

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	2.95V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8s207s6t6c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

This datasheet contains the description of the STM8S20xxx features, pinout, electrical characteristics, mechanical data and ordering information.

- For complete information on the STM8S microcontroller memory, registers and peripherals, please refer to the STM8S microcontroller family reference manual (RM0016).
- For information on programming, erasing and protection of the internal Flash memory please refer to the STM8S Flash programming manual (PM0051).
- For information on the debug and SWIM (single wire interface module) refer to the STM8 SWIM communication protocol and debug module user manual (UM0470).
- For information on the STM8 core, please refer to the STM8 CPU programming manual (PM0044).

2 Description

The STM8S20xxx performance line 8-bit microcontrollers offer from 32 to 128 Kbytes Flash program memory. They are referred to as high-density devices in the STM8S microcontroller family reference manual.

All STM8S20xxx devices provide the following benefits: reduced system cost, performance robustness, short development cycles, and product longevity.

The system cost is reduced thanks to an integrated true data EEPROM for up to 300 k write/erase cycles and a high system integration level with internal clock oscillators, watchdog, and brown-out reset.

Device performance is ensured by 20 MIPS at 24 MHz CPU clock frequency and enhanced characteristics which include robust I/O, independent watchdogs (with a separate clock source), and a clock security system.

Short development cycles are guaranteed due to application scalability across a common family product architecture with compatible pinout, memory map and modular peripherals. Full documentation is offered with a wide choice of development tools.

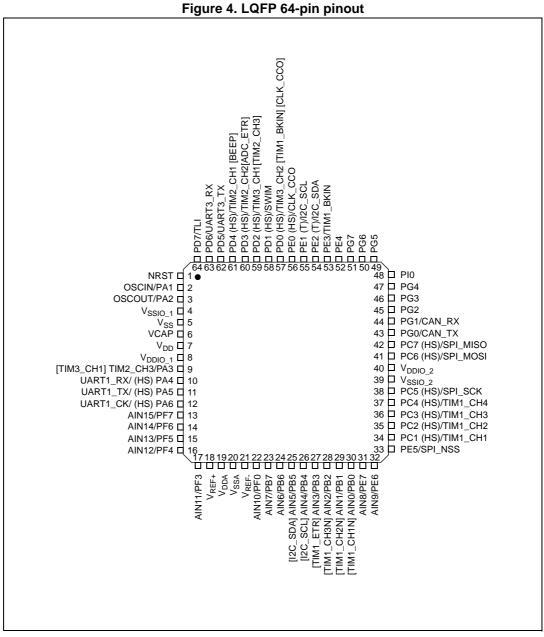
Product longevity is ensured in the STM8S family thanks to their advanced core which is made in a state-of-the art technology for applications with 2.95 V to 5.5 V operating supply.

Asynchronous communication (UART mode)

- Full duplex communication NRZ standard format (mark/space)
- Programmable transmit and receive baud rates up to 1 Mbit/s (f_{CPU}/16) and capable of following any standard baud rate regardless of the input frequency
- Separate enable bits for transmitter and receiver
 - Two receiver wakeup modes:
 - Address bit (MSB)
 - Idle line (interrupt)
- Transmission error detection with interrupt generation
- Parity control

LIN master capability

- Emission: Generates 13-bit sync break frame
- Reception: Detects 11-bit break frame


LIN slave mode

- Autonomous header handling one single interrupt per valid message header
- Automatic baud rate synchronization maximum tolerated initial clock deviation ±15%
- Sync delimiter checking
- 11-bit LIN sync break detection break detection always active
- Parity check on the LIN identifier field
- LIN error management
- Hot plugging support

4.14.3 SPI

- Maximum speed: 10 Mbit/s (f_{MASTER}/2) both for master and slave
- Full duplex synchronous transfers
- Simplex synchronous transfers on two lines with a possible bidirectional data line
- Master or slave operation selectable by hardware or software
- CRC calculation
- 1 byte Tx and Rx buffer
- Slave/master selection input pin

1. (HS) high sink capability.

2. (T) True open drain (P-buffer and protection diode to V_{DD} not implemented).

3. [] alternate function remapping option (If the same alternate function is shown twice, it indicates an exclusive choice not a duplication of the function).

4. CAN_RX and CAN_TX is available on STM8S208xx devices only.

Туре	I= Input, O	Input, O = Output, S = Power supply					
Level	Input	nput CM = CMOS					
	Output HS = High sink						
Output speed	O2 = Fast (O3 = Fast/s	up to 2 MHz) up to 10 MHz) low programmability with slow as default state after reset low programmability with fast as default state after reset					
Port and control	Input	float = floating, wpu = weak pull-up					
configuration	Output	T = True open drain, OD = Open drain, PP = Push pull					
Reset state	Bold \underline{X} (pin state after internal reset release) Unless otherwise specified, the pin state is the same during the reset phase a after the internal reset release.						

Table 5. Legend/abbreviations	for pinout table
-------------------------------	------------------

	Pin	num	ber					Inpu	t		Out	put				
LQFP80	LQFP64	LQFP48	LQFP44	LQFP32	Pin name	Type	floating	ndw	Ext. interrupt	High sink	Speed	QO	Ы	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
1	1	1	1	1	NRST	I/O		<u>X</u>						Reset		
2	2	2	2	2	PA1/OSCIN	I/O	<u>x</u>	х			01	х	х	Port A1	Resonator/ crystal in	
3	3	3	3	3	PA2/OSCOUT	I/O	X	х	х		01	х	х	Port A2	Resonator/ crystal out	
4	4	4	4	-	V _{SSIO_1}	S								I/O groun	d	
5	5	5	5	4	V _{SS}	S								Digital gro	ound	
6	6	6	6	5	VCAP	S								1.8 V reg	ulator capacitor	
7	7	7	7	6	V _{DD}	S								Digital po	wer supply	
8	8	8	8	7	V _{DDIO_1}	S								I/O powe	r supply	
9	9	9	-	-	PA3/TIM2_CH3	I/O	<u>x</u>	х	Х		01	х	х			TIM3_CH1 [AFR1]
10	10	10	9	-	PA4/UART1_RX	I/O	X	х	Х	HS	O3	х	Х	Port A4	UART1 receive	
11	11	11	10	-	PA5/UART1_TX	I/O	<u>x</u>	х	Х	HS	О3	Х	Х	Port A5	UART1 transmit	

Table 6. Pin description

Option byte no.	Description
OPTBL	 BL[7:0] Bootloader option byte For STM8S products, this option is checked by the boot ROM code after reset. Depending on the content of addresses 0x487E, 0x487F, and 0x8000 (reset vector), the CPU jumps to the bootloader or to the reset vector. Refer to the UM0560 (STM8L/S bootloader manual) for more details. For STM8L products, the bootloader option bytes are on addresses 0xXXXX and 0xXXXX+1 (2 bytes). These option bytes control whether the bootloader is active or not. For more details, refer to the UM0560 (STM8L/S bootloader manual) for more details.

Table 13. Option byte description (continued)

Total current consumption in wait mode

Symbol	Parameter	Condit	Тур	Max ⁽¹⁾	Unit	
		f _{CPU} = f _{MASTER} = 24 MHz,	HSE crystal osc. (24 MHz)	2.4		
		$T_A \leq 105 \ ^{\circ}C$	HSE user ext. clock (24 MHz)	1.8	4.7	
	Supply current in wait mode	f _{CPU} = f _{MASTER} = 16 MHz	HSE crystal osc. (16 MHz)	2.0		
			HSE user ext. clock (16 MHz)	lz) 1.4 4	4.4	
I _{DD(WFI)}			HSI RC osc. (16 MHz)	1.2	1.6	mA
	wait mode	f _{CPU} = f _{MASTER} /128 = 125 kHz	HSI RC osc. (16 MHz)	1.0		
		f _{CPU} = f _{MASTER} /128 = 15.625 kHz	HSI RC osc. (16 MHz/8) ⁽²⁾	0.55		
		f _{CPU} = f _{MASTER} = 128 kHz	LSI RC osc. (128 kHz)	0.5		

Table 22. Total current consumption in wait mode at V_{DD} = 5 V

1. Data based on characterization results, not tested in production.

2. Default clock configuration measured with all peripherals off.

Symbol	Parameter	Condi	Тур	Max ⁽¹⁾	Unit	
		f _{CPU} = f _{MASTER} = 24 MHz,	HSE crystal osc. (24 MHz)	2.0		
		$T_A \leq 105 \ ^{\circ}C$	HSE user ext. clock (24 MHz)	1.8	4.7	
			HSE crystal osc. (16 MHz)	1.6		
	Supply	f _{CPU} = f _{MASTER} = 16 MHz	HSE user ext. clock (16 MHz)	1.4	4.4	
I _{DD(WFI)}	Supply current in		HSI RC osc. (16 MHz)	1.2	1.6	mA
	wait mode	f _{CPU} = f _{MASTER} /128 = 125 kHz	HSI RC osc. (16 MHz)	1.0		
		f _{CPU} = f _{MASTER} /128 = 15.625 kHz	HSI RC osc. (16 MHz/8) ⁽²⁾	0.55		
		f _{CPU} = f _{MASTER} /128 = 15.625 kHz	LSI RC osc. (128 kHz)	0.5		

1. Data based on characterization results, not tested in production.

2. Default clock configuration measured with all peripherals off.

10.3.3 External clock sources and timing characteristics

HSE user external clock

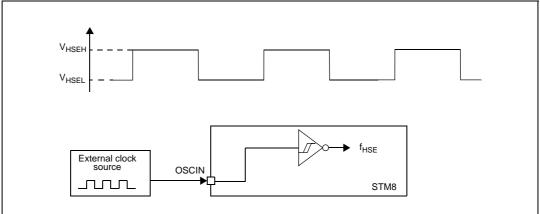

Subject to general operating conditions for V_{DD} and T_A .

Table 31. HSE us	ser external clock	characteristics
------------------	--------------------	-----------------

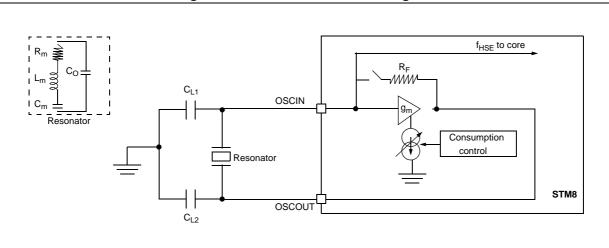
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency		0		24	MHz
V _{HSEH} ⁽¹⁾	OSCIN input pin high level voltage		0.7 x V _{DD}		V _{DD} + 0.3 V	V
V _{HSEL} ⁽¹⁾	OSCIN input pin low level voltage		V _{SS}		0.3 x V _{DD}	V
I _{LEAK_HSE}	OSCIN input leakage current	$V_{SS} < V_{IN} < V_{DD}$	-1		1	μA

1. Data based on characterization results, not tested in production.

HSE crystal/ceramic resonator oscillator

The HSE clock can be supplied with a 1 to 24 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and start-up stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...).

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{HSE}	External high speed oscillator frequency		1		24	MHz
R _F	Feedback resistor			220		kΩ
C ⁽¹⁾	Recommended load capacitance (2)				20	pF
I _{DD(HSE)}	HSE oscillator power consumption	C = 20 pF, f _{OSC} = 24 MHz			6 (startup) 2 (stabilized) ⁽³⁾	mA
		C = 10 pF, f _{OSC} = 24 MHz			6 (startup) 1.5 (stabilized) ⁽³⁾	IIIA
9 _m	Oscillator transconductance		5			mA/V
t _{SU(HSE)} ⁽⁴⁾	Startup time	V_{DD} is stabilized		1		ms


Table 32. HSE oscillator characterist	ics
---------------------------------------	-----

1. C is approximately equivalent to 2 x crystal Cload.

2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small R_m value. Refer to crystal manufacturer for more details

3. Data based on characterization results, not tested in production.

 t_{SU(HSE)} is the start-up time measured from the moment it is enabled (by software) to a stabilized 24 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.

Figure 17. HSE oscillator circuit diagram

HSE oscillator critical g_m formula

 $g_{mcrit} = (2 \times \Pi \times f_{HSE})^2 \times R_m (2Co + C)^2$

 $\begin{array}{l} {\sf R}_m: \mbox{ Notional resistance (see crystal specification)} \\ {\sf L}_m: \mbox{ Notional inductance (see crystal specification)} \\ {\sf C}_m: \mbox{ Notional capacitance (see crystal specification)} \\ {\sf Co: Shunt capacitance (see crystal specification)} \\ {\sf C}_{L1} = {\sf C}_{L2} = {\sf C}: \mbox{ Grounded external capacitance } \\ {\sf g}_m >> {\sf g}_{mcrit} \end{array}$

DocID14733 Rev 13

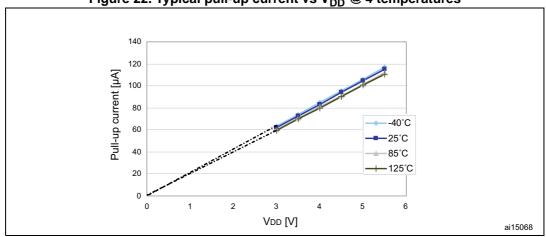


Figure 22. Typical pull-up current vs $V_{\text{DD}} @$ 4 temperatures

1. The pull-up is a pure resistor (slope goes through 0).

Symbol	Parameter	Conditions		Max	Unit
M	Output low level with 8 pins sunk	$I_{IO} = 10 \text{ mA}, V_{DD} = 5 \text{ V}$		2	V
V _{OL}	Output low level with 4 pins sunk	I _{IO} = 4 mA, V _{DD} = 3.3 V		1 ⁽¹⁾	V
V	Output high level with 8 pins sourced	$I_{IO} = 10 \text{ mA}, V_{DD} = 5 \text{ V}$	2.8		V
V _{OH}	Output high level with 4 pins sourced	$I_{IO} = 4 \text{ mA}, V_{DD} = 3.3 \text{ V}$	2.1 ⁽¹⁾		v

Table 38. Output driving current (standard ports)

1. Data based on characterization results, not tested in production

Table 39.	Output driving	a current ((true oper	n drain ports)	
		,			

Symbol	Parameter	Conditions	Max	Unit
		$I_{IO} = 10 \text{ mA}, V_{DD} = 5 \text{ V}$	1	
V _{OL}	Output low level with 2 pins sunk	I _{IO} = 10 mA, V _{DD} = 3.3 V	1.5 ⁽¹⁾	V
		I _{IO} = 20 mA, V _{DD} = 5 V	2 ⁽¹⁾	

1. Data based on characterization results, not tested in production

Symbol	Parameter	Conditions	Min	Max	Unit
	Output low level with 8 pins sunk	$I_{IO} = 10 \text{ mA}, V_{DD} = 5 \text{ V}$		0.8	
V _{OL}	Output low level with 4 pins sunk	$I_{IO} = 10 \text{ mA}, V_{DD} = 3.3 \text{ V}$		1 ⁽¹⁾	
	Output low level with 4 pins sunk	$I_{IO} = 20 \text{ mA}, V_{DD} = 5 \text{ V}$		1.5 ⁽¹⁾	V
	Output high level with 8 pins sourced	$I_{IO} = 10 \text{ mA}, V_{DD} = 5 \text{ V}$	4.0		v
V _{OH}	Output high level with 4 pins sourced	$I_{IO} = 10 \text{ mA}, V_{DD} = 3.3 \text{ V}$	2.1 ⁽¹⁾		
	Output high level with 4 pins sourced	$I_{IO} = 20 \text{ mA}, V_{DD} = 5 \text{ V}$	3.3 ⁽¹⁾		

1. Data based on characterization results, not tested in production

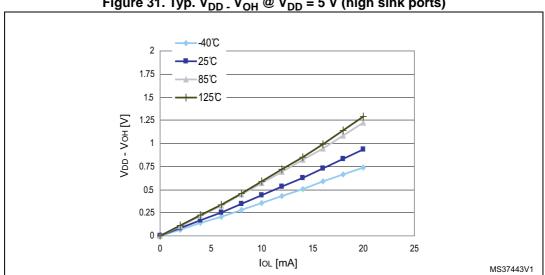
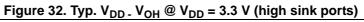
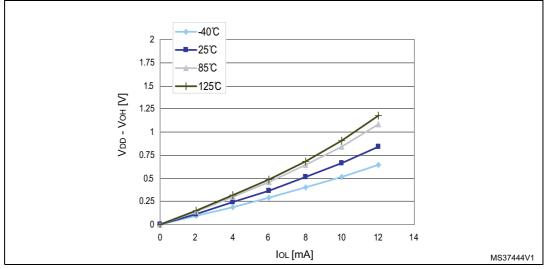
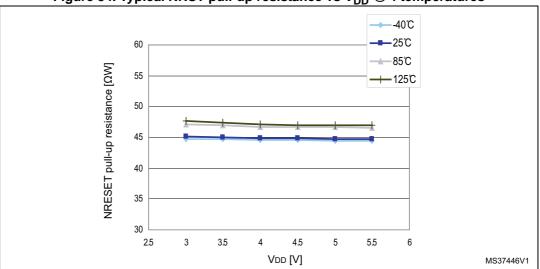
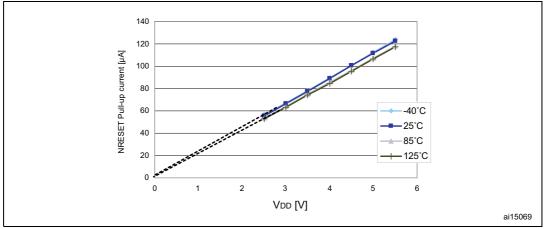




Figure 31. Typ. V_{DD} - V_{OH} @ V_{DD} = 5 V (high sink ports)

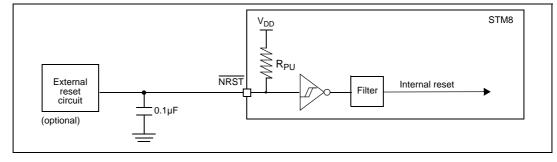

Figure 34. Typical NRST pull-up resistance vs V_{DD} @ 4 temperatures

Figure 35. Typical NRST pull-up current vs V_{DD} @ 4 temperatures

The reset network shown in *Figure 36* protects the device against parasitic resets. The user must ensure that the level on the NRST pin can go below the V_{IL} max. level specified in *Table 41*. Otherwise the reset is not taken into account internally. For power consumption sensitive applications, the capacity of the external reset capacitor can be reduced to limit charge/discharge current. If the NRSTsignal is used to reset the external circuitry, care must be taken of the charge/discharge time of the external capacitor to fulfill the external device's reset timing conditions. The minimum recommended capacity is 10 nF.

10.3.10 10-bit ADC characteristics

Subject to general operating conditions for $V_{\text{DDA}},\,f_{\text{MASTER}},$ and T_{A} unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f		V _{DDA} = 3 to 5.5 V	1		4	MHz	
f _{ADC}	ADC clock frequency	V _{DDA} = 4.5 to 5.5 V	1		6	IVIFIZ	
V _{DDA}	Analog supply		3		5.5	V	
V _{REF+}	Positive reference voltage		2.75 ⁽¹⁾		V _{DDA}	V	
V _{REF-}	Negative reference voltage		V _{SSA}		0.5 ⁽¹⁾	V	
			V_{SSA}		V _{DDA}	V	
V _{AIN}	Conversion voltage range ⁽²⁾	Devices with external V _{REF+} /V _{REF-} pins	V _{REF-}		V _{REF+}	V	
C _{ADC}	Internal sample and hold capacitor			3		pF	
ts ⁽²⁾	Sampling time	f _{ADC} = 4 MHz		0.75			
LS.		f _{ADC} = 6 MHz		0.5		μs	
t _{STAB}	Wakeup time from standby			7		μs	
		$f_{ADC} = 4 MHz$		3.5		μs	
t _{CONV}	Total conversion time (including sampling time, 10-bit resolution)	f _{ADC} = 6 MHz		2.33		μs	
				14		1/f _{ADC}	

Table 44.	ADC	characteristics
-----------	-----	-----------------

1. Data guaranteed by design, not tested in production.

2. During the sample time the input capacitance C_{AIN} (3 pF max) can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_S. After the end of the sample time t_S, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_S depend on programming.

Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit
		$f_{ADC} = 2 MHz$	1	2.5	
E _T	Total unadjusted error ⁽²⁾	f _{ADC} = 4 MHz	1.4	3	
-		f _{ADC} = 6 MHz	1.6	3.5	
		f _{ADC} = 2 MHz	0.6	2	
E _O	Offset error ⁽²⁾	f _{ADC} = 4 MHz	1.1	2.5	
		f _{ADC} = 6 MHz	1.2	2.5	
E _G	Gain error ⁽²⁾	f _{ADC} = 2 MHz	0.2	2	
		f _{ADC} = 4 MHz	0.6	2.5	LSB
		f _{ADC} = 6 MHz	0.8	2.5	
		f _{ADC} = 2 MHz	0.7	1.5	
E _D	Differential linearity error ⁽²⁾	f _{ADC} = 4 MHz	0.7	1.5	
		f _{ADC} = 6 MHz	0.8	1.5	
		f _{ADC} = 2 MHz	0.6	1.5	
E _L	Integral linearity error (2)	$f_{ADC} = 4 \text{ MHz}$	0.6	1.5	
		f _{ADC} = 6 MHz	0.6	1.5	

Table 45. ADC accuracy	y with R _{AIN} < 10) $\mathbf{k}\Omega$, $\mathbf{V}_{\mathbf{DDA}} = 5 \mathbf{V}$
------------------------	------------------------------	---

1. Data based on characterization results for LQFP80 device with V_{REF+}/V_{REF-} , not tested in production.

 ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 10.3.6 does not affect the ADC accuracy.

Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit
E _T	Total unadjusted error ⁽²⁾	$f_{ADC} = 2 MHz$	1.1	2	
I⊢ŢI		f _{ADC} = 4 MHz	1.6	2.5	
IEal	Offset error ⁽²⁾	$f_{ADC} = 2 MHz$	0.7	1.5	
E _O		f _{ADC} = 4 MHz	1.3	2	
IE . I	Gain error ⁽²⁾	f _{ADC} = 2 MHz	0.2	1.5	LSB
E _G	Gainenoi	$f_{ADC} = 4 \text{ MHz}$	0.5	2	LSD
	Differential linearity error ⁽²⁾	f _{ADC} = 2 MHz	0.7	1	
E _D		f _{ADC} = 4 MHz	0.7	1	
E _L	Integral linearity error ⁽²⁾	$f_{ADC} = 2 MHz$	0.6	1.5	
וברו		f _{ADC} = 4 MHz	0.6	1.5	

Table 46. ADC accuracy	with R_{AIN} < 10 k Ω	$R_{AIN}, V_{DDA} = 3.3 V$

Electromagnetic interference (EMI)

Emission tests conform to the SAE IEC 61967-2 standard for test software, board layout and pin loading.

Symbol Par			Conditions				
	Parameter		Monitored	Max	k f _{HSE} /f _{CP}	יט ⁽¹⁾	Unit
		General conditions	frequency band	8 MHz/ 8 MHz	8 MHz/ 16 MHz	8 MHz/ 24 MHz	
		0.1MHz to 30 MHz	15	20	24		
	Peak level	$V_{DD} = 5 V$ $T_A = 25 °C$	30 MHz to 130 MHz	18	21	16	dBµV
		LQFP80 package conforming to SAE IEC	130 MHz to 1 GHz	-1	1	4	
	SAE EMI level	61967-2	SAE EMI level	2	2.5	2.5	

1. Data based on characterization results, not tested in production.

Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

Electrostatic discharge (ESD)

Electrostatic discharges (3 positive then 3 negative pulses separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test conforms to the JESD22-A114A/A115A standard. For more details, refer to the application note AN1181.

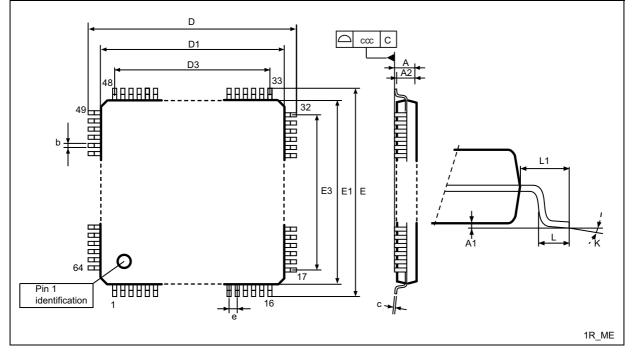

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (Human body model)	$T_A = 25^{\circ}C$, conforming to JESD22-A114	А	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (Charge device model)	T _A = 25°C, conforming to JESD22-C101	IV	1000	V

Table 49. ESD absolute maximum ratings

1. Data based on characterization results, not tested in production.

11.1.2 LQFP64 package information

Figure 46. LQFP64 - 64-pin 14 mm x 14 mm low-profile quad flat package outline

Table 52. LQFP64 - 64-pin, 14 x 14 mm low-profile quad flat package mechanicaldata

Symbol	mm			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
А			1.600			0.0630
A1	0.050		0.150	0.0020		0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.300	0.370	0.450	0.0118	0.0146	0.0177
С	0.090		0.200	0.0035		0.0079
D	15.800	16.000	16.200	0.6220	0.6299	0.6378
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591
D3		12.000			0.4724	
E	15.800	16.000	16.200	0.6220	0.6299	0.6378
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591
E3		12.000			0.4724	
е		0.800			0.0315	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1		1.000			0.0394	

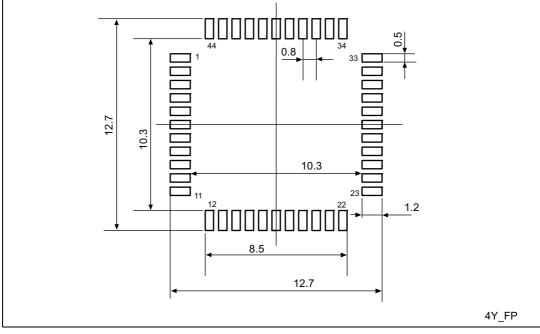


Figure 54. LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat recommended footprint

1. Dimensions are expressed in millimeters.

Device marking

The following figure shows the marking for the LQFP44 package.

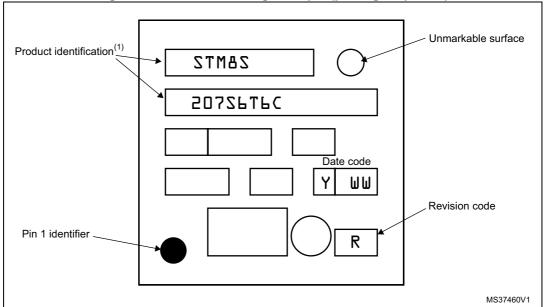


Figure 55. LQFP44 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

DocID14733 Rev 13

14 Revision history

Date	Revision	Changes	
23-May-2008	1	Initial release.	
05-Jun-2008	2	Added part numbers on page 1 and in <i>Table 2 on page 11</i> . Updated <i>Section 4: Product overview</i> . Updated <i>Section 10: Electrical characteristics</i> .	
22-Jun-2008	3	Added part numbers on page 1 and in Table 2 on page 11.	
12-Aug-2008	4	Added 32 pin device pinout and ordering information. Updated UBC option description in <i>Table 13 on page 48</i> . USART renamed UART1, LINUART renamed UART3. Max. ADC frequency increased to 6 MHz.	
20-Oct-2008	5	 Removed STM8S207K4 part number. Removed LQFP64 14 x 14 mm package. Added medium and high density Flash memory categories. Added Section 6: Memory and register map on page 34. Replaced beCAN3 by beCAN in Section 4.14.5: beCAN. Updated Section 10: Electrical characteristics on page 52. Updated LQFP44 (Figure 53 and Table 55), and LQFP32 outline and mechanical data (Figure 56, and Table 56). 	
08-Dec-2008	6	Changed V _{DD} minimum value from 3.0 to 2.95 V. Updated number of High Sink I/Os in pinout. Removed FLASH _NFPR and FLASH _FPR registers in <i>Table 9:</i> <i>General hardware register map</i> .	
30-Jan-2009	7	Removed preliminary status. Removed VQFN32 package. Added STM8S207C6, STM8S207S6. Updated external interrupts in <i>Table 2 on page 11</i> . Updated <i>Section 10: Electrical characteristics</i> .	
10-Jul-2009	8	 Document status changed from "preliminary data" to "datasheet". Added LQFP64 14 x 14 mm package. Added STM8S207M8, STM8S207SB, STM8S208R8, STM8S208R6 STM8S208C8, and STM8S208C6, STM8S208SB, STM8S208S8, and STM8S208S6. Replaced "CAN" with "beCAN". Added <i>Table 3</i> to <i>Section 4.5: Clock controller</i>. Updated <i>Section 4.8: Auto wakeup counter</i>. Added beCAN peripheral (impacting <i>Table 1</i> and <i>Figure 6</i>). Added footnote about CAN_RX/TX to pinout figures <i>5</i>, <i>4</i>, and <i>6</i>. <i>Table 6</i>: Removed 'X' from wpu column of I²C pins (no wpu available). Added <i>Table 11: Interrupt mapping</i>. 	

Table 58. Document rev	ision history
------------------------	---------------

Date	Revision	Changes
18-Feb-2015	13	 Updated: Figure 43: LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package outline Table 51: LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package mechanical data Figure 51: LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package mechanical data Figure 51: LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline Table 53: LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline Table 53: LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline Table 54: LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline Table 56: LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline Table 56: LQFP48 - 32-pin, 7 x 7 mm low-profile quad flat package outline Figure 56: LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package mechanical data Added: Figure 44: LQFP80 recommended footprint Figure 45: LQFP48 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint Figure 48: LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint Figure 51: LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint Figure 51: LQFP48 - 44-pin, 10 x 10 mm low-profile quad flat recommended footprint Figure 52: LQFP48 - 44-pin, 10 x 10 mm low-profile quad flat recommended footprint Figure 52: LQFP48 marking example (package top view) Figure 52: LQFP48 marking example (package top view) Figure 52: LQFP48 marking example (package top view) Figure 52: LQFP48 - 44-pin, 10 x 10 mm low-profile quad flat recommended footprint Figure 52: LQFP48 marking example (package top view) Figure 53: LQFP44 marking example (package top view) Figure 54: LQFP44 - 34-pin, 10 x 10 mm low-profile quad flat recommended footprint Figure 55: LQFP48 marking example (package top view) Figure 55: LQFP44 marking example (package top view) Figure 55:

Table 58. Document revision history (continued)

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

DocID14733 Rev 13