E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	1.5K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	2.95V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8s207s8t6ctr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Description

The STM8S20xxx performance line 8-bit microcontrollers offer from 32 to 128 Kbytes Flash program memory. They are referred to as high-density devices in the STM8S microcontroller family reference manual.

All STM8S20xxx devices provide the following benefits: reduced system cost, performance robustness, short development cycles, and product longevity.

The system cost is reduced thanks to an integrated true data EEPROM for up to 300 k write/erase cycles and a high system integration level with internal clock oscillators, watchdog, and brown-out reset.

Device performance is ensured by 20 MIPS at 24 MHz CPU clock frequency and enhanced characteristics which include robust I/O, independent watchdogs (with a separate clock source), and a clock security system.

Short development cycles are guaranteed due to application scalability across a common family product architecture with compatible pinout, memory map and modular peripherals. Full documentation is offered with a wide choice of development tools.

Product longevity is ensured in the STM8S family thanks to their advanced core which is made in a state-of-the art technology for applications with 2.95 V to 5.5 V operating supply.

Device	Pin count	Max. number of GPIOs (I/O)	Ext. interrupt pins	Timer CAPCOM channels	Timer complementary outputs	A/D converter channels	High sink I/Os	High density Flash program memory (bytes)	Data EEPROM (bytes	RAM (bytes)	beCAN interface
STM8S207MB	80	68	37	9	3	16	18	128 K	2048	6 K	
STM8S207M8	80	68	37	9	3	16	18	64 K	2048	6 K	
STM8S207RB	64	52	36	9	3	16	16	128 K	2048	6 K	
STM8S207R8	64	52	36	9	3	16	16	64 K	1536	6 K	
STM8S207R6	64	52	36	9	3	16	16	32 K	1024	6 K	
STM8S207CB	48	38	35	9	3	10	16	128 K	2048	6 K	
STM8S207C8	48	38	35	9	3	10	16	64 K	1536	6 K	No
STM8S207C6	48	38	35	9	3	10	16	32 K	1024	6 K	
STM8S207SB	44	34	31	8	3	9	15	128 K	1536	6 K	
STM8S207S8	44	34	31	8	3	9	15	64 K	1536	6 K	
STM8S207S6	44	34	31	8	3	9	15	32 K	1024	6 K	
STM8S207K8	32	25	23	8	3	7	12	64 K	1024	6 K	
STM8S207K6	32	25	23	8	3	7	12	32 K	1024	6 K	
STM8S208MB	80	68	37	9	3	16	18	128 K	2048	6 K	
STM8S208RB	64	52	37	9	3	16	16	128 K	2048	6 K	
STM8S208R8	64	52	37	9	3	16	16	64 K	2048	6 K	
STM8S208R6	64	52	37	9	3	16	16	32 K	2048	6 K	
STM8S208CB	48	38	35	9	3	10	16	128 K	2048	6 K	Vac
STM8S208C8	48	38	35	9	3	10	16	64 K	2048	6 K	103
STM8S208C6	48	38	35	9	3	10	16	32 K	2048	6 K	
STM8S208SB	44	34	31	8	3	9	15	128 K	1536	6 K	
STM8S208S8	44	34	31	8	3	9	15	64 K	1536	6 K	
STM8S208S6	44	34	31	8	3	9	15	32 K	1536	6 K	

Table 2. STM8S20xxx performance line features

4.2 Single wire interface module (SWIM) and debug module (DM)

The single wire interface module and debug module permits non-intrusive, real-time incircuit debugging and fast memory programming.

SWIM

Single wire interface module for direct access to the debug module and memory programming. The interface can be activated in all device operation modes. The maximum data transmission speed is 145 bytes/ms.

Debug module

The non-intrusive debugging module features a performance close to a full-featured emulator. Beside memory and peripherals, also CPU operation can be monitored in real-time by means of shadow registers.

- R/W to RAM and peripheral registers in real-time
- R/W access to all resources by stalling the CPU
- Breakpoints on all program-memory instructions (software breakpoints)
- Two advanced breakpoints, 23 predefined configurations

4.3 Interrupt controller

- Nested interrupts with three software priority levels
- 32 interrupt vectors with hardware priority
- Up to 37 external interrupts on six vectors including TLI
- Trap and reset interrupts

4.4 Flash program and data EEPROM memory

- Up to 128 Kbytes of high density Flash program single voltage Flash memory
- Up to 2K bytes true data EEPROM
- Read while write: Writing in data memory possible while executing code in program memory.
- User option byte area

Write protection (WP)

Write protection of Flash program memory and data EEPROM is provided to avoid unintentional overwriting of memory that could result from a user software malfunction.

There are two levels of write protection. The first level is known as MASS (memory access security system). MASS is always enabled and protects the main Flash program memory, data EEPROM and option bytes.

To perform in-application programming (IAP), this write protection can be removed by writing a MASS key sequence in a control register. This allows the application to write to data EEPROM, modify the contents of main program memory or the device option bytes.

A second level of write protection, can be enabled to further protect a specific area of memory known as UBC (user boot code). Refer to *Figure 2*.

DocID14733 Rev 13

4.12 TIM4 - 8-bit basic timer

- 8-bit autoreload, adjustable prescaler ratio to any power of 2 from 1 to 128
- Clock source: CPU clock
- Interrupt source: 1 x overflow/update

Timer	Counter size (bits)	Prescaler	Counting mode	CAPCOM channels	Complem. outputs	Ext. trigger	Timer synchr- onization/ chaining
TIM1	16	Any integer from 1 to 65536	Up/down	4	3	Yes	
TIM2	16	Any power of 2 from 1 to 32768	Up	3	0	No	No
TIM3	16	Any power of 2 from 1 to 32768	Up	2	0	No	INU
TIM4	8	Any power of 2 from 1 to 128	Up	0	0	No	

Table 4. TIM timer features

4.13 Analog-to-digital converter (ADC2)

STM8S20xxx performance line products contain a 10-bit successive approximation A/D converter (ADC2) with up to 16 multiplexed input channels and the following main features:

- Input voltage range: 0 to V_{DDA}
- Dedicated voltage reference (VREF) pins available on 80 and 64-pin devices
- Conversion time: 14 clock cycles
- Single and continuous modes
- External trigger input
- Trigger from TIM1 TRGO
- End of conversion (EOC) interrupt

4.14 Communication interfaces

The following communication interfaces are implemented:

- UART1: Full feature UART, SPI emulation, LIN2.1 master capability, Smartcard mode, IrDA mode, single wire mode.
- UART3: Full feature UART, LIN2.1 master/slave capability
- SPI: Full and half-duplex, 10 Mbit/s
- I²C: Up to 400 Kbit/s
- beCAN (rev. 2.0A,B) 3 Tx mailboxes up to 1 Mbit/s

Address	Block	Register label	Register name	Reset status
0x00 500F		PD_ODR	Port D data output latch register	0x00
0x00 5010		PD_IDR	Port D input pin value register	0x00
0x00 5011	Port D	PD_DDR	Port D data direction register	0x00
0x00 5012		PD_CR1	Port D control register 1	0x02
0x00 5013		PD_CR2	Port D control register 2	0x00
0x00 5014		PE_ODR	Port E data output latch register	0x00
0x00 5015		PE_IDR	Port E input pin value register	0x00
0x00 5016	Port E	PE_DDR	Port E data direction register	0x00
0x00 5017		PE_CR1	Port E control register 1	0x00
0x00 5018		PE_CR2	Port E control register 2	0x00
0x00 5019		PF_ODR	Port F data output latch register	0x00
0x00 501A		PF_IDR	Port F input pin value register	0x00
0x00 501B	Port F	PF_DDR	Port F data direction register	0x00
0x00 501C		PF_CR1	Port F control register 1	0x00
0x00 501D	PF_CR2		Port F control register 2	0x00
0x00 501E		PG_ODR	Port G data output latch register	0x00
0x00 501F		PG_IDR	Port G input pin value register	0x00
0x00 5020	Port G	PG_DDR	Port G data direction register	0x00
0x00 5021		PG_CR1	Port G control register 1	0x00
0x00 5022		PG_CR2	Port G control register 2	0x00
0x00 5023		PH_ODR	Port H data output latch register	0x00
0x00 5024		PH_IDR	Port H input pin value register	0x00
0x00 5025	Port H	PH_DDR	Port H data direction register	0x00
0x00 5026		PH_CR1	Port H control register 1	0x00
0x00 5027		PH_CR2	Port H control register 2	0x00
0x00 5028		PI_ODR	Port I data output latch register	0x00
0x00 5029		PI_IDR	Port I input pin value register	0x00
0x00 502A	Port I	PI_DDR	Port I data direction register	0x00
0x00 502B		PI_CR1	Port I control register 1	0x00
0x00 502C		PI_CR2	Port I control register 2	0x00

 Table 8. I/O port hardware register map (continued)

Address	Block	Register label	Register name	Reset status	
0x00 5050 to 0x00 5059			Reserved area (10 bytes)		
0x00 505A		FLASH_CR1	Flash control register 1	0x00	
0x00 505B		FLASH_CR2	Flash control register 2	0x00	
0x00 505C		FLASH_NCR2	Flash complementary control register 2	0xFF	
0x00 505D	Flash	FLASH _FPR	Flash protection register	0x00	
0x00 505E		FLASH_NFPR	Flash complementary protection register	0xFF	
0x00 505F		FLASH _IAPSR	Flash in-application programming status register	0x00	
0x00 5060 to 0x00 5061			Reserved area (2 bytes)		
0x00 5062	Flash	FLASH_PUKR	Flash Program memory unprotection register	0x00	
0x00 5063			Reserved area (1 byte)		
0x00 5064	Flash	FLASH _DUKR	Data EEPROM unprotection register	0x00	
0x00 5065 to 0x00 509F		Reserved area (59 bytes)			
0x00 50A0	ITC	EXTI_CR1 External interrupt control register 1		0x00	
0x00 50A1		EXTI_CR2	External interrupt control register 2	0x00	
0x00 50A2 to 0x00 50B2			Reserved area (17 bytes)		
0x00 50B3	RST	RST_SR	Reset status register	0xXX ⁽¹⁾	
0x00 50B4 to 0x00 50BF			Reserved area (12 bytes)		
0x00 50C0		CLK_ICKR	Internal clock control register	0x01	
0x00 50C1		CLK_ECKR	External clock control register	0x00	
0x00 50C2		•	Reserved area (1 byte)		
0x00 50C3		CLK_CMSR	Clock master status register	0xE1	
0x00 50C4		CLK_SWR	Clock master switch register	0xE1	
0x00 50C5		CLK_SWCR	Clock switch control register	0xXX	
0x00 50C6		CLK_CKDIVR	Clock divider register	0x18	
0x00 50C7	CLK	CLK_PCKENR1	Peripheral clock gating register 1	0xFF	
0x00 50C8]	CLK_CSSR	Clock security system register	0x00	
0x00 50C9]	CLK_CCOR	Configurable clock control register	0x00	
0x00 50CA]	CLK_PCKENR2	Peripheral clock gating register 2	0xFF	
0x00 50CB		CLK_CANCCR	CAN clock control register	0x00	

Table 9. General hardware register map

			• • •	1
Address	Block	Register label	Register name	Reset status
0x00 5300		TIM2_CR1	TIM2 control register 1	0x00
0x00 5301		TIM2_IER	TIM2 interrupt enable register	0x00
0x00 5302		TIM2_SR1	TIM2 status register 1	0x00
0x00 5303		TIM2_SR2	TIM2 status register 2	0x00
0x00 5304		TIM2_EGR	TIM2 event generation register	0x00
0x00 5305		TIM2_CCMR1	TIM2 capture/compare mode register 1	0x00
0x00 5306		TIM2_CCMR2	TIM2 capture/compare mode register 2	0x00
0x00 5307		TIM2_CCMR3	TIM2 capture/compare mode register 3	0x00
0x00 5308		TIM2_CCER1	TIM2 capture/compare enable register 1	0x00
0x00 5309		TIM2_CCER2	TIM2 capture/compare enable register 2	0x00
0x00 530A	TIM2	TIM2_CNTRH	TIM2 counter high	0x00
0x00 530B		TIM2_CNTRL	TIM2 counter low	0x00
00 530C0x		TIM2_PSCR	TIM2 prescaler register	0x00
0x00 530D		TIM2_ARRH	TIM2 auto-reload register high	0xFF
0x00 530E		TIM2_ARRL	TIM2_ARRL TIM2 auto-reload register low	
0x00 530F		TIM2_CCR1H TIM2 capture/compare register 1 high		0x00
0x00 5310		TIM2_CCR1L	TIM2 capture/compare register 1 low	0x00
0x00 5311		TIM2_CCR2H	TIM2 capture/compare reg. 2 high	0x00
0x00 5312		TIM2_CCR2L	TIM2 capture/compare register 2 low	0x00
0x00 5313		TIM2_CCR3H	TIM2 capture/compare register 3 high	0x00
0x00 5314		TIM2_CCR3L	TIM2 capture/compare register 3 low	0x00
0x00 5315 to 0x00 531F			Reserved area (11 bytes)	
0x00 5320		TIM3_CR1	TIM3 control register 1	0x00
0x00 5321		TIM3_IER	TIM3 interrupt enable register	0x00
0x00 5322		TIM3_SR1	TIM3 status register 1	0x00
0x00 5323		TIM3_SR2	TIM3 status register 2	0x00
0x00 5324		TIM3_EGR	TIM3 event generation register	0x00
0x00 5325	TIM3	TIM3_CCMR1	TIM3 capture/compare mode register 1	0x00
0x00 5326		TIM3_CCMR2	TIM3 capture/compare mode register 2	0x00
0x00 5327	1	TIM3_CCER1	TIM3 capture/compare enable register 1	0x00
0x00 5328	1	TIM3_CNTRH	TIM3 counter high	0x00
0x00 5329]	TIM3_CNTRL	TIM3 counter low	0x00
0x00 532A	1	TIM3_PSCR	TIM3 prescaler register	0x00

			_			
Table 9.	General	hardware	register	map	(continued))

Address	Block	Register Label	Register Name	Reset Status
0x00 7F00		А	Accumulator	0x00
0x00 7F01		PCE	Program counter extended	0x00
0x00 7F02		PCH	Program counter high	0x00
0x00 7F03		PCL	Program counter low	0x00
0x00 7F04		ХН	X index register high	0x00
0x00 7F05	CPU ⁽¹⁾	XL	X index register low	0x00
0x00 7F06		YH	Y index register high	0x00
0x00 7F07		YL	Y index register low	0x00
0x00 7F08		SPH	PH Stack pointer high	
0x00 7F09		SPL	Stack pointer low	0xFF
0x00 7F0A		CCR	Condition code register	0x28
0x00 7F0B to 0x00 7F5F			Reserved area (85 bytes)	
0x00 7F60	CPU	CFG_GCR	Global configuration register	0x00
0x00 7F70		ITC_SPR1	Interrupt software priority register 1	0xFF
0x00 7F71		ITC_SPR2	Interrupt software priority register 2	0xFF
0x00 7F72		ITC_SPR3	Interrupt software priority register 3	0xFF
0x00 7F73	ITC	ITC_SPR4	Interrupt software priority register 4	0xFF
0x00 7F74	ne	ITC_SPR5	Interrupt software priority register 5	0xFF
0x00 7F75		ITC_SPR6	Interrupt software priority register 6	0xFF
0x00 7F76		ITC_SPR7	Interrupt software priority register 7	0xFF
0x00 7F77		ITC_SPR8	Interrupt software priority register 8	0xFF
0x00 7F78 to 0x00 7F79			Reserved area (2 bytes)	
0x00 7F80	SWIM	SWIM_CSR	SWIM control status register	0x00
0x00 7F81 to 0x00 7F8F			Reserved area (15 bytes)	
0x00 7F90		DM_BK1RE	DM breakpoint 1 register extended byte	0xFF
0x00 7F91		DM_BK1RH	DM breakpoint 1 register high byte	0xFF
0x00 7F92		DM_BK1RL	DM breakpoint 1 register low byte	0xFF
0x00 7F93		DM_BK2RE	DM breakpoint 2 register extended byte	0xFF
0x00 7F94		DM_BK2RH	DM breakpoint 2 register high byte	0xFF
0x00 7F95		DM_BK2RL	DM breakpoint 2 register low byte	0xFF
0x00 7F96		DM_CR1	DM debug module control register 1	0x00
0x00 7F97		DM_CR2	DM debug module control register 2	0x00

Table 10. CPU/SWIM/debug module/interrupt controller registers

9 Unique ID

The devices feature a 96-bit unique device identifier which provides a reference number that is unique for any device and in any context. The 96 bits of the identifier can never be altered by the user.

The unique device identifier can be read in single bytes and may then be concatenated using a custom algorithm.

The unique device identifier is ideally suited:

- For use as serial numbers
- For use as security keys to increase the code security in the program memory while using and combining this unique ID with software cryptographic primitives and protocols before programming the internal memory.
- To activate secure boot processes

Address	Content	Unique ID bits								
Address	description	7 6 5 4 3 2						1	0	
0x48CD	X co-ordinate on the				U_	_ID[7:0]				
0x48CE	wafer				U_	ID[15:8]				
0x48CF	Y co-ordinate on the				U_I	D[23:16]				
0x48D0	wafer				U_I	D[31:24]				
0x48D1	Wafer number				U_I	D[39:32]				
0x48D2					U_I	D[47:40]				
0x48D3					U_I	D[55:48]				
0x48D4					U_I	D[63:56]				
0x48D5	Lot number				U_I	D[71:64]				
0x48D6					U_I	D[79:72]				
0x48D7					U_I	D[87:80]				
0x48D8					U_I	D[95:88]				

Table 14. Unique ID registers (96 bits)

10.1.5 Pin loading conditions

10.1.6 Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 10.

Figure 10. Pin loading conditions

10.1.7 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 11*.

Figure 11. Pin input voltage

10.3.6 I/O port pin characteristics

General characteristics

Subject to general operating conditions for V_{DD} and T_A unless otherwise specified. All unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
V _{IL}	Input low level voltage		-0.3		0.3 x V _{DD}	V	
V _{IH}	Input high level voltage	V _{DD} = 5 V	0.7 x V _{DD}		V _{DD} + 0.3 V	v	
V _{hys}	Hysteresis ⁽¹⁾			700		mV	
R _{pu}	Pull-up resistor	V_{DD} = 5 V, V_{IN} = V_{SS}	30	55	80	kΩ	
		Fast I/Os Load = 50 pF			20 ⁽²⁾		
	Rise and fall time (10% - 90%)	Standard and high sink I/Os Load = 50 pF			125 ⁽²⁾	20	
ι _R , ι _F		Fast I/Os Load = 20 pF			35 ⁽³⁾	115	
		Standard and high sink I/Os Load = 20 pF			125 ⁽³⁾		
I _{lkg}	Input leakage current, analog and digital	$V_{SS} \leq V_{IN} \leq V_{DD}$			±1	μA	
I _{lkg ana}	Analog input leakage current	$V_{SS} \leq V_{IN} \leq V_{DD}$			±250 ⁽²⁾	nA	
I _{lkg(inj)}	Leakage current in adjacent I/O ⁽²⁾	Injection current ±4 mA			±1 ⁽²⁾	μΑ	

Table 37.	I/O	static	characteristics
-----------	-----	--------	-----------------

1. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested in production.

2. Data based on characterization results, not tested in production.

3. Guaranteed by design.

Figure 25. Typ. $V_{OL} @ V_{DD} = 5 V$ (true open drain ports)

Figure 31. Typ. V_{DD} - V_{OH} @ V_{DD} = 5 V (high sink ports)

10.3.7 Reset pin characteristics

Subject to general operating conditions for V_{DD} and T_{A} unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ ¹⁾	Max	Unit
V _{IL(NRST)}	NRST Input low level voltage ⁽¹⁾		-0.3 V		0.3 x V _{DD}	
V _{IH(NRST)}	NRST Input high level voltage ⁽¹⁾		$0.7 ext{ x V}_{ ext{DD}}$		V _{DD} + 0.3	V
V _{OL(NRST)}	NRST Output low level voltage (1)	I _{OL} = 2 mA			0.5	
R _{PU(NRST)}	NRST Pull-up resistor ⁽²⁾		30	55	80	kΩ
t _{IFP(NRST)}	NRST Input filtered pulse (3)				75	ns
t _{INFP(NRST)}	NRST Input not filtered pulse (3)		500			ns
t _{OP(NRST)}	NRST output pulse ⁽¹⁾		15			μs

Table 41.	NRST	pin	characteristics
		P	

1. Data based on characterization results, not tested in production.

2. The $\rm R_{\rm PU}$ pull-up equivalent resistor is based on a resistive transistor

3. Data guaranteed by design, not tested in production.

Figure 33. Typical NRST $\rm V_{IL}$ and $\rm V_{IH}$ vs $\rm V_{DD}$ @ 4 temperatures

Figure 34. Typical NRST pull-up resistance vs V_{DD} @ 4 temperatures

Figure 35. Typical NRST pull-up current vs V_{DD} @ 4 temperatures

The reset network shown in *Figure 36* protects the device against parasitic resets. The user must ensure that the level on the NRST pin can go below the V_{IL} max. level specified in *Table 41*. Otherwise the reset is not taken into account internally. For power consumption sensitive applications, the capacity of the external reset capacitor can be reduced to limit charge/discharge current. If the NRSTsignal is used to reset the external circuitry, care must be taken of the charge/discharge time of the external capacitor to fulfill the external device's reset timing conditions. The minimum recommended capacity is 10 nF.

1. Measurement points are done at CMOS levels: 0.3 V_{DD} and 0.7 V_{DD}

Figure 40. Typical application with I²C bus and timing diagram

1. Measurement points are made at CMOS levels: 0.3 x V_{DD} and 0.7 x V_{DD}

Symbol	Parameter	Conditions Typ		Max ⁽¹⁾	Unit
E _T	Total unadjusted error ⁽²⁾	$f_{ADC} = 2 MHz$	1	2.5	
		$f_{ADC} = 4 \text{ MHz}$	1.4	3	
		f _{ADC} = 6 MHz	1.6	3.5	
		f _{ADC} = 2 MHz	0.6	2	
E _O	Offset error ⁽²⁾	f _{ADC} = 4 MHz	1.1	2.5	
		f _{ADC} = 6 MHz	1.2	2.5	
E _G	Gain error ⁽²⁾	f _{ADC} = 2 MHz	0.2	2	
		f _{ADC} = 4 MHz	0.6	2.5	LSB
		f _{ADC} = 6 MHz	0.8	2.5	
E _D	Differential linearity error ⁽²⁾	$f_{ADC} = 2 MHz$	0.7	1.5	
		f _{ADC} = 4 MHz	0.7	1.5	
		f _{ADC} = 6 MHz	0.8	1.5	
E _L	Integral linearity error ⁽²⁾	f _{ADC} = 2 MHz	0.6	1.5	
		$f_{ADC} = 4 \text{ MHz}$	0.6	1.5	
		f _{ADC} = 6 MHz	0.6	1.5	

Table 45. ADC	accuracy with	$R_{AIN} < 10 \ k\Omega$,	$V_{DDA} = 5 V$
---------------	---------------	----------------------------	-----------------

1. Data based on characterization results for LQFP80 device with V_{REF+}/V_{REF-} , not tested in production.

 ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 10.3.6 does not affect the ADC accuracy.

Symbol	Parameter	Conditions Typ		Max ⁽¹⁾	Unit	
E _T	Total upadjusted error ⁽²⁾	$f_{ADC} = 2 MHz$	1.1	2		
		f _{ADC} = 4 MHz	1.6	2.5		
E _O	Offset $\operatorname{arror}^{(2)}$	$f_{ADC} = 2 MHz$	0.7	1.5		
	Oliset endly	f _{ADC} = 4 MHz	1.3	2		
E _G	Gain arrar ⁽²⁾	f _{ADC} = 2 MHz	0.2	1.5		
	Gainenor	f _{ADC} = 4 MHz	0.5	2	LOD	
E _D	Differential linearity error ⁽²⁾	f _{ADC} = 2 MHz	0.7	1		
		f _{ADC} = 4 MHz	0.7	1		
E _L	Integral linearity error ⁽²⁾	f _{ADC} = 2 MHz	0.6	1.5		
		f _{ADC} = 4 MHz	0.6	1.5		

Table 46. ADC accuracy with	th $R_{AIN} < 10 \ k\Omega$	R_{AIN} , $V_{DDA} = 3.3 V$

11.1 Package information

11.1.1 LQFP80 package information

Figure 43. LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package outline

1. Drawing is not to scale.

Symbol	millimeters			inches		
	Min	Тур	Max	Min	Тур	Max
A	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.220	0.320	0.380	0.0087	0.0126	0.0150
С	0.090	-	0.200	0.0035	-	0.0079

Device marking

The following figure shows the marking for the LQFP64 package.

Figure 49. LQFP64 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

