

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	2.95V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8s207sbt6c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Independent watchdog timer

The independent watchdog peripheral can be used to resolve processor malfunctions due to hardware or software failures.

It is clocked by the 128 kHz LSI internal RC clock source, and thus stays active even in case of a CPU clock failure

The IWDG time base spans from 60 μ s to 1 s.

4.8 Auto wakeup counter

- Used for auto wakeup from active halt mode
- Clock source: Internal 128 kHz internal low frequency RC oscillator or external clock
- LSI clock can be internally connected to TIM3 input capture channel 1 for calibration

4.9 Beeper

The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in the range of 1, 2 or 4 kHz.

4.10 TIM1 - 16-bit advanced control timer

This is a high-end timer designed for a wide range of control applications. With its complementary outputs, dead-time control and center-aligned PWM capability, the field of applications is extended to motor control, lighting and half-bridge driver

- 16-bit up, down and up/down autoreload counter with 16-bit prescaler
- Four independent capture/compare channels (CAPCOM) configurable as input capture, output compare, PWM generation (edge and center aligned mode) and single pulse mode output
- Synchronization module to control the timer with external signals
- Break input to force the timer outputs into a defined state
- Three complementary outputs with adjustable dead time
- Encoder mode
- Interrupt sources: 3 x input capture/output compare, 1 x overflow/update, 1 x break

4.11 TIM2, TIM3 - 16-bit general purpose timers

- 16-bit autoreload (AR) up-counter
- 15-bit prescaler adjustable to fixed power of 2 ratios 1...32768
- Timers with 3 or 2 individually configurable capture/compare channels
- PWM mode
- Interrupt sources: 2 or 3 x input capture/output compare, 1 x overflow/update

4.14.4 I²C

- I²C master features:
 - Clock generation
 - Start and stop generation
 - I²C slave features:
 - Programmable I²C address detection
 - Stop bit detection
- Generation and detection of 7-bit/10-bit addressing and general call
 - Supports different communication speeds:
 - Standard speed (up to 100 kHz)
 - Fast speed (up to 400 kHz)

4.14.5 beCAN

The beCAN controller (basic enhanced CAN), interfaces the CAN network and supports the CAN protocol version 2.0A and B. It has been designed to manage a high number of incoming messages efficiently with a minimum CPU load.

For safety-critical applications the beCAN controller provides all hardware functions to support the CAN time triggered communication option (TTCAN).

The maximum transmission speed is 1 Mbit.

Transmission

- Three transmit mailboxes
- Configurable transmit priority by identifier or order request
- Time stamp on SOF transmission

Reception

- 8-, 11- and 29-bit ID
- One receive FIFO (3 messages deep)
- Software-efficient mailbox mapping at a unique address space
- FMI (filter match index) stored with message
- Configurable FIFO overrun
- Time stamp on SOF reception
- Six filter banks, 2 x 32 bytes (scalable to 4 x 16-bit) each, enabling various masking configurations, such as 12 filters for 29-bit ID or 48 filters for 11-bit ID
- Filtering modes:
 - Mask mode permitting ID range filtering
 - ID list mode
- Time triggered communication option
 - Disable automatic retransmission mode
 - 16-bit free running timer
 - Configurable timer resolution
 - Time stamp sent in last two data bytes

Туре	I= Input, O	Input, O = Output, S = Power supply						
Level	Input	CM = CMOS						
	Output	HS = High sink						
Output speed	O2 = Fast (O3 = Fast/s	up to 2 MHz) up to 10 MHz) low programmability with slow as default state after reset low programmability with fast as default state after reset						
Port and control	Input	float = floating, wpu = weak pull-up						
configuration	Output	T = True open drain, OD = Open drain, PP = Push pull						
Reset state	Unless othe	d \underline{X} (pin state after internal reset release) less otherwise specified, the pin state is the same during the reset phase and er the internal reset release.						

Table 5. Legend/abbreviations	for pinout table
-------------------------------	------------------

	Pin	num	ber					Inpu	t		Out	put				
LQFP80	LQFP64	LQFP48	LQFP44	LQFP32	Pin name	Type	floating	ndw	Ext. interrupt	High sink	Speed	QO	Ы	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
1	1	1	1	1	NRST	I/O		<u>X</u>						Reset		
2	2	2	2	2	PA1/OSCIN	I/O	<u>x</u>	х			01	х	х	Port A1	Resonator/ crystal in	
3	3	3	3	3	PA2/OSCOUT	I/O	X	х	х		01	х	х	Port A2	Resonator/ crystal out	
4	4	4	4	-	V _{SSIO_1}	S								I/O groun	d	
5	5	5	5	4	V _{SS}	S								Digital gro	ound	
6	6	6	6	5	VCAP	S								1.8 V reg	ulator capacitor	
7	7	7	7	6	V _{DD}	S								Digital po	wer supply	
8	8	8	8	7	V _{DDIO_1}	S								I/O powe	r supply	
9	9	9	-	-	PA3/TIM2_CH3	I/O	<u>x</u>	х	Х		01	х	х	Port A3	Timer 2 - channel3	TIM3_CH1 [AFR1]
10	10	10	9	-	PA4/UART1_RX	I/O	X	х	Х	HS	O3	х	Х	Port A4	UART1 receive	
11	11	11	10	-	PA5/UART1_TX	I/O	<u>x</u>	х	Х	HS	О3	Х	Х	Port A5	UART1 transmit	

Table 6. Pin description

	Pin	num	nber					Inpu	t		Out	put		-		
LQFP80	LQFP64	LQFP48	LQFP44	LQFP32	Pin name	Type	floating	ndw	Ext. interrupt	High sink	Speed	OD	ΡР	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
69	55	39	35	-	PE1/I ² C_SCL	I/O	<u>X</u>		Х		01	T ⁽³⁾		Port E1	I ² C clock	
70	56	40	36	-	PE0/CLK_CCO	I/O	X	Х	Х	HS	O3	х	Х	Port E0	Configurable clock output	
71	-	-	-	-	PI6	I/O	<u>X</u>	Х			01	Х	Х	Port I6		
72	-	-	-	-	PI7	I/O	<u>X</u>	Х			01	Х	Х	Port I7		
73	57	41	37	25	PD0/TIM3_CH2	I/O	<u>x</u>	х	х	HS	O3	х	х	Port D0	Timer 3 - channel 2	TIM1_BKIN [AFR3]/ CLK_CCO [AFR2]
74	58	42	38	26	PD1/SWIM ⁽⁴⁾	I/O	х	<u>x</u>	Х	HS	04	х	х	Port D1	SWIM data interface	
75	59	43	39	27	PD2/TIM3_CH1	I/O	<u>x</u>	х	Х	HS	O3	х	х	Port D2	Timer 3 - channel 1	TIM2_CH3 [AFR1]
76	60	44	40	28	PD3/TIM2_CH2	I/O	<u>x</u>	х	Х	HS	O3	х	х	Port D3	Timer 2 - channel 2	ADC_ETR [AFR0]
77	61	45	41	29	PD4/TIM2_CH1/B EEP	I/O	X	х	Х	HS	O3	х	х	Port D4	Timer 2 - channel 1	BEEP output [AFR7]
78	62	46	42	30	PD5/ UART3_TX	I/O	X	х	Х		01	х	х	Port D5	UART3 data transmit	
79	63	47	43	31	PD6/ UART3_RX ⁽¹⁾	I/O	X	х	Х		01	х	х	Port D6	UART3 data receive	
80	64	48	44	32	PD7/TLI	I/O	X	Х	Х		01	х	х	Port D7	Top level interrupt	TIM1_CH4 [AFR4] ⁽⁵⁾

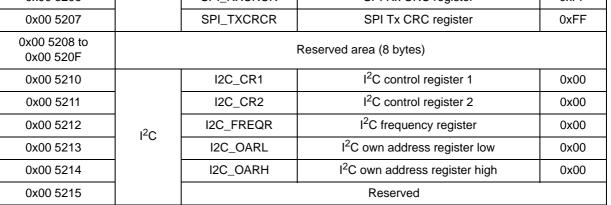
Table	6.	Pin	descri	ption ((continued)	
IUNIO	•••		400011		(oonanaoa)	

1. The default state of UART1_RX and UART3_RX pins is controlled by the ROM bootloader. These pins are pulled up as part of the bootloader activation process and returned to the floating state before a return from the bootloader.

2. The beCAN interface is available on STM8S208xx devices only

3. In the open-drain output column, 'T' defines a true open-drain I/O (P-buffer, weak pull-up, and protection diode to V_{DD} are not implemented).

4. The PD1 pin is in input pull-up during the reset phase and after the internal reset release.


5. Available in 44-pin package only. On other packages, the AFR4 bit is reserved and must be kept at 0.

5.2 Alternate function remapping

As shown in the rightmost column of the pin description table, some alternate functions can be remapped at different I/O ports by programming one of eight AFR (alternate function

	Table 9	. General hardwar	e register map (continued)	
Address	Block	Register label	Register name	Reset status
0x00 50CC		CLK_HSITRIMR	HSI clock calibration trimming register	0x00
0x00 50CD	CLK	CLK_SWIMCCR	SWIM clock control register	0bXXXX XXX0
0x00 50CE to 0x00 50D0			Reserved area (3 bytes)	
0x00 50D1	WWDG	WWDG_CR	WWDG control register	0x7F
0x00 50D2	- www.DG	WWDG_WR	WWDR window register	0x7F
0x00 50D3 to 0x00 50DF			Reserved area (13 bytes)	
0x00 50E0		IWDG_KR	IWDG key register	0xXX ⁽²⁾
0x00 50E1	IWDG	IWDG_PR	IWDG prescaler register	0x00
0x00 50E2		IWDG_RLR	IWDG reload register	0xFF
0x00 50E3 to 0x00 50EF			Reserved area (13 bytes)	
0x00 50F0		AWU_CSR1	AWU control/status register 1	0x00
0x00 50F1	AWU	AWU_APR	AWU asynchronous prescaler buffer register	0x3F
0x00 50F2		AWU_TBR	AWU timebase selection register	0x00
0x00 50F3	BEEP	BEEP_CSR	BEEP control/status register	0x1F
0x00 50F4 to 0x00 50FF			Reserved area (12 bytes)	
0x00 5200		SPI_CR1	SPI control register 1	0x00
0x00 5201		SPI_CR2	SPI control register 2	0x00
0x00 5202		SPI_ICR	SPI interrupt control register	0x00
0x00 5203	SPI	SPI_SR	SPI status register	0x02
0x00 5204	551	SPI_DR	SPI data register	0x00
0x00 5205		SPI_CRCPR	SPI CRC polynomial register	0x07
0x00 5206		SPI_RXCRCR	SPI Rx CRC register	0xFF
0x00 5207		SPI_TXCRCR	SPI Tx CRC register	0xFF
0x00 5208 to 0x00 520F			Reserved area (8 bytes)	
0x00 5210		I2C_CR1	I ² C control register 1	0x00
0x00 5211		12C CR2	I ² C control register 2	0x00

Table 9. General hardware register map (continued)											
Address	Block	Register label	Register name	Reset status							
0x00 532B		TIM3_ARRH	TIM3 auto-reload register high	0xFF							
0x00 532C		TIM3_ARRL	TIM3 auto-reload register low	0xFF							
0x00 532D	ТІМЗ	TIM3_CCR1H	TIM3 capture/compare register 1 high	0x00							
0x00 532E	TIMS	TIM3_CCR1L	TIM3 capture/compare register 1 low	0x00							
0x00 532F		TIM3_CCR2H	TIM3 capture/compare register 2 high	0x00							
0x00 5330		TIM3_CCR2L	TIM3 capture/compare register 2 low	0x00							
0x00 5331 to 0x00 533F			Reserved area (15 bytes)								
0x00 5340		TIM4_CR1	TIM4 control register 1	0x00							
0x00 5341		TIM4_IER	TIM4 interrupt enable register	0x00							
0x00 5342		TIM4_SR	TIM4 status register	0x00							
0x00 5343	TIM4	TIM4_EGR	TIM4 event generation register	0x00							
0x00 5344	_	TIM4_CNTR	TIM4 counter	0x00							
0x00 5345	_	TIM4_PSCR	TIM4 prescaler register	0x00							
0x00 5346		TIM4_ARR	TIM4 auto-reload register	0xFF							
0x00 5347 to 0x00 53FF		F	Reserved area (185 bytes)								
0x00 5400		ADC _CSR	ADC control/status register	0x00							
0x00 5401		ADC_CR1	ADC configuration register 1	0x00							
0x00 5402		ADC_CR2	ADC configuration register 2	0x00							
0x00 5403	ADC2	ADC_CR3	ADC configuration register 3	0x00							
0x00 5404	ADC2	ADC_DRH	ADC data register high	0xXX							
0x00 5405		ADC_DRL	ADC data register low	0xXX							
0x00 5406		ADC_TDRH	ADC Schmitt trigger disable register high	0x00							
0x00 5407		ADC_TDRL	ADC Schmitt trigger disable register low	0x00							
0x00 5408 to 0x00 541F			Reserved area (24 bytes)								
0x00 5420		CAN_MCR	CAN master control register	0x02							
0x00 5421	1	CAN_MSR	CAN master status register	0x02							
0x00 5422	7	CAN_TSR	CAN transmit status register	0x00							
0x00 5423	baCAN	CAN_TPR	CAN transmit priority register	0x0C							
0x00 5424	beCAN	CAN_RFR	CAN receive FIFO register	0x00							
0x00 5425		CAN_IER	CAN interrupt enable register	0x00							
0x00 5426	7	CAN_DGR	CAN diagnosis register	0x0C							
0x00 5427	7	CAN_FPSR	CAN page selection register	0x00							

Table O	0				(
Table 9.	General	nardware	register	map ((continued)	

Address	Block	Register Label	Register Name	Reset Status								
0x00 7F98		DM_CSR1	DM debug module control/status register 1	0x10								
0x00 7F99	DM	DM_CSR2	_CSR2 DM debug module control/status register 2									
0x00 7F9A		DM_ENFCTR DM enable function register		0xFF								
0x00 7F9B to 0x00 7F9F			Reserved area (5 bytes)									

Table 10. CPU/SWIM/debug module/interrupt controller registers (continued)

1. Accessible by debug module only

2. Product dependent value, see Figure 8: Memory map.

9 Unique ID

The devices feature a 96-bit unique device identifier which provides a reference number that is unique for any device and in any context. The 96 bits of the identifier can never be altered by the user.

The unique device identifier can be read in single bytes and may then be concatenated using a custom algorithm.

The unique device identifier is ideally suited:

- For use as serial numbers
- For use as security keys to increase the code security in the program memory while using and combining this unique ID with software cryptographic primitives and protocols before programming the internal memory.
- To activate secure boot processes

Address	Content description	Unique ID bits											
Address		7	6	5	4	3	2	1	0				
0x48CD	X co-ordinate on the	U_ID[7:0]											
0x48CE	wafer	U_ID[15:8]											
0x48CF	Y co-ordinate on the				U_	ID[23:16]							
0x48D0	wafer	U_ID[31:24]											
0x48D1	Wafer number	U_ID[39:32]											
0x48D2		U_ID[47:40]											
0x48D3		U_ID[55:48]											
0x48D4		U_ID[63:56]											
0x48D5	Lot number				ID[71:64]								
0x48D6		U_ID[79:72]											
0x48D7			U_ID[87:80]										
0x48D8		U_ID[95:88]											

Table 14. Unique ID registers (96 bits)

10.3 Operating conditions

The device must be used in operating conditions that respect the parameters in *Table 18*. In addition, full account must be taken of all physical capacitor characteristics and tolerances.

Symbol	Parameter	Conditions	Min	Max	Unit
f _{CPU}	Internal CPU clock frequency	$T_A \le 105 \ ^{\circ}C$	0	24	MHz
'CPU	Internal OF O clock frequency		0	16	MHz
$V_{DD/}V_{DD_{IO}}$	Standard operating voltage		2.95	5.5	V
	C _{EXT} : capacitance of external capacitor		470	3300	nF
V _{CAP} ⁽¹⁾	ESR of external capacitor	at 1 MHz ⁽²⁾	-	0.3	Ω
	ESL of external capacitor		0 24 MHz 0 16 MHz 2.95 5.5 V 470 3300 nF - 0.3 Ω - 15 nH	nH	
Р _D ⁽³⁾	Power dissipation at $T_A = 85^{\circ}$ C for suffix 6	44, 48, 64, and 80-pin devices, with output on 8 standard ports, 2 high sink ports and 2 open drain ports simultaneously ⁽⁴⁾		443	mW
	or $T_A = 125^\circ$ C for suffix 3	32-pin package, with output on 8 standard ports and 2 high sink ports simultaneously ⁽⁴⁾		360	
T _A	Ambient temperature for 6 suffix version	Maximum power dissipation	-40	85	
'A	Ambient temperature for 3 suffix version	Maximum power dissipation	-40	125	°C
ТJ	Junction temperature range	6 suffix version	-40	105	
١J	Survey of temperature range	3 suffix version	-40	130 ⁽⁵⁾	

	Table 18.	General	operating	conditions
--	-----------	---------	-----------	------------

1. Care should be taken when selecting the capacitor, due to its tolerance, as well as the parameter dependency on temperature, DC bias and frequency in addition to other factors. The parameter maximum value must be respected for the full application range.

2. This frequency of 1 MHz as a condition for V_{CAP} parameters is given by design of internal regulator.

To calculate P_{Dmax}(T_A), use the formula P_{Dmax} = (T_{Jmax} - T_A)/Θ_{JA} (see Section 11.2: Thermal characteristics on page 108) with the value for T_{Jmax} given in Table 18 above and the value for Θ_{JA} given in Table 57: Thermal characteristics.

4. Refer to Section 11.2: Thermal characteristics on page 108 for the calculation method.

5. T_{Jmax} is given by the test limit. Above this value the product behavior is not guaranteed.

10.3.3 External clock sources and timing characteristics

HSE user external clock

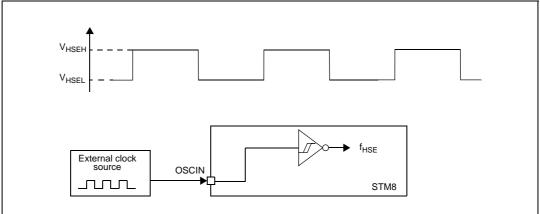

Subject to general operating conditions for V_{DD} and T_A .

Table 31. HSE us	ser external clock	characteristics
------------------	--------------------	-----------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency		0		24	MHz
V _{HSEH} ⁽¹⁾	OSCIN input pin high level voltage		0.7 x V _{DD}		V _{DD} + 0.3 V	V
V _{HSEL} ⁽¹⁾	OSCIN input pin low level voltage		V _{SS}		0.3 x V _{DD}	V
I _{LEAK_HSE}	OSCIN input leakage current	$V_{SS} < V_{IN} < V_{DD}$	-1		1	μA

1. Data based on characterization results, not tested in production.

HSE crystal/ceramic resonator oscillator

The HSE clock can be supplied with a 1 to 24 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and start-up stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...).

10.3.5 Memory characteristics

RAM and hardware registers

Table	35.	RAM	and	hardware	registers
			~		

Symbol	Parameter	Conditions	Min	Unit
V _{RM}	Data retention mode ⁽¹⁾	Halt mode (or reset)	V _{IT-max} ⁽²⁾	V

1. Minimum supply voltage without losing data stored in RAM (in halt mode or under reset) or in hardware registers (only in halt mode). Guaranteed by design, not tested in production.

2. Refer to Table 19 on page 57 for the value of V_{IT-max} .

Flash program memory/data EEPROM memory

General conditions: $T_A = -40$ to 125 °C.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Тур	Max	Unit
V _{DD}	Operating voltage (all modes, execution/write/erase)	$f_{CPU} \le 24 \text{ MHz}$	2.95		5.5	V
t _{prog}	Standard programming time (including erase) for byte/word/block (1 byte/4 bytes/128 bytes)			6	6.6	ms
	Fast programming time for 1 block (128 bytes)			3	3.3	ms
t _{erase}	Erase time for 1 block (128 bytes)			3	3.3	ms
N _{RW}	Erase/write cycles ⁽²⁾ (program memory)	T _A = 85 °C	10 k			cycles
	Erase/write cycles (data memory) ⁽²⁾	$T_A = 125 \ ^\circ C$	300 k	1M		
	Data retention (program memory) after 10 k erase/write cycles at $T_A = 85 \text{ °C}$	T _{RET} = 55° C	20			
t _{RET}	Data retention (data memory) after 10 k erase/write cycles at $T_A = 85$ °C	T _{RET} = 55° C	20			years
	Data retention (data memory) after 300k erase/write cycles at $T_A = 125$ °C	T _{RET} = 85° C	1			
I _{DD}	Supply current (Flash programming or erasing for 1 to 128 bytes)			2		mA

1. Data based on characterization results, not tested in production.

2. The physical granularity of the memory is 4 bytes, so cycling is performed on 4 bytes even when a write/erase operation addresses a single byte.

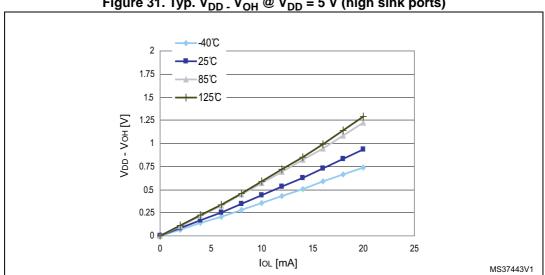
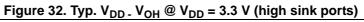
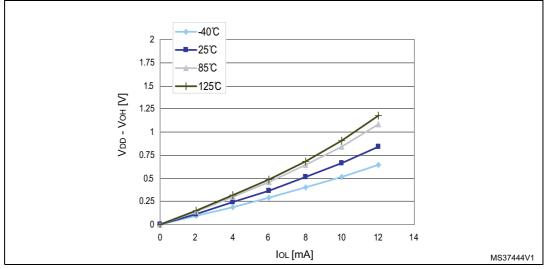
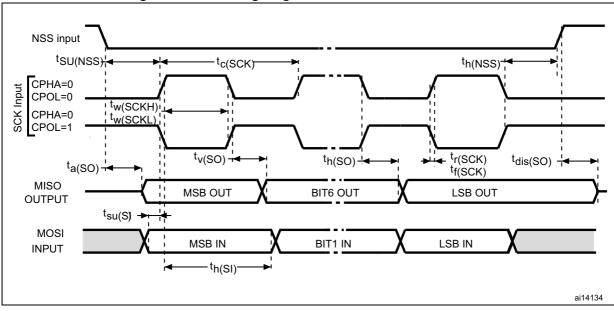
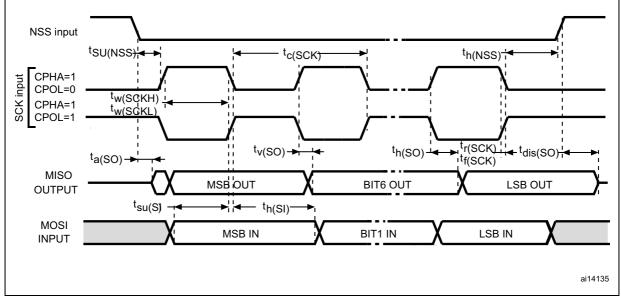





Figure 31. Typ. V_{DD} - V_{OH} @ V_{DD} = 5 V (high sink ports)



1. Measurement points are done at CMOS levels: 0.3 V_{DD} and 0.7 V_{DD}

10.3.9 I²C interface characteristics

Symbol	Descustor	Standard	mode I ² C	Fast mode I ² C ⁽¹⁾		
	Parameter	Min ⁽²⁾	Max ⁽²⁾	Min ⁽²⁾	Max ⁽²⁾	Unit
t _{w(SCLL)}	SCL clock low time	4.7		1.3		
t _{w(SCLH)}	SCL clock high time	4.0		0.6		μs
t _{su(SDA)}	SDA setup time	250		100		
t _{h(SDA)}	SDA data hold time	0 ⁽³⁾		0 ⁽⁴⁾	900 ⁽³⁾	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time		1000		300	ns
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time		300		300	
t _{h(STA)}	START condition hold time	4.0		0.6		
t _{su(STA)}	Repeated START condition setup time	4.7		0.6		μs
t _{su(STO)}	STOP condition setup time	4.0		0.6		μs
t _{w(STO:STA)}	STOP to START condition time (bus free)	4.7		1.3		μs
Cb	Capacitive load for each bus line		400		400	pF

Table 43. I²C characteristics

1. $f_{MASTER},$ must be at least 8 MHz to achieve max fast I^2C speed (400kHz) $\,$

2. Data based on standard I²C protocol requirement, not tested in production

3. The maximum hold time of the start condition has only to be met if the interface does not stretch the low time

4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL

10.3.10 10-bit ADC characteristics

Subject to general operating conditions for $V_{\text{DDA}},\,f_{\text{MASTER}},$ and T_{A} unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f		V _{DDA} = 3 to 5.5 V	1		4	N411-
f _{ADC}	ADC clock frequency	V _{DDA} = 4.5 to 5.5 V	1		6	MHz
V _{DDA}	Analog supply		3		5.5	V
V _{REF+}	Positive reference voltage		2.75 ⁽¹⁾		V _{DDA}	V
V _{REF-}	Negative reference voltage		V _{SSA}		0.5 ⁽¹⁾	V
			V_{SSA}		V _{DDA}	V
V _{AIN}	Conversion voltage range ⁽²⁾	Devices with external V _{REF+} /V _{REF-} pins	V _{REF-}		V _{REF+}	V
C _{ADC}	Internal sample and hold capacitor			3		pF
ts ⁽²⁾	Sampling time	f _{ADC} = 4 MHz		0.75		
LS V		f _{ADC} = 6 MHz		0.5		μs
t _{STAB}	Wakeup time from standby			7		μs
		$f_{ADC} = 4 MHz$		3.5		μs
t _{CONV}	Total conversion time (including sampling time, 10-bit resolution)	f _{ADC} = 6 MHz		2.33		μs
				14		1/f _{ADC}

Table 44.	ADC	characteristics
-----------	-----	-----------------

1. Data guaranteed by design, not tested in production.

2. During the sample time the input capacitance C_{AIN} (3 pF max) can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_S. After the end of the sample time t_S, changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_S depend on programming.

10.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during product characterization.

Functional EMS (electromagnetic susceptibility)

While executing a simple application (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).

- **ESD**: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 61000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709.

Designing hardened software to avoid noise problems

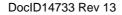
EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical data corruption (control registers...)


Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be recovered by applying a low state on the NRST pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Symbol	Parameter	Conditions	Level/class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	$V_{DD} = 5 V$, $T_A = 25 °C$, $f_{MASTER} = 16 MHz$, conforming to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100pF on V_{DD} and V_{SS} pins to induce a functional disturbance	$V_{DD} = 5 \text{ V}, T_A = 25 \text{ °C},$ $f_{MASTER} = 16 \text{ MHz},$ conforming to IEC 61000-4-4	4A

Table	47.	EMS	data
Table	T / .		uuu

Electromagnetic interference (EMI)

Emission tests conform to the SAE IEC 61967-2 standard for test software, board layout and pin loading.

Symbol	Parameter	Conditions						
		General conditions	Monitored	Max f _{HSE} /f _{CPU} ⁽¹⁾			Unit	
			frequency band	8 MHz/ 8 MHz	8 MHz/ 16 MHz	8 MHz/ 24 MHz		
S _{EMI}	Peak level	$V_{DD} = 5 V$ $T_A = 25 °C$ LQFP80 package conforming to SAE IEC	0.1MHz to 30 MHz	15	20	24		
			30 MHz to 130 MHz	18	21	16	dBµV	
			130 MHz to 1 GHz	-1	1	4		
	SAE EMI level	61967-2	SAE EMI level	2	2.5	2.5		

1. Data based on characterization results, not tested in production.

Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

Electrostatic discharge (ESD)

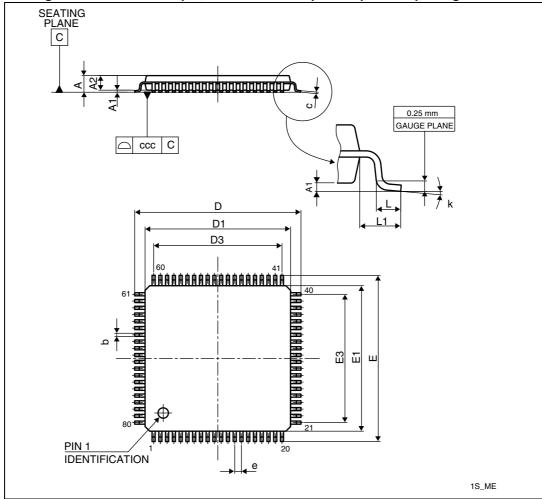
Electrostatic discharges (3 positive then 3 negative pulses separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test conforms to the JESD22-A114A/A115A standard. For more details, refer to the application note AN1181.

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (Human body model)	$T_A = 25^{\circ}C$, conforming to JESD22-A114	А	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (Charge device model)	T _A = 25°C, conforming to JESD22-C101	IV	1000	V

Table 49. ESD absolute maximum ratings

1. Data based on characterization results, not tested in production.

11 Package characteristics


To meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at *www.st.com*. ECOPACK® is an ST trademark.

11.1 Package information

11.1.1 LQFP80 package information

Figure 43. LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package outline

1. Drawing is not to scale.

Table 51. LQFP80 - 80-pin, 14 x 1	4 mm low-profile quad flat package mechanical
•	data ⁽¹⁾

Symbol	millimeters			inches			
Symbol	Min	Тур	Max	Min	Тур	Max	
A	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.220	0.320	0.380	0.0087	0.0126	0.0150	
с	0.090	-	0.200	0.0035	-	0.0079	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

DocID14733 Rev 13