

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	24MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	38
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	2.95V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8s208c6t3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Description

The STM8S20xxx performance line 8-bit microcontrollers offer from 32 to 128 Kbytes Flash program memory. They are referred to as high-density devices in the STM8S microcontroller family reference manual.

All STM8S20xxx devices provide the following benefits: reduced system cost, performance robustness, short development cycles, and product longevity.

The system cost is reduced thanks to an integrated true data EEPROM for up to 300 k write/erase cycles and a high system integration level with internal clock oscillators, watchdog, and brown-out reset.

Device performance is ensured by 20 MIPS at 24 MHz CPU clock frequency and enhanced characteristics which include robust I/O, independent watchdogs (with a separate clock source), and a clock security system.

Short development cycles are guaranteed due to application scalability across a common family product architecture with compatible pinout, memory map and modular peripherals. Full documentation is offered with a wide choice of development tools.

Product longevity is ensured in the STM8S family thanks to their advanced core which is made in a state-of-the art technology for applications with 2.95 V to 5.5 V operating supply.

Block diagram 3

Figure 1. STM8S20xxx block diagram

1.

Legend: ADC: Analog-to-digital converter beCAN: Controller area network BOR: Brownout reset PC: Inter-integrated circuit multimaster interface Independent WDG: Independent watchdog POR/PDR: Power on reset / power down reset SPI: Serial peripheral interface SWIM: Single wire interface module UART: Universal asynchronous receiver transmitter Window WDG: Window watchdog

DocID14733 Rev 13

Independent watchdog timer

The independent watchdog peripheral can be used to resolve processor malfunctions due to hardware or software failures.

It is clocked by the 128 kHz LSI internal RC clock source, and thus stays active even in case of a CPU clock failure

The IWDG time base spans from 60 μ s to 1 s.

4.8 Auto wakeup counter

- Used for auto wakeup from active halt mode
- Clock source: Internal 128 kHz internal low frequency RC oscillator or external clock
- LSI clock can be internally connected to TIM3 input capture channel 1 for calibration

4.9 Beeper

The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in the range of 1, 2 or 4 kHz.

4.10 TIM1 - 16-bit advanced control timer

This is a high-end timer designed for a wide range of control applications. With its complementary outputs, dead-time control and center-aligned PWM capability, the field of applications is extended to motor control, lighting and half-bridge driver

- 16-bit up, down and up/down autoreload counter with 16-bit prescaler
- Four independent capture/compare channels (CAPCOM) configurable as input capture, output compare, PWM generation (edge and center aligned mode) and single pulse mode output
- Synchronization module to control the timer with external signals
- Break input to force the timer outputs into a defined state
- Three complementary outputs with adjustable dead time
- Encoder mode
- Interrupt sources: 3 x input capture/output compare, 1 x overflow/update, 1 x break

4.11 TIM2, TIM3 - 16-bit general purpose timers

- 16-bit autoreload (AR) up-counter
- 15-bit prescaler adjustable to fixed power of 2 ratios 1...32768
- Timers with 3 or 2 individually configurable capture/compare channels
- PWM mode
- Interrupt sources: 2 or 3 x input capture/output compare, 1 x overflow/update

4.12 TIM4 - 8-bit basic timer

- 8-bit autoreload, adjustable prescaler ratio to any power of 2 from 1 to 128
- Clock source: CPU clock
- Interrupt source: 1 x overflow/update

Timer	Counter size (bits)	Prescaler	Counting mode	CAPCOM channels	Complem. outputs	Ext. trigger	Timer synchr- onization/ chaining
TIM1	16	Any integer from 1 to 65536	Up/down	4	3	Yes	
TIM2	16	Any power of 2 from 1 to 32768	Up	3	0	No	No
TIM3	16	Any power of 2 from 1 to 32768	Up	2	0	No	INU
TIM4	8	Any power of 2 from 1 to 128	Up	0	0	No	

Table 4. TIM timer features

4.13 Analog-to-digital converter (ADC2)

STM8S20xxx performance line products contain a 10-bit successive approximation A/D converter (ADC2) with up to 16 multiplexed input channels and the following main features:

- Input voltage range: 0 to V_{DDA}
- Dedicated voltage reference (VREF) pins available on 80 and 64-pin devices
- Conversion time: 14 clock cycles
- Single and continuous modes
- External trigger input
- Trigger from TIM1 TRGO
- End of conversion (EOC) interrupt

4.14 Communication interfaces

The following communication interfaces are implemented:

- UART1: Full feature UART, SPI emulation, LIN2.1 master capability, Smartcard mode, IrDA mode, single wire mode.
- UART3: Full feature UART, LIN2.1 master/slave capability
- SPI: Full and half-duplex, 10 Mbit/s
- I²C: Up to 400 Kbit/s
- beCAN (rev. 2.0A,B) 3 Tx mailboxes up to 1 Mbit/s

Туре	I= Input, O	I= Input, O = Output, S = Power supply					
Level	Input	CM = CMOS					
	Output	HS = High sink					
Output speed	O1 = Slow (up to 2 MHz) O2 = Fast (up to 10 MHz) O3 = Fast/slow programmability with slow as default state after reset O4 = Fast/slow programmability with fast as default state after reset						
Port and control	Input	float = floating, wpu = weak pull-up					
configuration	Output	T = True open drain, OD = Open drain, PP = Push pull					
Reset state	Bold <u>X</u> (pin Unless othe after the int	state after internal reset release) erwise specified, the pin state is the same during the reset phase and ernal reset release.					

|--|

	Pin	num	nber					Inpu	t		Out	put				
LQFP80	LQFP64	LQFP48	LQFP44	LQFP32	Pin name	Type	floating	ndw	Ext. interrupt	High sink	Speed	QO	Ч	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
1	1	1	1	1	NRST	I/O		X						Reset	Reset	
2	2	2	2	2	PA1/OSCIN	I/O	<u>x</u>	х			01	х	х	Port A1	Resonator/ crystal in	
3	3	3	3	3	PA2/OSCOUT	I/O	X	х	Х		01	х	х	Port A2	Resonator/ crystal out	
4	4	4	4	-	V _{SSIO_1}	S								I/O ground		
5	5	5	5	4	V _{SS}	S								Digital gro	ound	
6	6	6	6	5	VCAP	S								1.8 V reg	ulator capacitor	
7	7	7	7	6	V _{DD}	S								Digital po	wer supply	
8	8	8	8	7	V _{DDIO_1}	S								I/O power supply		
9	9	9	-	-	PA3/TIM2_CH3	I/O	<u>x</u>	х	х		01	Х	х	Port A3	Timer 2 - channel3	TIM3_CH1 [AFR1]
10	10	10	9	-	PA4/UART1_RX	I/O	<u>x</u>	х	Х	HS	O3	х	x	Port A4	UART1 receive	
11	11	11	10	-	PA5/UART1_TX	I/O	<u>X</u>	х	Х	HS	O3	х	х	Port A5	UART1 transmit	

Table 6. Pin description

Table 7 lists the boundary addresses for each memory size. The top of the stack is at the RAM end address in each case.

Memory area	Size (bytes)	Start address	End address
	128 K	0x00 8000	0x02 7FFF
Flash program memory	64 K	0x00 8000	0x01 7FFF
	32 K	0x00 8000	0x00 FFFF
	6 K	0x00 0000	0x00 17FF
RAM	4 K	0x00 0000	0x00 1000
	2 K	0x00 0000	0x00 07FF
	2048	0x00 4000	0x00 47FF
Data EEPROM	1536	0x00 4000	0x00 45FF
	1024	0x00 4000	0x00 43FF

Table 7. Flash, Data EEPROM and RAM boundary addresses

6.2 Register map

Table 8. I/O port hardware register map

Address	Block	Register label	Register name	Reset status
0x00 5000		PA_ODR	Port A data output latch register	0x00
0x00 5001		PA_IDR	Port A input pin value register	0x00
0x00 5002	Port A	PA_DDR	Port A data direction register	0x00
0x00 5003		PA_CR1	Port A control register 1	0x00
0x00 5004	5004 PA_CR2 Port A control register 2		0x00	
0x00 5005		PB_ODR	Port B data output latch register	0x00
0x00 5006		PB_IDR	Port B input pin value register	0x00
0x00 5007	Port B	PB_DDR	Port B data direction register	0x00
0x00 5008		PB_CR1	Port B control register 1	0x00
0x00 5009) 5009 PB_CR2		Port B control register 2	0x00
0x00 500A		PC_ODR	Port C data output latch register	0x00
0x00 500B		PB_IDR	Port C input pin value register	0x00
0x00 500C	00C Port C PC_DDR Port C data direction register		Port C data direction register	0x00
0x00 500D	00D PC_CR1 Port C control register 1		0x00	
0x00 500E		PC_CR2	Port C control register 2	0x00

Address	Block	Register label	er label Register name				
0x00 5050 to 0x00 5059		Reserved area (10 bytes)					
0x00 505A		FLASH_CR1	0x00				
0x00 505B		FLASH_CR2	2 Flash control register 2				
0x00 505C		FLASH_NCR2	Flash complementary control register 2	0xFF			
0x00 505D	Flash	FLASH _FPR	Flash protection register	0x00			
0x00 505E		FLASH _NFPR	Flash complementary protection register	0xFF			
0x00 505F		FLASH _IAPSR	Flash in-application programming status register	0x00			
0x00 5060 to 0x00 5061			Reserved area (2 bytes)				
0x00 5062	Flash	FLASH_PUKR	Flash Program memory unprotection register	0x00			
0x00 5063			Reserved area (1 byte)				
0x00 5064	Flash	FLASH _DUKR Data EEPROM unprotection register					
0x00 5065 to 0x00 509F		Reserved area (59 bytes)					
0x00 50A0	ITC	EXTI_CR1	External interrupt control register 1	0x00			
0x00 50A1		EXTI_CR2	External interrupt control register 2	0x00			
0x00 50A2 to 0x00 50B2			Reserved area (17 bytes)				
0x00 50B3	RST	RST_SR	Reset status register	0xXX ⁽¹⁾			
0x00 50B4 to 0x00 50BF			Reserved area (12 bytes)				
0x00 50C0		CLK_ICKR	Internal clock control register	0x01			
0x00 50C1		CLK_ECKR	External clock control register	0x00			
0x00 50C2		•	Reserved area (1 byte)				
0x00 50C3		CLK_CMSR	Clock master status register	0xE1			
0x00 50C4		CLK_SWR	Clock master switch register	0xE1			
0x00 50C5		CLK_SWCR	Clock switch control register	0xXX			
0x00 50C6		CLK_CKDIVR Clock divider register		0x18			
0x00 50C7	CLK	CLK_PCKENR1	CLK_PCKENR1 Peripheral clock gating register 1				
0x00 50C8]	CLK_CSSR	Clock security system register	0x00			
0x00 50C9]	CLK_CCOR	Configurable clock control register	0x00			
0x00 50CA]	CLK_PCKENR2	Peripheral clock gating register 2	0xFF			
0x00 50CB		CLK_CANCCR	CAN clock control register	0x00			

Table 9. General hardware register map

			• • •	1
Address	Block	Register label	Register name	Reset status
0x00 5300		TIM2_CR1	TIM2 control register 1	0x00
0x00 5301		TIM2_IER	TIM2 interrupt enable register	0x00
0x00 5302		TIM2_SR1	TIM2 status register 1	0x00
0x00 5303		TIM2_SR2	TIM2 status register 2	0x00
0x00 5304		TIM2_EGR	TIM2 event generation register	0x00
0x00 5305		TIM2_CCMR1	TIM2 capture/compare mode register 1	0x00
0x00 5306		TIM2_CCMR2	TIM2 capture/compare mode register 2	0x00
0x00 5307		TIM2_CCMR3	TIM2 capture/compare mode register 3	0x00
0x00 5308		TIM2_CCER1	TIM2 capture/compare enable register 1	0x00
0x00 5309		TIM2_CCER2	TIM2 capture/compare enable register 2	0x00
0x00 530A	TIM2	TIM2_CNTRH	TIM2 counter high	0x00
0x00 530B		TIM2_CNTRL	TIM2 counter low	0x00
00 530C0x		TIM2_PSCR	TIM2 prescaler register	0x00
0x00 530D		TIM2_ARRH	TIM2 auto-reload register high	0xFF
0x00 530E		TIM2_ARRL TIM2 auto-reload register low		0xFF
0x00 530F		TIM2_CCR1H	TIM2 capture/compare register 1 high	0x00
0x00 5310		TIM2_CCR1L	TIM2 capture/compare register 1 low	0x00
0x00 5311		TIM2_CCR2H	TIM2 capture/compare reg. 2 high	0x00
0x00 5312		TIM2_CCR2L	TIM2 capture/compare register 2 low	0x00
0x00 5313		TIM2_CCR3H	TIM2 capture/compare register 3 high	0x00
0x00 5314		TIM2_CCR3L	TIM2 capture/compare register 3 low	0x00
0x00 5315 to 0x00 531F			Reserved area (11 bytes)	
0x00 5320		TIM3_CR1	TIM3 control register 1	0x00
0x00 5321		TIM3_IER	TIM3 interrupt enable register	0x00
0x00 5322		TIM3_SR1	TIM3 status register 1	0x00
0x00 5323		TIM3_SR2	TIM3 status register 2	0x00
0x00 5324		TIM3_EGR	TIM3 event generation register	0x00
0x00 5325	TIM3	TIM3_CCMR1	TIM3 capture/compare mode register 1	0x00
0x00 5326		TIM3_CCMR2	TIM3 capture/compare mode register 2	0x00
0x00 5327	1	TIM3_CCER1	TIM3 capture/compare enable register 1	0x00
0x00 5328	1	TIM3_CNTRH	TIM3 counter high	0x00
0x00 5329]	TIM3_CNTRL	TIM3 counter low	0x00
0x00 532A TIM3_P		TIM3_PSCR	TIM3 prescaler register	0x00

			_			
Table 9.	General	hardware	register	map	(continued))

Address	Block	Register label	Register name	Reset status	
0x00 5428		CAN_P0	CAN paged register 0	0xXX ⁽³⁾	
0x00 5429		CAN_P1	CAN paged register 1	0xXX ⁽³⁾	
0x00 542A		CAN_P2	CAN paged register 2	0xXX ⁽³⁾	
0x00 542B		CAN_P3	CAN paged register 3	0xXX ⁽³⁾	
0x00 542C		CAN_P4	CAN paged register 4	0xXX ⁽³⁾	
0x00 542D		CAN_P5	CAN paged register 5	0xXX ⁽³⁾	
0x00 542E		CAN_P6	CAN paged register 6	0xXX ⁽³⁾	
0x00 542F	haCAN	CAN_P7	CAN paged register 7	0xXX ⁽³⁾	
0x00 5430	DECAN	CAN_P8	CAN paged register 8	0xXX ⁽³⁾	
0x00 5431		CAN_P9	CAN paged register 9	0xXX ⁽³⁾	
0x00 5432		CAN_PA	CAN paged register A	0xXX ⁽³⁾	
0x00 5433		CAN_PB	CAN paged register B	0xXX ⁽³⁾	
0x00 5434		CAN_PC	CAN paged register C	0xXX ⁽³⁾	
0x00 5435		CAN_PD	CAN paged register D	0xXX ⁽³⁾	
0x00 5436		CAN_PE	CAN paged register E	0xXX ⁽³⁾	
0x00 5437		CAN_PF	CAN paged register F	0xXX ⁽³⁾	
0x00 5438 to 0x00 57FF	Reserved area (968 bytes)				

				/ .I N
Table 9. Gene	eral hardware	register	map	(continued)

1. Depends on the previous reset source.

2. Write only register.

3. If the bootloader is enabled, it is initialized to 0x00.

10 Electrical characteristics

10.1 Parameter conditions

Unless otherwise specified, all voltages are referred to V_{SS}.

10.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_{Amax}$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3 \Sigma$).

10.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 5$ V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2 \Sigma$).

10.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

10.1.4 Typical current consumption

For typical current consumption measurements, V_{DD} , V_{DDIO} and V_{DDA} are connected together in the configuration shown in *Figure 9*.

10.2 Absolute maximum ratings

Stresses above those listed as 'absolute maximum ratings' may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Max	Unit
V _{DDx} - V _{SS}	Supply voltage (including $V_{DDA and} V_{DDIO}$) ⁽¹⁾	-0.3	6.5	
V	Input voltage on true open drain pins (PE1, PE2) ⁽²⁾	V _{SS} - 0.3	6.5	V
⊻ IN	Input voltage on any other pin ⁽²⁾	V _{SS} - 0.3	V _{DD} + 0.3	
V _{DDx} - V _{DD}	Variations between different power pins		50	m\/
V _{SSx} - V _{SS}	Variations between all the different ground pins		50	IIIV
V _{ESD}	Electrostatic discharge voltage	see Absolute maximum ratings (electrical sensitivity) on page 89		

1. All power (V_{DD}, V_{DDIO}, V_{DDA}) and ground (V_{SS}, V_{SSIO}, V_{SSA}) pins must always be connected to the external power supply

2. I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN}<V_{SS}. For true open-drain pads, there is no positive injection current, and the corresponding V_{IN} maximum must always be respected

10.3 Operating conditions

The device must be used in operating conditions that respect the parameters in *Table 18*. In addition, full account must be taken of all physical capacitor characteristics and tolerances.

Symbol	Parameter	Conditions	Min	Max	Unit
foru	Internal CPU clock frequency	$T_A \leq 105 \ ^{\circ}C$	0	24	MHz
1CPU	Internal of O clock nequency		0	16	MHz
$V_{DD/}V_{DD_{IO}}$	Standard operating voltage		2.95	5.5	V
. <i>(</i> 1)	C _{EXT} : capacitance of external capacitor		470	3300	nF
V _{CAP} ⁽¹⁾	ESR of external capacitor	at 1 MHz ⁽²⁾	-	0.3	Ω
	ESL of external capacitor		-	15	nH
P _D ⁽³⁾	Power dissipation at $T_A = 85^{\circ}$ C for suffix 6	44, 48, 64, and 80-pin devices, with output on 8 standard ports, 2 high sink ports and 2 open drain ports simultaneously ⁽⁴⁾		443	mW
	or $T_A = 125^\circ$ C for suffix 3	32-pin package, with output on 8 standard ports and 2 high sink ports simultaneously ⁽⁴⁾		360	
т.	Ambient temperature for 6 suffix version	Maximum power dissipation	-40	85	
'A	Ambient temperature for 3 suffix version	Maximum power dissipation	-40	125	°C
т.	lunction temperature range	6 suffix version	-40 105		
١ _J	summer and the second sec	3 suffix version	-40	130 ⁽⁵⁾	

Table 18. General operating condition	Table 18.	General	operating	condition
---------------------------------------	-----------	---------	-----------	-----------

1. Care should be taken when selecting the capacitor, due to its tolerance, as well as the parameter dependency on temperature, DC bias and frequency in addition to other factors. The parameter maximum value must be respected for the full application range.

2. This frequency of 1 MHz as a condition for V_{CAP} parameters is given by design of internal regulator.

To calculate P_{Dmax}(T_A), use the formula P_{Dmax} = (T_{Jmax} - T_A)/Θ_{JA} (see Section 11.2: Thermal characteristics on page 108) with the value for T_{Jmax} given in Table 18 above and the value for Θ_{JA} given in Table 57: Thermal characteristics.

4. Refer to Section 11.2: Thermal characteristics on page 108 for the calculation method.

5. T_{Jmax} is given by the test limit. Above this value the product behavior is not guaranteed.

Current consumption curves

Figure 14 and *Figure 15* show typical current consumption measured with code executing in RAM.

Figure 14. Typ. I_{DD(RUN)} vs V_{DD}, HSI RC osc, f_{CPU} = 16 MHz

10.3.8 SPI serial peripheral interface

Unless otherwise specified, the parameters given in *Table 42* are derived from tests performed under ambient temperature, f_{MASTER} frequency and V_{DD} supply voltage conditions. $t_{MASTER} = 1/f_{MASTER}$.

Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions	Min	Мах	Unit
f _{SCK}	SDI alaak fraguapay	Master mode	0	10	
1/t _{c(SCK)}	SFI Clock frequency	Slave mode	0	6	
t _{r(SCK)} t _{f(SCK)}	SPI clock rise and fall time	Capacitive load: C = 30 pF		25	
t _{su(NSS)} ⁽¹⁾	NSS setup time	Slave mode	4 x t _{MASTER}		1
t _{h(NSS)} ⁽¹⁾	NSS hold time	Slave mode	70		
t _{w(SCKH)} ⁽¹⁾ t _{w(SCKL)} ⁽¹⁾	SCK high and low time	Master mode	t _{SCK} /2 - 15	t _{SCK} /2 + 15	
t _{su(MI)} (1)	Data input satur timo	Master mode	5		
t _{su(SI)} ⁽¹⁾		Slave mode	5		
t _{h(MI)} (1)	Data input hold time	Master mode	7		ns
$t_{h(SI)}^{(1)}$		Slave mode	10		
t _{a(SO)} ⁽¹⁾⁽²⁾	Data output access time	Slave mode		3 x t _{MASTER}	
t _{dis(SO)} ⁽¹⁾⁽³⁾	Data output disable time	Slave mode	25		
t _{v(SO)} ⁽¹⁾	Data output valid time	Slave mode (after enable edge)		75	
t _{v(MO)} ⁽¹⁾	Data output valid time	Master mode (after enable edge)		30	1
t _{h(SO)} ⁽¹⁾	Data output hold time	Slave mode (after enable edge)	31		
t _{h(MO)} ⁽¹⁾		Master mode (after enable edge)	12		

Table 42. SPI	characteristics
---------------	-----------------

1. Values based on design simulation and/or characterization results, and not tested in production.

2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.

10.3.9 I²C interface characteristics

Symbol	Parameter	Standard	mode l ² C	Fast mode I ² C ⁽¹⁾		110:4		
Symbol	Falameter	Min ⁽²⁾	Max ⁽²⁾	Min ⁽²⁾	Max ⁽²⁾	Unit		
t _{w(SCLL)}	SCL clock low time	4.7		1.3				
t _{w(SCLH)}	SCL clock high time	4.0		0.6		μs		
t _{su(SDA)}	SDA setup time	250		100				
t _{h(SDA)}	SDA data hold time	0 ⁽³⁾		0 ⁽⁴⁾	900 ⁽³⁾			
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time		1000		300	ns		
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time		300		300			
t _{h(STA)}	START condition hold time	4.0		0.6		110		
t _{su(STA)}	Repeated START condition setup time	4.7		0.6		μs		
t _{su(STO)}	STOP condition setup time	4.0		0.6		μs		
t _{w(STO:STA)}	STOP to START condition time (bus free)	4.7		1.3		μs		
Cb	Capacitive load for each bus line		400		400	pF		
	0							

Table 43. I²C characteristics

1. $f_{MASTER},$ must be at least 8 MHz to achieve max fast I^2C speed (400kHz) $\,$

2. Data based on standard I²C protocol requirement, not tested in production

3. The maximum hold time of the start condition has only to be met if the interface does not stretch the low time

4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL

11.1.2 LQFP64 package information

Figure 46. LQFP64 - 64-pin 14 mm x 14 mm low-profile quad flat package outline

Table 52. LQFP64 - 64-pin, 14 x 14 mm low-profile quad flat package mechanicaldata

Cumhal		mm			inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Max
А			1.600			0.0630
A1	0.050		0.150	0.0020		0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.300	0.370	0.450	0.0118	0.0146	0.0177
С	0.090		0.200	0.0035		0.0079
D	15.800	16.000	16.200	0.6220	0.6299	0.6378
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591
D3		12.000			0.4724	
E	15.800	16.000	16.200	0.6220	0.6299	0.6378
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591
E3		12.000			0.4724	
е		0.800			0.0315	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1		1.000			0.0394	

Table 52. LQFP64 - 64-pin, 14 x 14 mm low-profile quad flat package mechanical
data (continued)

Symbol		mm			inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Max
k	0.0 °	3.5 °	7.0 °	0.0 °	3.5 °	7.0 °
CCC			0.100			0.0039

1. Values in inches are converted from mm and rounded to four decimal places.

Figure 47. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline

Table 53. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data

Symbol		mm		inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079

11.1.3 LQFP48 package information

Figure 50. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline

Table 54. LQFP48 - 48-pin, 7x 7 mm low-profile quad flat package mechanical

Symbol	mm			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.500	-	-	0.2165	-
E	8.800	9.000	9.200	0.3465	0.3543	0.3622

12 STM8 development tools

Development tools for the STM8 microcontrollers include the full-featured STice emulation system supported by a complete software tool package including C compiler, assembler and integrated development environment with high-level language debugger. In addition, the STM8 is to be supported by a complete range of tools including starter kits, evaluation boards and a low-cost in-circuit debugger/programmer.

12.1 Emulation and in-circuit debugging tools

The STice emulation system offers a complete range of emulation and in-circuit debugging features on a platform that is designed for versatility and cost-effectiveness. In addition, STM8 application development is supported by a low-cost in-circuit debugger/programmer.

The STice is the fourth generation of full featured emulators from STMicroelectronics. It offers new advanced debugging capabilities including profiling and coverage to help detect and eliminate bottlenecks in application execution and dead code when fine tuning an application.

In addition, STice offers in-circuit debugging and programming of STM8 microcontrollers via the STM8 single wire interface module (SWIM), which allows non-intrusive debugging of an application while it runs on the target microcontroller.

For improved cost effectiveness, STice is based on a modular design that allows you to order exactly what you need to meet the development requirements and to adapt the emulation system to support existing and future ST microcontrollers.

STice key features

- Occurrence and time profiling and code coverage (new features)
- Advanced breakpoints with up to 4 levels of conditions
- Data breakpoints
- Program and data trace recording up to 128 KB records
- Read/write on the fly of memory during emulation
- In-circuit debugging/programming via SWIM protocol
- 8-bit probe analyzer
- 1 input and 2 output triggers
- Power supply follower managing application voltages between 1.62 to 5.5 V
- Modularity that allows you to specify the components you need to meet the development requirements and adapt to future requirements
- Supported by free software tools that include integrated development environment (IDE), programming software interface and assembler for STM8.

Date	Revision	Changes
10-Jul-2009	8 cont'd	Section 10: Electrical characteristics: Added data for TBD values; updated Table 15: Voltage characteristics and Table 18: General operating conditions; updated VCAP specifications in Table 18 and in Section 10.3.1: VCAP external capacitor, updated Figure 18; replaced Figure 19; updated Table 35: RAM and hardware registers; updated Figure 22 and Figure 35; added Figure 40: Typical application with I2C bus and timing diagram. Removed Table 56: Junction temperature range. Added link between ordering information Figure 59 and STM8S20xx features Table 2.
13-Apr-2010	9	Document status changed from "preliminary data" to "datasheet". Table 2: STM8S20xxx performance line features: high sink I/O for STM8S207C8 is 16 (not 13). Table 3: Peripheral clock gating bit assignments in $CLK_PCKENR1/2$ registers: updated bit positions for TIM2 and TIM3. Figure 5: LQFP 48-pin pinout: added CAN_TX and CAN_RX to pins 35 and 36; noted that these pins are available only in STM8S208xx devices. Figure 7: LQFP 32-pin pinout: replaced uart2 with uart3. Table 6: Pin description: added footnotes concerning beCAN availability and UART1_RX and UART3_RX pins. Table 13: Option byte description: added description of STM8L bootloader option bytes to the option byte description table. Added Section 9: Unique ID (and listed this attribute in Features). Section 10.3: Operating conditions: replaced "C _{EXT} " with "VCAP" and added data for ESR and ESL; removed "low power dissipation" condition for T _A . Table 26: Total current consumption in halt mode at VDD = 5 V: replaced max value of I _{DD(H)} at 85 °C from 30 µA to 35 µA for the condition "Flash in power-down mode, HSI clock after wakeup". Table 33: HSI oscillator characteristics: updated the ACC _{HSI} factory calibrated values. Functional EMS (electromagnetic susceptibility) and Table 47: replaced "IEC 1000" with "IEC 61000". Electromagnetic interference (EMI) and Table 48: replaced "SAE J1752/3" with "IEC 61967-2".

Table 58. Document revision history (continued)

