



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                 |
|----------------------------|------------------------------------------------------------------------|
| Core Processor             | STM8                                                                   |
| Core Size                  | 8-Bit                                                                  |
| Speed                      | 24MHz                                                                  |
| Connectivity               | CANbus, I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, WDT                                  |
| Number of I/O              | 38                                                                     |
| Program Memory Size        | 64KB (64K x 8)                                                         |
| Program Memory Type        | FLASH                                                                  |
| EEPROM Size                | 2K x 8                                                                 |
| RAM Size                   | 6K x 8                                                                 |
| Voltage - Supply (Vcc/Vdd) | 2.95V ~ 5.5V                                                           |
| Data Converters            | A/D 10x10b                                                             |
| Oscillator Type            | Internal                                                               |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                      |
| Mounting Type              | Surface Mount                                                          |
| Package / Case             | 48-LQFP                                                                |
| Supplier Device Package    | 48-LQFP (7x7)                                                          |
| Purchase URL               | https://www.e-xfl.com/product-detail/stmicroelectronics/stm8s208c8t6tr |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### Asynchronous communication (UART mode)

- Full duplex communication NRZ standard format (mark/space)
- Programmable transmit and receive baud rates up to 1 Mbit/s (f<sub>CPU</sub>/16) and capable of following any standard baud rate regardless of the input frequency
- Separate enable bits for transmitter and receiver
  - Two receiver wakeup modes:
  - Address bit (MSB)
    - Idle line (interrupt)
- Transmission error detection with interrupt generation
- Parity control

### LIN master capability

- Emission: Generates 13-bit sync break frame
- Reception: Detects 11-bit break frame

### LIN slave mode

- Autonomous header handling one single interrupt per valid message header
- Automatic baud rate synchronization maximum tolerated initial clock deviation ±15%
- Sync delimiter checking
- 11-bit LIN sync break detection break detection always active
- Parity check on the LIN identifier field
- LIN error management
- Hot plugging support

### 4.14.3 SPI

- Maximum speed: 10 Mbit/s (f<sub>MASTER</sub>/2) both for master and slave
- Full duplex synchronous transfers
- Simplex synchronous transfers on two lines with a possible bidirectional data line
- Master or slave operation selectable by hardware or software
- CRC calculation
- 1 byte Tx and Rx buffer
- Slave/master selection input pin



# 4.14.4 I<sup>2</sup>C

- I<sup>2</sup>C master features:
  - Clock generation
  - Start and stop generation
  - I<sup>2</sup>C slave features:
    - Programmable I<sup>2</sup>C address detection
    - Stop bit detection
- Generation and detection of 7-bit/10-bit addressing and general call
  - Supports different communication speeds:
    - Standard speed (up to 100 kHz)
    - Fast speed (up to 400 kHz)

## 4.14.5 beCAN

The beCAN controller (basic enhanced CAN), interfaces the CAN network and supports the CAN protocol version 2.0A and B. It has been designed to manage a high number of incoming messages efficiently with a minimum CPU load.

For safety-critical applications the beCAN controller provides all hardware functions to support the CAN time triggered communication option (TTCAN).

The maximum transmission speed is 1 Mbit.

### Transmission

- Three transmit mailboxes
- Configurable transmit priority by identifier or order request
- Time stamp on SOF transmission

### Reception

- 8-, 11- and 29-bit ID
- One receive FIFO (3 messages deep)
- Software-efficient mailbox mapping at a unique address space
- FMI (filter match index) stored with message
- Configurable FIFO overrun
- Time stamp on SOF reception
- Six filter banks, 2 x 32 bytes (scalable to 4 x 16-bit) each, enabling various masking configurations, such as 12 filters for 29-bit ID or 48 filters for 11-bit ID
- Filtering modes:
  - Mask mode permitting ID range filtering
  - ID list mode
- Time triggered communication option
  - Disable automatic retransmission mode
  - 16-bit free running timer
  - Configurable timer resolution
  - Time stamp sent in last two data bytes



remap) option bits. Refer to Section 8: Option bytes on page 47. When the remapping option is active, the default alternate function is no longer available.

To use an alternate function, the corresponding peripheral must be enabled in the peripheral registers.

Alternate function remapping does not effect GPIO capabilities of the I/O ports (see the GPIO section of the family reference manual, RM0016).



| Address                   | Block                   | Register label | Register name                                | Reset<br>status |
|---------------------------|-------------------------|----------------|----------------------------------------------|-----------------|
| 0x00 5216                 |                         | I2C_DR         | l <sup>2</sup> C data register               | 0x00            |
| 0x00 5217                 |                         | I2C_SR1        | I <sup>2</sup> C status register 1           | 0x00            |
| 0x00 5218                 | -                       | I2C_SR2        | l <sup>2</sup> C status register 2           | 0x00            |
| 0x00 5219                 | I <sup>2</sup> C        | I2C_SR3        | l <sup>2</sup> C status register 3           | 0x00            |
| 0x00 521A                 | - FC                    | I2C_ITR        | I <sup>2</sup> C interrupt control register  | 0x00            |
| 0x00 521B                 |                         | I2C_CCRL       | I <sup>2</sup> C clock control register low  | 0x00            |
| 0x00 521C                 |                         | I2C_CCRH       | I <sup>2</sup> C clock control register high | 0x00            |
| 0x00 521D                 |                         | I2C_TRISER     | I <sup>2</sup> C TRISE register              | 0x02            |
| 0x00 521E to<br>0x00 522F |                         |                | Reserved area (18 bytes)                     | -               |
| 0x00 5230                 |                         | UART1_SR       | UART1 status register                        | 0xC0            |
| 0x00 5231                 |                         | UART1_DR       | UART1 data register                          | 0xXX            |
| 0x00 5232                 |                         | UART1_BRR1     | UART1 baud rate register 1                   | 0x00            |
| 0x00 5233                 |                         | UART1_BRR2     | UART1 baud rate register 2                   | 0x00            |
| 0x00 5234                 |                         | UART1_CR1      | UART1 control register 1                     | 0x00            |
| 0x00 5235                 | UART1                   | UART1_CR2      | UART1 control register 2                     | 0x00            |
| 0x00 5236                 |                         | UART1_CR3      | UART1 control register 3                     | 0x00            |
| 0x00 5237                 |                         | UART1_CR4      | UART1 control register 4                     | 0x00            |
| 0x00 5238                 |                         | UART1_CR5      | UART1 control register 5                     | 0x00            |
| 0x00 5239                 |                         | UART1_GTR      | UART1 guard time register                    | 0x00            |
| 0x00 523A                 |                         | UART1_PSCR     | UART1 prescaler register                     | 0x00            |
| 0x00 523B to<br>0x00 523F |                         |                | Reserved area (5 bytes)                      |                 |
| 0x00 5240                 |                         | UART3_SR       | UART3 status register                        | C0h             |
| 0x00 5241                 |                         | UART3_DR       | UART3 data register                          | 0xXX            |
| 0x00 5242                 |                         | UART3_BRR1     | UART3 baud rate register 1                   | 0x00            |
| 0x00 5243                 |                         | UART3_BRR2     | UART3 baud rate register 2                   | 0x00            |
| 0x00 5244                 |                         | UART3_CR1      | UART3 control register 1                     | 0x00            |
| 0x00 5245                 | UARIS                   | UART3_CR2      | UART3 control register 2                     | 0x00            |
| 0x00 5246                 |                         | UART3_CR3      | UART3 control register 3                     | 0x00            |
| 0x00 5247                 |                         | UART3_CR4      | UART3 control register 4                     | 0x00            |
| 0x00 5248                 | ]                       |                | Reserved                                     |                 |
| 0x00 5249                 | ]                       | UART3_CR6      | UART3 control register 6                     | 0x00            |
| 0x00 524A to<br>0x00 524F | Reserved area (6 bytes) |                |                                              |                 |

|          | 0       | le a selecca se |          |       | (           |   |
|----------|---------|-----------------|----------|-------|-------------|---|
| Table 9. | General | nardware        | register | map ( | (continuea) | ) |



| Address                   | Block | Register Label          | Register Name                             | Reset<br>Status |  |  |
|---------------------------|-------|-------------------------|-------------------------------------------|-----------------|--|--|
| 0x00 7F98                 |       | DM_CSR1                 | DM debug module control/status register 1 | 0x10            |  |  |
| 0x00 7F99 DM              |       | DM_CSR2                 | DM debug module control/status register 2 | 0x00            |  |  |
| 0x00 7F9A                 |       | DM_ENFCTR               | DM enable function register               | 0xFF            |  |  |
| 0x00 7F9B to<br>0x00 7F9F |       | Reserved area (5 bytes) |                                           |                 |  |  |

#### Table 10. CPU/SWIM/debug module/interrupt controller registers (continued)

1. Accessible by debug module only

2. Product dependent value, see Figure 8: Memory map.



# 9 Unique ID

The devices feature a 96-bit unique device identifier which provides a reference number that is unique for any device and in any context. The 96 bits of the identifier can never be altered by the user.

The unique device identifier can be read in single bytes and may then be concatenated using a custom algorithm.

The unique device identifier is ideally suited:

- For use as serial numbers
- For use as security keys to increase the code security in the program memory while using and combining this unique ID with software cryptographic primitives and protocols before programming the internal memory.
- To activate secure boot processes

| Address | Content              | ntent Unique ID bits |   |   |     |          |   |   |   |
|---------|----------------------|----------------------|---|---|-----|----------|---|---|---|
| Address | description          | 7                    | 6 | 5 | 4   | 3        | 2 | 1 | 0 |
| 0x48CD  | X co-ordinate on the |                      |   |   | U_  | _ID[7:0] |   |   |   |
| 0x48CE  | wafer                |                      |   |   | U_  | ID[15:8] |   |   |   |
| 0x48CF  | Y co-ordinate on the | U_ID[23:16]          |   |   |     |          |   |   |   |
| 0x48D0  | wafer                |                      |   |   | U_I | D[31:24] |   |   |   |
| 0x48D1  | Wafer number         | U_ID[39:32]          |   |   |     |          |   |   |   |
| 0x48D2  |                      | U_ID[47:40]          |   |   |     |          |   |   |   |
| 0x48D3  |                      |                      |   |   | U_I | D[55:48] |   |   |   |
| 0x48D4  |                      |                      |   |   | U_I | D[63:56] |   |   |   |
| 0x48D5  | Lot number           | U_ID[71:64]          |   |   |     |          |   |   |   |
| 0x48D6  |                      |                      |   |   | U_I | D[79:72] |   |   |   |
| 0x48D7  |                      | U_ID[87:80]          |   |   |     |          |   |   |   |
| 0x48D8  |                      | U_ID[95:88]          |   |   |     |          |   |   |   |

### Table 14. Unique ID registers (96 bits)



# 10.1.5 Pin loading conditions

## **10.1.6** Loading capacitor

The loading conditions used for pin parameter measurement are shown in Figure 10.

### Figure 10. Pin loading conditions



## 10.1.7 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 11*.

### Figure 11. Pin input voltage





# **10.2** Absolute maximum ratings

Stresses above those listed as 'absolute maximum ratings' may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

| Symbol                             | Ratings                                                                                                | Min                   | Max                   | Unit |
|------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|------|
| V <sub>DDx</sub> - V <sub>SS</sub> | Supply voltage (including $V_{DDA and} V_{DDIO}$ ) <sup>(1)</sup>                                      | -0.3                  | 6.5                   |      |
| V                                  | Input voltage on true open drain pins (PE1, PE2) <sup>(2)</sup>                                        | V <sub>SS</sub> - 0.3 | 6.5                   | V    |
| ⊻ IN                               | Input voltage on any other pin <sup>(2)</sup>                                                          | V <sub>SS</sub> - 0.3 | V <sub>DD</sub> + 0.3 |      |
| V <sub>DDx</sub> - V <sub>DD</sub> | Variations between different power pins                                                                |                       | 50                    | m\/  |
| V <sub>SSx</sub> - V <sub>SS</sub> | - V <sub>SS</sub> Variations between all the different ground pins                                     |                       | 50                    | IIIV |
| V <sub>ESD</sub>                   | Electrostatic discharge voltage see Absolute maximum<br>ratings (electrical<br>sensitivity) on page 89 |                       |                       |      |

1. All power (V<sub>DD</sub>, V<sub>DDIO</sub>, V<sub>DDA</sub>) and ground (V<sub>SS</sub>, V<sub>SSIO</sub>, V<sub>SSA</sub>) pins must always be connected to the external power supply

2. I<sub>INJ(PIN)</sub> must never be exceeded. This is implicitly insured if V<sub>IN</sub> maximum is respected. If V<sub>IN</sub> maximum cannot be respected, the injection current must be limited externally to the I<sub>INJ(PIN)</sub> value. A positive injection is induced by V<sub>IN</sub>>V<sub>DD</sub> while a negative injection is induced by V<sub>IN</sub><V<sub>SS</sub>. For true open-drain pads, there is no positive injection current, and the corresponding V<sub>IN</sub> maximum must always be respected



## 10.3.2 Supply current characteristics

The current consumption is measured as described in *Figure 9 on page 52*.

### Total current consumption in run mode

The MCU is placed under the following conditions:

- All I/O pins in input mode with a static value at  $V_{DD} \, \text{or} \, V_{SS}$  (no load)
- All peripherals are disabled (clock stopped by Peripheral Clock Gating registers) except if explicitly mentioned.
- When the MCU is clocked at 24 MHz,  $T_A \le 105$  °C and the WAITSTATE option bit is set.

Subject to general operating conditions for  $V_{DD}$  and  $T_A$ .

| Symbol   | Parameter            | Conditions                                                  |                                       |      | Max                 | Unit |
|----------|----------------------|-------------------------------------------------------------|---------------------------------------|------|---------------------|------|
|          |                      | f <sub>CPU</sub> = f <sub>MASTER</sub> = 24 MHz,            | HSE crystal osc. (24 MHz)             | 4.4  |                     |      |
|          |                      | $T_A \leq 105 \ ^{\circ}C$                                  | HSE user ext. clock (24 MHz)          | 3.7  | 7.3 <sup>(1)</sup>  |      |
|          |                      |                                                             | HSE crystal osc. (16 MHz)             | 3.3  |                     |      |
|          | Supply<br>current in | f <sub>CPU</sub> = f <sub>MASTER</sub> = 16 MHz             | HSE user ext. clock (16 MHz)          | 2.7  | 5.8                 |      |
|          | run mode,            |                                                             | HSI RC osc. (16 MHz)                  | 2.5  | 3.4                 |      |
|          | code<br>executed     | f _ f /129 _ 125 kHz                                        | HSE user ext. clock (16 MHz)          | 1.2  | 4.1 <sup>(1)</sup>  |      |
|          | from RAM             | $T_{CPU} = T_{MASTER}/128 = 125 \text{ KHz}$                | HSI RC osc. (16 MHz)                  | 1.0  | 1.3 <sup>(1)</sup>  |      |
|          |                      | f <sub>CPU</sub> = f <sub>MASTER</sub> /128 = 15.625<br>kHz | HSI RC osc. (16 MHz/8)                | 0.55 |                     |      |
| 1        |                      | f <sub>CPU</sub> = f <sub>MASTER</sub> = 128 kHz            | LSI RC osc. (128 kHz)                 | 0.45 |                     | m۸   |
| 'DD(RUN) | Supply               | f <sub>CPU</sub> = f <sub>MASTER</sub> = 24 MHz,            | HSE crystal osc. (24 MHz)             | 11.4 |                     | mA   |
|          |                      | $T_A \leq 105 \ ^{\circ}C$                                  | HSE user ext. clock (24 MHz)          | 10.8 | 18 <sup>(1)</sup>   |      |
|          |                      | f <sub>CPU</sub> = f <sub>MASTER</sub> = 16 MHz             | HSE crystal osc. (16 MHz)             | 9.0  |                     |      |
|          |                      |                                                             | HSE user ext. clock (16 MHz)          | 8.2  | 15.2 <sup>(1)</sup> |      |
|          | run mode,            |                                                             | HSI RC osc.(16 MHz)                   | 8.1  | 13.2 <sup>(1)</sup> |      |
|          | code<br>executed     | f <sub>CPU</sub> = f <sub>MASTER</sub> = 2 MHz.             | HSI RC osc. (16 MHz/8) <sup>(2)</sup> | 1.5  |                     |      |
|          | from Flash           | f <sub>CPU</sub> = f <sub>MASTER</sub> /128 = 125 kHz       | HSI RC osc. (16 MHz)                  | 1.1  |                     |      |
|          |                      | f <sub>CPU</sub> = f <sub>MASTER</sub> /128 = 15.625<br>kHz | HSI RC osc. (16 MHz/8)                | 0.6  |                     |      |
|          |                      | f <sub>CPU</sub> = f <sub>MASTER</sub> = 128 kHz            | LSI RC osc. (128 kHz)                 | 0.55 |                     |      |

### Table 20. Total current consumption with code execution in run mode at $V_{DD}$ = 5 V

1. Data based on characterization results, not tested in production.

2. Default clock configuration measured with all peripherals off.



| Symbol                              | Parameter                                   | Conditions                              | Min | Тур | Мах                                            | Unit |
|-------------------------------------|---------------------------------------------|-----------------------------------------|-----|-----|------------------------------------------------|------|
| f <sub>HSE</sub>                    | External high speed oscillator<br>frequency |                                         | 1   |     | 24                                             | MHz  |
| R <sub>F</sub>                      | Feedback resistor                           |                                         |     | 220 |                                                | kΩ   |
| C <sup>(1)</sup>                    | Recommended load capacitance (2)            |                                         |     |     | 20                                             | pF   |
|                                     |                                             | C = 20 pF,<br>f <sub>OSC</sub> = 24 MHz |     |     | 6 (startup)<br>2 (stabilized) <sup>(3)</sup>   | m۸   |
| IDD(HSE)                            |                                             | C = 10 pF,<br>f <sub>OSC</sub> = 24 MHz |     |     | 6 (startup)<br>1.5 (stabilized) <sup>(3)</sup> | IIIA |
| 9 <sub>m</sub>                      | Oscillator transconductance                 |                                         | 5   |     |                                                | mA/V |
| t <sub>SU(HSE)</sub> <sup>(4)</sup> | Startup time                                | V <sub>DD</sub> is stabilized           |     | 1   |                                                | ms   |

| Table 32. HS | E oscillator | characteristics |
|--------------|--------------|-----------------|
|--------------|--------------|-----------------|

1. C is approximately equivalent to 2 x crystal Cload.

2. The oscillator selection can be optimized in terms of supply current using a high quality resonator with small R<sub>m</sub> value. Refer to crystal manufacturer for more details

3. Data based on characterization results, not tested in production.

 t<sub>SU(HSE)</sub> is the start-up time measured from the moment it is enabled (by software) to a stabilized 24 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.



### Figure 17. HSE oscillator circuit diagram

### HSE oscillator critical g<sub>m</sub> formula

 $g_{mcrit} = (2 \times \Pi \times f_{HSE})^2 \times R_m (2Co + C)^2$ 

 $\begin{array}{l} {\sf R}_m: \mbox{ Notional resistance (see crystal specification)} \\ {\sf L}_m: \mbox{ Notional inductance (see crystal specification)} \\ {\sf C}_m: \mbox{ Notional capacitance (see crystal specification)} \\ {\sf Co: Shunt capacitance (see crystal specification)} \\ {\sf C}_{L1} = {\sf C}_{L2} = {\sf C}: \mbox{ Grounded external capacitance } \\ {\sf g}_m >> {\sf g}_{mcrit} \end{array}$ 

DocID14733 Rev 13



# 10.3.6 I/O port pin characteristics

### **General characteristics**

Subject to general operating conditions for  $V_{DD}$  and  $T_A$  unless otherwise specified. All unused pins must be kept at a fixed voltage: using the output mode of the I/O for example or an external pull-up or pull-down resistor.

| Symbol                                                            | Parameter                                       | Conditions                                  | Min                   | Тур | Мах                     | Unit |  |
|-------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------|-----------------------|-----|-------------------------|------|--|
| V <sub>IL</sub>                                                   | Input low level<br>voltage                      |                                             | -0.3                  |     | 0.3 x V <sub>DD</sub>   | V    |  |
| V <sub>IH</sub>                                                   | Input high level<br>voltage                     | V <sub>DD</sub> = 5 V                       | 0.7 x V <sub>DD</sub> |     | V <sub>DD</sub> + 0.3 V | v    |  |
| V <sub>hys</sub>                                                  | Hysteresis <sup>(1)</sup>                       |                                             |                       | 700 |                         | mV   |  |
| R <sub>pu</sub>                                                   | Pull-up resistor                                | $V_{DD}$ = 5 V, $V_{IN}$ = $V_{SS}$         | 30                    | 55  | 80                      | kΩ   |  |
|                                                                   |                                                 | Fast I/Os<br>Load = 50 pF                   |                       |     | 20 <sup>(2)</sup>       |      |  |
| t <sub>R</sub> , t <sub>F</sub> Rise and fall time<br>(10% - 90%) | Rise and fall time                              | Standard and high sink I/Os<br>Load = 50 pF |                       |     | 125 <sup>(2)</sup>      |      |  |
|                                                                   | (10% - 90%)                                     | Fast I/Os<br>Load = 20 pF                   |                       |     | 35 <sup>(3)</sup>       | ns   |  |
|                                                                   |                                                 | Standard and high sink I/Os<br>Load = 20 pF |                       |     | 125 <sup>(3)</sup>      |      |  |
| I <sub>lkg</sub>                                                  | Input leakage<br>current,<br>analog and digital | $V_{SS} \leq V_{IN} \leq V_{DD}$            |                       |     | ±1                      | μA   |  |
| I <sub>lkg ana</sub>                                              | Analog input<br>leakage current                 | $V_{SS} \leq V_{IN} \leq V_{DD}$            |                       |     | ±250 <sup>(2)</sup>     | nA   |  |
| I <sub>lkg(inj)</sub>                                             | Leakage current in adjacent I/O <sup>(2)</sup>  | Injection current ±4 mA                     |                       |     | ±1 <sup>(2)</sup>       | μΑ   |  |

| Table 37. | I/O | static | characteristics |
|-----------|-----|--------|-----------------|
|-----------|-----|--------|-----------------|

1. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested in production.

2. Data based on characterization results, not tested in production.

3. Guaranteed by design.



### Static latch-up

Two complementary static tests are required on 10 parts to assess the latch-up performance:

- A supply overvoltage (applied to each power supply pin)
- A current injection (applied to each input, output and configurable I/O pin) is performed on each sample.

This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.

| Symbol | Parameter             | Conditions              | Class <sup>(1)</sup> |
|--------|-----------------------|-------------------------|----------------------|
|        |                       | $T_A = 25 \ ^{\circ}C$  | А                    |
| LU     | Static latch-up class | T <sub>A</sub> = 85 °C  | А                    |
|        |                       | T <sub>A</sub> = 125 °C | А                    |

| Table | 50. | Electrical | sensitivities |
|-------|-----|------------|---------------|
|-------|-----|------------|---------------|

1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B class strictly covers all the JEDEC criteria (international standard).



# 11 Package characteristics

To meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at *www.st.com*. ECOPACK® is an ST trademark.



| Table 52. LQFP64 - 64-pin, 14 x 14 mm low-profile quad flat package mechanical |
|--------------------------------------------------------------------------------|
| data (continued)                                                               |

| Symbol | mm    |       |       | inches <sup>(1)</sup> |       |        |  |
|--------|-------|-------|-------|-----------------------|-------|--------|--|
|        | Min   | Тур   | Max   | Min                   | Тур   | Max    |  |
| k      | 0.0 ° | 3.5 ° | 7.0 ° | 0.0 °                 | 3.5 ° | 7.0 °  |  |
| CCC    |       |       | 0.100 |                       |       | 0.0039 |  |

1. Values in inches are converted from mm and rounded to four decimal places.



#### Figure 47. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline

Table 53. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data

| Symbol | mm    |       |       | inches <sup>(1)</sup> |        |        |  |  |
|--------|-------|-------|-------|-----------------------|--------|--------|--|--|
|        | Min   | Тур   | Max   | Min                   | Тур    | Max    |  |  |
| А      | -     | -     | 1.600 | -                     | -      | 0.0630 |  |  |
| A1     | 0.050 | -     | 0.150 | 0.0020                | -      | 0.0059 |  |  |
| A2     | 1.350 | 1.400 | 1.450 | 0.0531                | 0.0551 | 0.0571 |  |  |
| b      | 0.170 | 0.220 | 0.270 | 0.0067                | 0.0087 | 0.0106 |  |  |
| С      | 0.090 | -     | 0.200 | 0.0035                | -      | 0.0079 |  |  |

### **Device marking**

The following figure shows the marking for the LQFP64 package.



Figure 49. LQFP64 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.



# 11.1.4 LQFP44 package information

Figure 53. LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat package outline







Figure 54. LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat recommended footprint

1. Dimensions are expressed in millimeters.

### **Device marking**

The following figure shows the marking for the LQFP44 package.



Figure 55. LQFP44 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

DocID14733 Rev 13



# **13** Ordering information

| Figure 59. STM8S207xx/208xx performance line ordering information scheme <sup>(1)</sup> |   |      |   |     |   |   |   |   |   |    |
|-----------------------------------------------------------------------------------------|---|------|---|-----|---|---|---|---|---|----|
| Example:                                                                                |   | STM8 | S | 208 | М | В | Т | 6 | В | TR |
| Product class<br>STM8 microcontroller                                                   |   |      |   |     |   |   |   |   |   |    |
| Family type<br>S = Standard                                                             |   |      |   |     |   |   |   |   |   |    |
| Sub-family type <sup>(2)</sup>                                                          |   |      |   |     |   |   |   |   |   |    |
| 208 = Full peripheral set                                                               |   |      |   |     |   |   |   |   |   |    |
| 207 = Intermediate peripheral set                                                       | t |      |   |     |   |   |   |   |   |    |
| Pin count                                                                               |   |      |   |     |   |   |   |   |   |    |
| K = 32 pins                                                                             |   |      |   |     |   |   |   |   |   |    |
| S = 44 pins                                                                             |   |      |   |     |   |   |   |   |   |    |
| C = 48 pins                                                                             |   |      |   |     |   |   |   |   |   |    |
| R = 64 pins                                                                             |   |      |   |     |   |   |   |   |   |    |
| M = 80 pins                                                                             |   |      |   |     |   |   |   |   |   |    |
| Program memory size                                                                     |   |      |   |     |   |   |   |   |   |    |
| 6 = 32 Kbyte                                                                            |   |      |   |     |   |   |   |   |   |    |
| 8 = 64 Kbyte                                                                            |   |      |   |     |   |   |   |   |   |    |
| B = 128 Kbyte                                                                           |   |      |   |     |   |   |   |   |   |    |
| Package type                                                                            |   |      |   |     |   |   |   |   |   |    |
| T = LQFP                                                                                |   |      |   |     |   |   |   |   |   |    |
| <b>Temperature range</b><br>3 = -40 °C to 125 °C<br>6 = -40 °C to 85 °C                 |   |      |   |     |   |   |   |   |   |    |
| Package pitch<br>No character = 0.5 mm<br>B = 0.65 mm<br>C = 0.8 mm                     |   |      |   |     |   |   |   |   |   |    |
| <b>Packing</b><br>No character = Tray or tube<br>TR = Tape and reel                     |   |      |   |     |   |   |   |   |   |    |

 For a list of available options (e.g. memory size, package) and order-able part numbers or for further information on any aspect of this device, please go to <u>www.st.com</u> or contact the ST Sales Office nearest to you.

2. Refer to Table 2: STM8S20xxx performance line features for detailed description.



# 14 Revision history

| Date Revision |   | Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|---------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 23-May-2008   | 1 | Initial release.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 05-Jun-2008   | 2 | Added part numbers on page 1 and in <i>Table 2 on page 11</i> .<br>Updated <i>Section 4: Product overview</i> .<br>Updated <i>Section 10: Electrical characteristics</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
| 22-Jun-2008   | 3 | Added part numbers on page 1 and in Table 2 on page 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 12-Aug-2008   | 4 | Added 32 pin device pinout and ordering information.<br>Updated UBC option description in <i>Table 13 on page 48.</i><br>USART renamed UART1, LINUART renamed UART3.<br>Max. ADC frequency increased to 6 MHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| 20-Oct-2008   | 5 | Removed STM8S207K4 part number.<br>Removed LQFP64 14 x 14 mm package.<br>Added medium and high density Flash memory categories.<br>Added Section 6: Memory and register map on page 34.<br>Replaced beCAN3 by beCAN in Section 4.14.5: beCAN.<br>Updated Section 10: Electrical characteristics on page 52.<br>Updated LQFP44 (Figure 53 and Table 55), and LQFP32 outline and<br>mechanical data (Figure 56, and Table 56).                                                                                                                                                                                                                                                            |  |  |  |
| 08-Dec-2008   | 6 | Changed V <sub>DD</sub> minimum value from 3.0 to 2.95 V.<br>Updated number of High Sink I/Os in pinout.<br>Removed FLASH _NFPR and FLASH _FPR registers in <i>Table 9:</i><br><i>General hardware register map</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| 30-Jan-2009   | 7 | Removed preliminary status.<br>Removed VQFN32 package.<br>Added STM8S207C6, STM8S207S6.<br>Updated external interrupts in <i>Table 2 on page 11</i> .<br>Updated <i>Section 10: Electrical characteristics</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| 10-Jul-2009   | 8 | Document status changed from "preliminary data" to "datasheet".<br>Added LQFP64 14 x 14 mm package.<br>Added STM8S207M8, STM8S207SB, STM8S208R8, STM8S208R6,<br>STM8S208C8, and STM8S208C6, STM8S208SB, STM8S208S8,<br>and STM8S208S6.<br>Replaced "CAN" with "beCAN".<br>Added <i>Table 3</i> to <i>Section 4.5: Clock controller</i> .<br>Updated <i>Section 4.8: Auto wakeup counter</i> .<br>Added beCAN peripheral (impacting <i>Table 1</i> and <i>Figure 6</i> ).<br>Added footnote about CAN_RX/TX to pinout figures 5, 4, and 6.<br><i>Table 6</i> : Removed 'X' from wpu column of I <sup>2</sup> C pins (no wpu<br>available).<br>Added <i>Table 11: Interrupt mapping</i> . |  |  |  |

| Table 58. Document re | evision | history |
|-----------------------|---------|---------|
|-----------------------|---------|---------|



#### IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved



DocID14733 Rev 13