Output, S = Power supply							
Level	Input	CM = CMOS							
	Output	HS = High sink							
Output speed	O1 = Slow (up to 2 MHz) O2 = Fast (up to 10 MHz) O3 = Fast/slow programmability with slow as default state after reset O4 = Fast/slow programmability with fast as default state after reset								
Port and control	Input	float = floating, wpu = weak pull-up							
configuration	Output	T = True open drain, OD = Open drain, PP = Push pull							
Reset state	Bold <u>X</u> (pin Unless othe after the int	state after internal reset release) erwise specified, the pin state is the same during the reset phase and ernal reset release.							

|--|

	Pin	num	nber					Inpu	t		Out	put				
LQFP80	LQFP64	LQFP48	LQFP44	LQFP32	Pin name	Type	floating	ndw	Ext. interrupt	High sink	Speed	QO	Ч	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
1	1	1	1	1	NRST	I/O		X						Reset		
2	2	2	2	2	PA1/OSCIN	I/O	<u>x</u>	х			01	х	х	Port A1	Resonator/ crystal in	
3	3	3	3	3	PA2/OSCOUT	I/O	X	х	Х		01	х	х	Port A2	Resonator/ crystal out	
4	4	4	4	-	V _{SSIO_1}	S								I/O ground		
5	5	5	5	4	V _{SS}	S								Digital gro	ound	
6	6	6	6	5	VCAP	S								1.8 V reg	ulator capacitor	
7	7	7	7	6	V _{DD}	S								Digital power supply		
8	8	8	8	7	V _{DDIO_1}	S								I/O power supply		
9	9	9	-	-	PA3/TIM2_CH3	I/O	<u>x</u>	х	х		01	Х	х	Port A3	Timer 2 - channel3	TIM3_CH1 [AFR1]
10	10	10	9	-	PA4/UART1_RX	I/O	<u>x</u>	х	Х	HS	O3	х	x	Port A4	UART1 receive	
11	11	11	10	-	PA5/UART1_TX	I/O	<u>X</u>	х	Х	HS	O3	х	х	Port A5	UART1 transmit	

Table 6. Pin description

	Pin	num	ıber					Inpu	t		Out	put				
LQFP80	LQFP64	LQFP48	LQFP44	LQFP32	Pin name	Type	floating	ndw	Ext. interrupt	High sink	Speed	QO	dd	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
69	55	39	35	-	PE1/I ² C_SCL	I/O	<u>X</u>		Х		01	T ⁽³⁾		Port E1	I ² C clock	
70	56	40	36	-	PE0/CLK_CCO	I/O	<u>x</u>	Х	Х	НS	О3	х	х	Port E0	Configurable clock output	
71	-	-	-	-	PI6	I/O	<u>X</u>	Х			01	Х	Х	Port I6		
72	-	-	-	-	PI7	I/O	<u>X</u>	Х			01	Х	Х	Port I7		
73	57	41	37	25	PD0/TIM3_CH2	I/O	<u>x</u>	х	х	HS	О3	х	х	Port D0	Timer 3 - channel 2	TIM1_BKIN [AFR3]/ CLK_CCO [AFR2]
74	58	42	38	26	PD1/SWIM ⁽⁴⁾	I/O	х	<u>x</u>	Х	HS	04	х	х	Port D1	SWIM data interface	
75	59	43	39	27	PD2/TIM3_CH1	I/O	<u>x</u>	х	Х	HS	O3	х	х	Port D2	Timer 3 - channel 1	TIM2_CH3 [AFR1]
76	60	44	40	28	PD3/TIM2_CH2	I/O	<u>x</u>	х	Х	HS	О3	х	х	Port D3	Timer 2 - channel 2	ADC_ETR [AFR0]
77	61	45	41	29	PD4/TIM2_CH1/B EEP	I/O	<u>x</u>	х	Х	нs	О3	х	х	Port D4	Timer 2 - channel 1	BEEP output [AFR7]
78	62	46	42	30	PD5/ UART3_TX	I/O	<u>x</u>	х	х		01	х	х	Port D5	UART3 data transmit	
79	63	47	43	31	PD6/ UART3_RX ⁽¹⁾	I/O	<u>x</u>	х	х		01	х	х	Port D6	UART3 data receive	
80	64	48	44	32	PD7/TLI	I/O	<u>x</u>	х	х		01	Х	х	Port D7	Top level interrupt	TIM1_CH4 [AFR4] ⁽⁵⁾

Table 6.	Pin	descri	ption ((continued)	
		400011		ooninaoa)	

1. The default state of UART1_RX and UART3_RX pins is controlled by the ROM bootloader. These pins are pulled up as part of the bootloader activation process and returned to the floating state before a return from the bootloader.

2. The beCAN interface is available on STM8S208xx devices only

3. In the open-drain output column, 'T' defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to V_{DD} are not implemented).

4. The PD1 pin is in input pull-up during the reset phase and after the internal reset release.

5. Available in 44-pin package only. On other packages, the AFR4 bit is reserved and must be kept at 0.

5.2 Alternate function remapping

As shown in the rightmost column of the pin description table, some alternate functions can be remapped at different I/O ports by programming one of eight AFR (alternate function

Address	Block	Register label	Register name	Reset status
0x00 5216		I2C_DR	l ² C data register	0x00
0x00 5217		I2C_SR1	I ² C status register 1	0x00
0x00 5218	-	I2C_SR2	l ² C status register 2	0x00
0x00 5219	120	I2C_SR3	l ² C status register 3	0x00
0x00 521A	- FC	I2C_ITR	I ² C interrupt control register	0x00
0x00 521B		I2C_CCRL	I ² C clock control register low	0x00
0x00 521C		I2C_CCRH	I ² C clock control register high	0x00
0x00 521D		I2C_TRISER	I ² C TRISE register	0x02
0x00 521E to 0x00 522F			Reserved area (18 bytes)	-
0x00 5230		UART1_SR	UART1 status register	0xC0
0x00 5231		UART1_DR	UART1 data register	0xXX
0x00 5232		UART1_BRR1	UART1 baud rate register 1	0x00
0x00 5233		UART1_BRR2	UART1 baud rate register 2	0x00
0x00 5234		UART1_CR1	UART1 control register 1	0x00
0x00 5235	UART1	UART1_CR2	UART1 control register 2	0x00
0x00 5236		UART1_CR3	UART1 control register 3	0x00
0x00 5237		UART1_CR4	UART1 control register 4	0x00
0x00 5238		UART1_CR5	UART1 control register 5	0x00
0x00 5239		UART1_GTR	UART1 guard time register	0x00
0x00 523A		UART1_PSCR	UART1 prescaler register	0x00
0x00 523B to 0x00 523F			Reserved area (5 bytes)	
0x00 5240		UART3_SR	UART3 status register	C0h
0x00 5241		UART3_DR	UART3 data register	0xXX
0x00 5242		UART3_BRR1	UART3 baud rate register 1	0x00
0x00 5243		UART3_BRR2	UART3 baud rate register 2	0x00
0x00 5244		UART3_CR1	UART3 control register 1	0x00
0x00 5245	UARIS	UART3_CR2	UART3 control register 2	0x00
0x00 5246		UART3_CR3	UART3 control register 3	0x00
0x00 5247		UART3_CR4	UART3 control register 4	0x00
0x00 5248]		Reserved	
0x00 5249]	UART3_CR6	UART3 control register 6	0x00
0x00 524A to 0x00 524F			Reserved area (6 bytes)	

	0	le a selecca se			(
Table 9.	General	nardware	register	map ((continuea))

Option byte no.	Description
OPT0	ROP[7:0] <i>Memory readout protection (ROP)</i> 0xAA: Enable readout protection (write access via SWIM protocol) Note: Refer to the family reference manual (RM0016) section on Flash/EEPROM memory readout protection for details.
OPT1	UBC[7:0] User boot code area 0x00: no UBC, no write-protection 0x01: Pages 0 to 1 defined as UBC, memory write-protected 0x02: Pages 0 to 3 defined as UBC, memory write-protected 0x03: Pages 0 to 4 defined as UBC, memory write-protected 0xFE: Pages 0 to 255 defined as UBC, memory write-protected 0xFF: Reserved Note: Refer to the family reference manual (RM0016) section on Flash/EEPROM write protection for more details.
OPT2	 AFR7 Alternate function remapping option 7 0: Port D4 alternate function = TIM2_CH1 1: Port D4 alternate function = BEEP AFR6 Alternate function remapping option 6 0: Port B5 alternate function = AIN5, port B4 alternate function = AIN4 1: Port B5 alternate function = I²C_SDA, port B4 alternate function = I²C_SCL AFR5 Alternate function remapping option 5 0: Port B3 alternate function = AIN3, port B2 alternate function = AIN2, port B1 alternate function = AIN1, port B2 alternate function = AIN0 1: Port B3 alternate function = TIM1_D B0 alternate function = AIN0 1: Port B3 alternate function = TIM1_ETR, port B2 alternate function = TIM1_CH3N, port B1 alternate function = TIM1_CH2N, port B0 alternate function = TIM1_CH3N, port B1 alternate function = TIM1_CH2N, port B0 alternate function = TIM1_CH1N AFR4 Alternate function remapping option 4 0: Port D7 alternate function = TIM1_CH4 AFR3 Alternate function remapping option 3 0: Port D0 alternate function = TIM3_CH2 1: Port D0 alternate function = TIM3_CH2 1: Port D0 alternate function = CLK_CCO Note: AFR2 option has priority over AFR3 if both are activated AFR1 Alternate function remapping option 1 0: Port A3 alternate function = TIM3_CH1, port D2 alternate function TIM3_CH1 1: Port A3 alternate function = TIM3_CH1, port D2 alternate function TIM3_CH1 1: Port A3 alternate function = TIM3_CH1, port D2 alternate function TIM3_CH1 1: Port A3 alternate function = TIM3_CH2, port D2 alternate function TIM3_CH1 1: Port A3 alternate function = TIM3_CH2, port D2 alternate function TIM3_CH1 1: Port A3 alternate function = TIM3_CH2, port D2 alternate function TIM3_CH1 1: Port A3 alternate function = TIM3_CH2, port D2 alternate function TIM3_CH1 1: Port A3 alternate function = TIM3_CH2, port D2 alternate function TIM3_CH3

Table 13. Option byte description

9 Unique ID

The devices feature a 96-bit unique device identifier which provides a reference number that is unique for any device and in any context. The 96 bits of the identifier can never be altered by the user.

The unique device identifier can be read in single bytes and may then be concatenated using a custom algorithm.

The unique device identifier is ideally suited:

- For use as serial numbers
- For use as security keys to increase the code security in the program memory while using and combining this unique ID with software cryptographic primitives and protocols before programming the internal memory.
- To activate secure boot processes

Address	Content	Unique ID bits										
Address	description	7	6	5	4	3	2	1	0			
0x48CD	X co-ordinate on the	U_ID[7:0]										
0x48CE	wafer	U_ID[15:8]										
0x48CF	Y co-ordinate on the				U_I	D[23:16]						
0x48D0	wafer	U_ID[31:24]										
0x48D1	Wafer number	U_ID[39:32]										
0x48D2		U_ID[47:40]										
0x48D3		U_ID[55:48]										
0x48D4		U_ID[63:56]										
0x48D5	Lot number	U_ID[71:64]										
0x48D6		U_ID[79:72]										
0x48D7		U_ID[87:80]										
0x48D8		U_ID[95:88]										

Table 14. Unique ID registers (96 bits)

Total current consumption in wait mode

Symbol	Parameter	Condit	Conditions						
		f _{CPU} = f _{MASTER} = 24 MHz,	HSE crystal osc. (24 MHz)	2.4					
		T _A ≤ 105 °C	HSE user ext. clock (24 MHz)	1.8	.8 4.7				
I _{DD} (WFI)	Supply current in wait mode		HSE crystal osc. (16 MHz)	2.0					
		f _{CPU} = f _{MASTER} = 16 MHz	HSE user ext. clock (16 MHz)	1.4	4.4				
			HSI RC osc. (16 MHz)	1.2	1.6	mA			
		f _{CPU} = f _{MASTER} /128 = 125 kHz	HSI RC osc. (16 MHz)	1.0					
		f _{CPU} = f _{MASTER} /128 = 15.625 kHz	HSI RC osc. (16 MHz/8) ⁽²⁾	0.55					
		f _{CPU} = f _{MASTER} = 128 kHz	LSI RC osc. (128 kHz)	0.5					

Table 22. Total current consumption in wait mode at V_{DD} = 5 V

1. Data based on characterization results, not tested in production.

2. Default clock configuration measured with all peripherals off.

Symbol	Parameter	Condit	Тур	Max ⁽¹⁾	Unit	
		f _{CPU} = f _{MASTER} = 24 MHz,	f _{CPLI} = f _{MASTER} = 24 MHz, HSE crystal osc. (24 MHz)			
		$T_A \leq 105 \ ^{\circ}C$	HSE user ext. clock (24 MHz)	1.8	4.7	
		$f_{CPU} = f_{MASTER} = 16 \text{ MHz}$	HSE crystal osc. (16 MHz)	1.6		
	Supply		HSE user ext. clock (16 MHz)	1.4	4.4	
I _{DD(WFI)}	current in		HSI RC osc. (16 MHz)	1.2	1.6	mA
	wait mode	f _{CPU} = f _{MASTER} /128 = 125 kHz	HSI RC osc. (16 MHz)	1.0		
		f _{CPU} = f _{MASTER} /128 = 15.625 kHz	HSI RC osc. (16 MHz/8) ⁽²⁾	0.55		
		f _{CPU} = f _{MASTER} /128 = 15.625 kHz	LSI RC osc. (128 kHz)	0.5		

1. Data based on characterization results, not tested in production.

2. Default clock configuration measured with all peripherals off.

10.3.4 Internal clock sources and timing characteristics

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.~f_{\text{HSE}}$

High speed internal RC oscillator (HSI)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency			16		MHz
	Accuracy of HSI oscillator	Trimmed by the CLK_HSITRIMR register for given V_{DD} and T_A conditions	-1.0 ⁽¹⁾		1.0	
		V _{DD} = 5 V, T _A = 25 °C	-1.5		1.5	
ACC _{HSI}	Accuracy of HSI assillator		-2.2		2.2	%
	(factory calibrated)	$\begin{array}{l} 2.95 \text{ V} \leq \text{ V}_{DD} \leq \text{ 5.5 V}, \\ -40 \text{ °C} \leq \text{ T}_A \leq \text{ 125 °C} \end{array}$	-3.0 ⁽²⁾		3.0 ⁽²⁾	
t _{su(HSI)}	HSI oscillator wakeup time including calibration				1.0 ⁽¹⁾	μs
I _{DD(HSI)}	HSI oscillator power consumption			170	250 ⁽²⁾	μA

Table 33. HSI oscillator characteristics

1. Guaranteed by design, not tested in production.

2. Data based on characterization results, not tested in production

Figure 18. Typical HSI frequency variation vs V_{DD} at 4 temperatures

10.3.6 I/O port pin characteristics

General characteristics

Subject to general operating conditions for V_{DD} and T_A unless otherwise specified. All unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
V _{IL}	Input low level voltage		-0.3		0.3 x V _{DD}	V	
V _{IH}	Input high level voltage	V _{DD} = 5 V	0.7 x V _{DD}		V _{DD} + 0.3 V	v	
V _{hys}	Hysteresis ⁽¹⁾			700		mV	
R _{pu}	Pull-up resistor	V_{DD} = 5 V, V_{IN} = V_{SS}	30	55	80	kΩ	
		Fast I/Os Load = 50 pF			20 ⁽²⁾		
t _R , t _F	Rise and fall time (10% - 90%)	Standard and high sink I/Os Load = 50 pF			125 ⁽²⁾		
		Fast I/Os Load = 20 pF			35 ⁽³⁾	ns	
		Standard and high sink I/Os Load = 20 pF			125 ⁽³⁾		
I _{lkg}	Input leakage current, analog and digital	$V_{SS} \leq V_{IN} \leq V_{DD}$			±1	μA	
I _{lkg ana}	Analog input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$			±250 ⁽²⁾	nA	
I _{lkg(inj)}	Leakage current in adjacent I/O ⁽²⁾	Injection current ±4 mA			±1 ⁽²⁾	μΑ	

Table 37.	I/O	static	characteristics
-----------	-----	--------	-----------------

1. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested in production.

2. Data based on characterization results, not tested in production.

3. Guaranteed by design.

Figure 25. Typ. $V_{OL} @ V_{DD} = 5 V$ (true open drain ports)

Figure 31. Typ. V_{DD} - V_{OH} @ V_{DD} = 5 V (high sink ports)

10.3.7 Reset pin characteristics

Subject to general operating conditions for V_{DD} and T_{A} unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ ¹⁾	Max	Unit
V _{IL(NRST)}	NRST Input low level voltage ⁽¹⁾		-0.3 V		0.3 x V _{DD}	
V _{IH(NRST)}	NRST Input high level voltage ⁽¹⁾		$0.7 ext{ x V}_{ ext{DD}}$		V _{DD} + 0.3	V
V _{OL(NRST)}	NRST Output low level voltage (1)	I _{OL} = 2 mA			0.5	
R _{PU(NRST)}	NRST Pull-up resistor ⁽²⁾		30	55	80	kΩ
t _{IFP(NRST)}	NRST Input filtered pulse (3)				75	ns
t _{INFP(NRST)}	NRST Input not filtered pulse (3)		500			ns
t _{OP(NRST)}	NRST output pulse ⁽¹⁾		15			μs

Table 41.	NRST	pin	characteristics
		P	

1. Data based on characterization results, not tested in production.

2. The $\rm R_{\rm PU}$ pull-up equivalent resistor is based on a resistive transistor

3. Data guaranteed by design, not tested in production.

Figure 33. Typical NRST $\rm V_{IL}$ and $\rm V_{IH}$ vs $\rm V_{DD}$ @ 4 temperatures

10.3.10 10-bit ADC characteristics

Subject to general operating conditions for $V_{\text{DDA}},\,f_{\text{MASTER}},$ and T_{A} unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f	ADC clock frequency	$V_{DDA} = 3 \text{ to } 5.5 \text{ V}$	1		4	MHz	
'ADC	ADC clock nequency	V _{DDA} = 4.5 to 5.5 V	1		6		
V _{DDA}	Analog supply		3		5.5	V	
V _{REF+}	Positive reference voltage		2.75 ⁽¹⁾		V _{DDA}	V	
V _{REF-}	Negative reference voltage		V _{SSA}		0.5 ⁽¹⁾	V	
V _{AIN}			V _{SSA}		V_{DDA}	V	
	Conversion voltage range ⁽²⁾	Devices with external V _{REF+} /V _{REF-} pins	V _{REF-}		V_{REF+}	V	
C _{ADC}	Internal sample and hold capacitor			3		pF	
+ (2)	Sampling time	f _{ADC} = 4 MHz	0.75		110		
'S	Sampling time	f _{ADC} = 6 MHz	0.5			μο	
t _{STAB}	Wakeup time from standby			7		μs	
t _{CONV}		$f_{ADC} = 4 \text{ MHz}$		3.5		μs	
	Iotal conversion time (including sampling time, 10-bit resolution)	$f_{ADC} = 6 \text{ MHz}$		2.33		μs	
				14		1/f _{ADC}	

Table 44.	ADC	characteristics
-----------	-----	-----------------

1. Data guaranteed by design, not tested in production.

2. During the sample time the input capacitance C_{AIN} (3 pF max) can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_S. After the end of the sample time t_S, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_S depend on programming.

11.1.2 LQFP64 package information

Figure 46. LQFP64 - 64-pin 14 mm x 14 mm low-profile quad flat package outline

Table 52. LQFP64 - 64-pin, 14 x 14 mm low-profile quad flat package mechanicaldata

Cumhal		mm		inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Max	
А			1.600			0.0630	
A1	0.050		0.150	0.0020		0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.300	0.370	0.450	0.0118	0.0146	0.0177	
С	0.090		0.200	0.0035		0.0079	
D	15.800	16.000	16.200	0.6220	0.6299	0.6378	
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
D3		12.000			0.4724		
E	15.800	16.000	16.200	0.6220	0.6299	0.6378	
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
E3		12.000			0.4724		
е		0.800			0.0315		
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1		1.000			0.0394		

(continuou)						
Cumb al		mm		inches ⁽¹⁾		
Зутрої	Min	Тур	Max	Min	Тур	Max
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.500	-	-	0.2165	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.080	-	-	0.0031

Table 54. LQFP48 - 48-pin, 7x 7 mm low-profile quad flat package mechanical(continued)

1. Values in inches are converted from mm and rounded to four decimal places.

1. Dimensions are expressed in millimeters.

12 STM8 development tools

Development tools for the STM8 microcontrollers include the full-featured STice emulation system supported by a complete software tool package including C compiler, assembler and integrated development environment with high-level language debugger. In addition, the STM8 is to be supported by a complete range of tools including starter kits, evaluation boards and a low-cost in-circuit debugger/programmer.

12.1 Emulation and in-circuit debugging tools

The STice emulation system offers a complete range of emulation and in-circuit debugging features on a platform that is designed for versatility and cost-effectiveness. In addition, STM8 application development is supported by a low-cost in-circuit debugger/programmer.

The STice is the fourth generation of full featured emulators from STMicroelectronics. It offers new advanced debugging capabilities including profiling and coverage to help detect and eliminate bottlenecks in application execution and dead code when fine tuning an application.

In addition, STice offers in-circuit debugging and programming of STM8 microcontrollers via the STM8 single wire interface module (SWIM), which allows non-intrusive debugging of an application while it runs on the target microcontroller.

For improved cost effectiveness, STice is based on a modular design that allows you to order exactly what you need to meet the development requirements and to adapt the emulation system to support existing and future ST microcontrollers.

STice key features

- Occurrence and time profiling and code coverage (new features)
- Advanced breakpoints with up to 4 levels of conditions
- Data breakpoints
- Program and data trace recording up to 128 KB records
- Read/write on the fly of memory during emulation
- In-circuit debugging/programming via SWIM protocol
- 8-bit probe analyzer
- 1 input and 2 output triggers
- Power supply follower managing application voltages between 1.62 to 5.5 V
- Modularity that allows you to specify the components you need to meet the development requirements and adapt to future requirements
- Supported by free software tools that include integrated development environment (IDE), programming software interface and assembler for STM8.

Date	Revision	Changes
10-Jul-2009	8 cont'd	Section 10: Electrical characteristics: Added data for TBD values; updated Table 15: Voltage characteristics and Table 18: General operating conditions; updated VCAP specifications in Table 18 and in Section 10.3.1: VCAP external capacitor, updated Figure 18; replaced Figure 19; updated Table 35: RAM and hardware registers; updated Figure 22 and Figure 35; added Figure 40: Typical application with I2C bus and timing diagram. Removed Table 56: Junction temperature range. Added link between ordering information Figure 59 and STM8S20xx features Table 2.
13-Apr-2010	9	Document status changed from "preliminary data" to "datasheet". Table 2: STM8S20xxx performance line features: high sink I/O for STM8S207C8 is 16 (not 13). Table 3: Peripheral clock gating bit assignments in $CLK_PCKENR1/2$ registers: updated bit positions for TIM2 and TIM3. Figure 5: LQFP 48-pin pinout: added CAN_TX and CAN_RX to pins 35 and 36; noted that these pins are available only in STM8S208xx devices. Figure 7: LQFP 32-pin pinout: replaced uart2 with uart3. Table 6: Pin description: added footnotes concerning beCAN availability and UART1_RX and UART3_RX pins. Table 13: Option byte description: added description of STM8L bootloader option bytes to the option byte description table. Added Section 9: Unique ID (and listed this attribute in Features). Section 10.3: Operating conditions: replaced "C _{EXT} " with "VCAP" and added data for ESR and ESL; removed "low power dissipation" condition for T _A . Table 26: Total current consumption in halt mode at VDD = 5 V: replaced max value of I _{DD(H)} at 85 °C from 30 µA to 35 µA for the condition "Flash in power-down mode, HSI clock after wakeup". Table 33: HSI oscillator characteristics: updated the ACC _{HSI} factory calibrated values. Functional EMS (electromagnetic susceptibility) and Table 47: replaced "IEC 1000" with "IEC 61000". Electromagnetic interference (EMI) and Table 48: replaced "SAE J1752/3" with "IEC 61967-2".

Table 58. Document revision history (continued)

