

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	STM8
Core Size	8-Bit
Speed	24MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	34
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1.5K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	2.95V ~ 5.5V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8s208s6t3c

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Device	Pin count	Max. number of GPIOs (I/O)	Ext. interrupt pins	Timer CAPCOM channels	Timer complementary outputs	A/D converter channels	High sink I/Os	High density Flash program memory (bytes)	Data EEPROM (bytes	RAM (bytes)	beCAN interface
STM8S207MB	80	68	37	9	3	16	18	128 K	2048	6 K	
STM8S207M8	80	68	37	9	3	16	18	64 K	2048	6 K	
STM8S207RB	64	52	36	9	3	16	16	128 K	2048	6 K	
STM8S207R8	64	52	36	9	3	16	16	64 K	1536	6 K	
STM8S207R6	64	52	36	9	3	16	16	32 K	1024	6 K	
STM8S207CB	48	38	35	9	3	10	16	128 K	2048	6 K	
STM8S207C8	48	38	35	9	3	10	16	64 K	1536	6 K	No
STM8S207C6	48	38	35	9	3	10	16	32 K	1024	6 K	
STM8S207SB	44	34	31	8	3	9	15	128 K	1536	6 K	
STM8S207S8	44	34	31	8	3	9	15	64 K	1536	6 K	
STM8S207S6	44	34	31	8	3	9	15	32 K	1024	6 K	
STM8S207K8	32	25	23	8	3	7	12	64 K	1024	6 K	
STM8S207K6	32	25	23	8	3	7	12	32 K	1024	6 K	
STM8S208MB	80	68	37	9	3	16	18	128 K	2048	6 K	
STM8S208RB	64	52	37	9	3	16	16	128 K	2048	6 K	
STM8S208R8	64	52	37	9	3	16	16	64 K	2048	6 K	
STM8S208R6	64	52	37	9	3	16	16	32 K	2048	6 K	
STM8S208CB	48	38	35	9	3	10	16	128 K	2048	6 K	Vee
STM8S208C8	48	38	35	9	3	10	16	64 K	2048	6 K	Yes
STM8S208C6	48	38	35	9	3	10	16	32 K	2048	6 K	
STM8S208SB	44	34	31	8	3	9	15	128 K	1536	6 K	
STM8S208S8	44	34	31	8	3	9	15	64 K	1536	6 K	
STM8S208S6	44	34	31	8	3	9	15	32 K	1536	6 K	

Table 2. STM8S20xxx performance line features

Address	Block	Register Label	Register Name	Reset
0.00.7500		_	_	Status
0x00 7F00		A	Accumulator	0x00
0x00 7F01		PCE	Program counter extended	0x00
0x00 7F02		PCH	Program counter high	0x00
0x00 7F03		PCL	Program counter low	0x00
0x00 7F04		XH	X index register high	0x00
0x00 7F05	CPU ⁽¹⁾	XL	X index register low	0x00
0x00 7F06		YH	Y index register high	0x00
0x00 7F07		YL	Y index register low	0x00
0x00 7F08		SPH	Stack pointer high	0x17 ⁽²⁾
0x00 7F09		SPL	Stack pointer low	0xFF
0x00 7F0A		CCR	Condition code register	0x28
0x00 7F0B to 0x00 7F5F			Reserved area (85 bytes)	
0x00 7F60	CPU	CFG_GCR	Global configuration register	0x00
0x00 7F70		ITC_SPR1	Interrupt software priority register 1	0xFF
0x00 7F71		ITC_SPR2	Interrupt software priority register 2	0xFF
0x00 7F72		ITC_SPR3	Interrupt software priority register 3	0xFF
0x00 7F73	ITO	ITC_SPR4	Interrupt software priority register 4	0xFF
0x00 7F74	ITC	ITC_SPR5	Interrupt software priority register 5	0xFF
0x00 7F75		ITC_SPR6	Interrupt software priority register 6	0xFF
0x00 7F76		ITC_SPR7	Interrupt software priority register 7	0xFF
0x00 7F77		ITC_SPR8	Interrupt software priority register 8	0xFF
0x00 7F78 to 0x00 7F79			Reserved area (2 bytes)	
0x00 7F80	SWIM	SWIM_CSR	SWIM control status register	0x00
0x00 7F81 to 0x00 7F8F			Reserved area (15 bytes)	
0x00 7F90		DM_BK1RE	DM breakpoint 1 register extended byte	0xFF
0x00 7F91		DM_BK1RH	DM breakpoint 1 register high byte	0xFF
0x00 7F92		DM_BK1RL	DM breakpoint 1 register low byte	0xFF
0x00 7F93		DM_BK2RE	DM breakpoint 2 register extended byte	0xFF
0x00 7F94	DM	DM_BK2RH	DM breakpoint 2 register high byte	0xFF
0x00 7F95		DM_BK2RL	DM breakpoint 2 register low byte	0xFF
0x00 7F96		DM_CR1	DM debug module control register 1	0x00
		DM_CR2	DM debug module control register 2	-

Table 10. CPU/SWIM/debug module/interrupt controller registers

		J		
Address	Block	Register Label	Label Register Name	
0x00 7F98		DM_CSR1	DM debug module control/status register 1	0x10
0x00 7F99	DM	DM_CSR2	DM debug module control/status register 2	0x00
0x00 7F9A		DM_ENFCTR	DM enable function register	0xFF
0x00 7F9B to 0x00 7F9F			Reserved area (5 bytes)	

Table 10. CPU/SWIM/debug module/interrupt controller registers (continued)

1. Accessible by debug module only

2. Product dependent value, see Figure 8: Memory map.

7 Interrupt vector mapping

	Table 11. Interrupt mapping								
IRQ no.	Source block	Description	Wakeup from Halt mode	Wakeup from Active-halt mode	Vector address				
	RESET	Reset	Yes	Yes	0x00 8000				
	TRAP	Software interrupt	-	-	0x00 8004				
0	TLI	External top level interrupt	-	-	0x00 8008				
1	AWU	Auto wake up from halt	-	Yes	0x00 800C				
2	CLK	Clock controller	-	-	0x00 8010				
3	EXTI0	Port A external interrupts	Yes ⁽¹⁾	Yes ⁽¹⁾	0x00 8014				
4	EXTI1	Port B external interrupts	Yes	Yes	0x00 8018				
5	EXTI2	Port C external interrupts	Yes	Yes	0x00 801C				
6	EXTI3	Port D external interrupts	Yes	Yes	0x00 8020				
7	EXTI4	Port E external interrupts	Yes	Yes	0x00 8024				
8	beCAN	beCAN RX interrupt	Yes	Yes	0x00 8028				
9	beCAN	beCAN TX/ER/SC interrupt	-	-	0x00 802C				
10	SPI	End of transfer	Yes	Yes	0x00 8030				
11	TIM1	TIM1 update/overflow/underflow/ trigger/break	-	-	0x00 8034				
12	TIM1	TIM1 capture/compare	-	-	0x00 8038				
13	TIM2	TIM2 update /overflow	-	-	0x00 803C				
14	TIM2	TIM2 capture/compare	-	-	0x00 8040				
15	TIM3	Update/overflow	-	-	0x00 8044				
16	TIM3	Capture/compare	-	-	0x00 8048				
17	UART1	Tx complete	-	-	0x00 804C				
18	UART1	Receive register DATA FULL	-	-	0x00 8050				
19	l ² C	I ² C interrupt	Yes	Yes	0x00 8054				
20	UART3	Tx complete	-	-	0x00 8058				
21	UART3	Receive register DATA FULL	-	-	0x00 805C				
22	ADC2	ADC2 end of conversion	-	-	0x00 8060				
23	TIM4	TIM4 update/overflow	-	-	0x00 8064				
24	Flash	EOP/WR_PG_DIS	-	-	0x00 8068				
		Reserved			0x00 806C to 0x00 807C				

Table 11. Interrupt mapping

1. Except PA1

9 Unique ID

The devices feature a 96-bit unique device identifier which provides a reference number that is unique for any device and in any context. The 96 bits of the identifier can never be altered by the user.

The unique device identifier can be read in single bytes and may then be concatenated using a custom algorithm.

The unique device identifier is ideally suited:

- For use as serial numbers
- For use as security keys to increase the code security in the program memory while using and combining this unique ID with software cryptographic primitives and protocols before programming the internal memory.
- To activate secure boot processes

Address	Content	Unique ID bits							
Address	description	7	6	5	4	3	2	1	0
0x48CD	X co-ordinate on the wafer				U	_ID[7:0]			
0x48CE					U_	_ID[15:8]			
0x48CF	Y co-ordinate on the				U_	ID[23:16]			
0x48D0	wafer		U_ID[31:24]						
0x48D1	Wafer number		U_ID[39:32]						
0x48D2			U_ID[47:40]						
0x48D3		U_ID[55:48]							
0x48D4					U_	ID[63:56]			
0x48D5	Lot number				U_	ID[71:64]			
0x48D6		U_ID[79:72]							
0x48D7					U_	ID[87:80]			
0x48D8		U_ID[95:88]							

Table 14. Unique ID registers (96 bits)

Symbol	Ratings	Max. ⁽¹⁾	Unit		
I _{VDD}	Total current into V _{DD} power lines (source) ⁽²⁾	60			
I _{VSS}	Total current out of V_{SS} ground lines (sink) ⁽²⁾	60			
1	Output current sunk by any I/O and control pin				
I _{IO}	Output current source by any I/Os and control pin	20			
ΣΙ _{ΙΟ}	Total output current sourced (sum of all I/O and control pins) for devices with two $V_{DDIO}\rm pins^{(3)}$	200			
	Total output current sourced (sum of all I/O and control pins) for devices with one $V_{DDIO}\rm{pin}^{(3)}$	100	mA		
	Total output current sunk (sum of all I/O and control pins) for devices with two $\rm V_{SSIO}\ pins^{(3)}$	160	IIIA		
	Total output current sunk (sum of all I/O and control pins) for devices with one $V_{SSIO}\text{pin}^{(3)}$	80			
	Injected current on NRST pin	±4			
I _{INJ(PIN)} ⁽⁴⁾⁽⁵⁾	Injected current on OSCIN pin	±4			
	Injected current on any other pin ⁽⁶⁾	±4			
$\Sigma I_{\rm INJ(PIN)}^{(4)}$	Total injected current (sum of all I/O and control pins) ⁽⁶⁾	±20			

Table 16. Current characteristics

1. Data based on characterization results, not tested in production.

- 2. All power (V_{DD}, V_{DDIO}, V_{DDA}) and ground (V_{SS}, V_{SSIO}, V_{SSA}) pins must always be connected to the external supply.
- 3. I/O pins used simultaneously for high current source/sink must be uniformly spaced around the package between the V_{DDIO}/V_{SSIO} pins.
- 4. I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN}<V_{SS}. For true open-drain pads, there is no positive injection current, and the corresponding V_{IN} maximum must always be respected
- 5. Negative injection disturbs the analog performance of the device. See note in Section 10.3.10: 10-bit ADC characteristics on page 85.
- 6. When several inputs are submitted to a current injection, the maximum Σl_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values). These results are based on characterization with Σl_{INJ(PIN)} maximum current injection on four I/O port pins of the device.

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to 150	°C
TJ	Maximum junction temperature	150	0

Table 17. Thermal characteristics

10.3 Operating conditions

The device must be used in operating conditions that respect the parameters in *Table 18*. In addition, full account must be taken of all physical capacitor characteristics and tolerances.

Symbol	Parameter	Conditions	Min	Max	Unit
f _{CPU}	Internal CPU clock frequency	$T_A \le 105 \ ^{\circ}C$	0	24	MHz
'CPU	Internal OF O clock frequency		0	16	MHz
$V_{DD/}V_{DD_{IO}}$	Standard operating voltage		2.95	5.5	V
	C _{EXT} : capacitance of external capacitor		470	3300	nF
V _{CAP} ⁽¹⁾	ESR of external capacitor	at 1 MHz ⁽²⁾	-	0.3	Ω
	ESL of external capacitor		-	15	nH
Pp ⁽³⁾	Power dissipation at $T_A = 85^{\circ}$ C for suffix 6	44, 48, 64, and 80-pin devices, with output on 8 standard ports, 2 high sink ports and 2 open drain ports simultaneously ⁽⁴⁾		443	mW
	or $T_A = 125^\circ$ C for suffix 3		360		
T _A	Ambient temperature for 6 suffix version	Maximum power dissipation	-40	85	
'A	Ambient temperature for 3 suffix version	Maximum power dissipation	-40	125	°C
ТJ	Junction temperature range	6 suffix version	-40	105	
١J	Survey of temperature range	3 suffix version	-40	130 ⁽⁵⁾	

	Table 18.	General	operating	conditions
--	-----------	---------	-----------	------------

1. Care should be taken when selecting the capacitor, due to its tolerance, as well as the parameter dependency on temperature, DC bias and frequency in addition to other factors. The parameter maximum value must be respected for the full application range.

2. This frequency of 1 MHz as a condition for V_{CAP} parameters is given by design of internal regulator.

To calculate P_{Dmax}(T_A), use the formula P_{Dmax} = (T_{Jmax} - T_A)/Θ_{JA} (see Section 11.2: Thermal characteristics on page 108) with the value for T_{Jmax} given in Table 18 above and the value for Θ_{JA} given in Table 57: Thermal characteristics.

4. Refer to Section 11.2: Thermal characteristics on page 108 for the calculation method.

5. T_{Jmax} is given by the test limit. Above this value the product behavior is not guaranteed.

10.3.3 External clock sources and timing characteristics

HSE user external clock

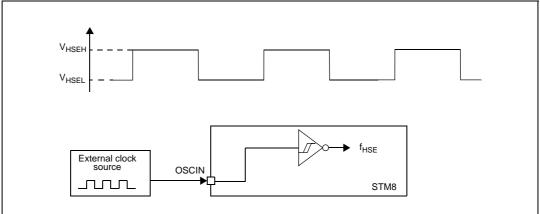
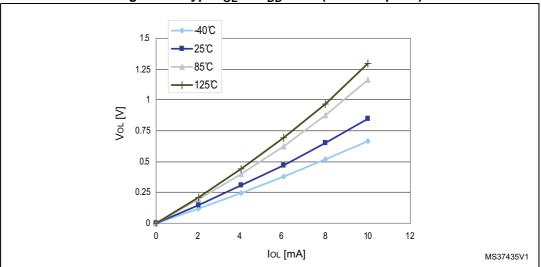

Subject to general operating conditions for V_{DD} and T_A .

Table 31. HSE us	ser external clock	characteristics
------------------	--------------------	-----------------

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency		0		24	MHz
V _{HSEH} ⁽¹⁾	OSCIN input pin high level voltage		0.7 x V _{DD}		V _{DD} + 0.3 V	V
V _{HSEL} ⁽¹⁾	OSCIN input pin low level voltage		V _{SS}		0.3 x V _{DD}	V
I _{LEAK_HSE}	OSCIN input leakage current	$V_{SS} < V_{IN} < V_{DD}$	-1		1	μA

1. Data based on characterization results, not tested in production.


HSE crystal/ceramic resonator oscillator

The HSE clock can be supplied with a 1 to 24 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and start-up stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...).

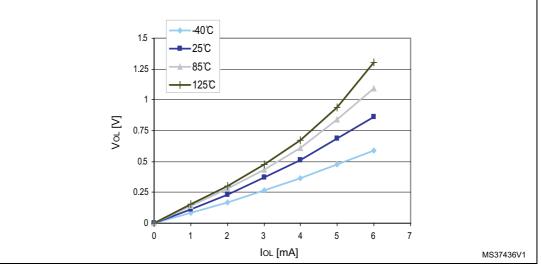

Typical output level curves

Figure 24 to *Figure 31* show typical output level curves measured with output on a single pin.

Figure 24. Typ. $V_{OL} @ V_{DD} = 3.3 V$ (standard ports)

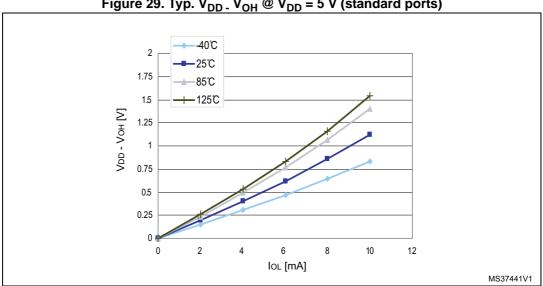
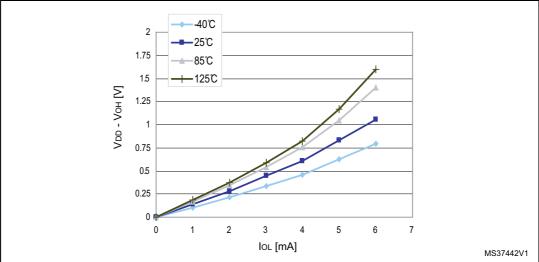



Figure 29. Typ. V_{DD} V_{OH} @ V_{DD} = 5 V (standard ports)

10.3.7 Reset pin characteristics

Subject to general operating conditions for V_{DD} and T_{A} unless otherwise specified.

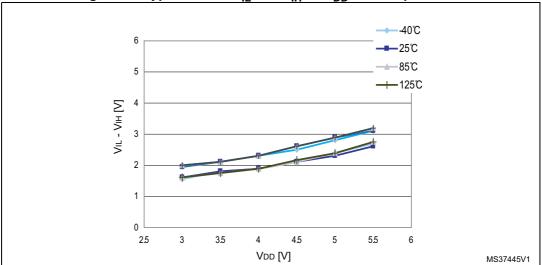

Symbol	Parameter	Conditions	Min	Typ ¹⁾	Max	Unit	
V _{IL(NRST)}	NRST Input low level voltage ⁽¹⁾		-0.3 V		0.3 x V _{DD}		
V _{IH(NRST)}	NRST Input high level voltage ⁽¹⁾		$0.7 ext{ x V}_{ ext{DD}}$		V _{DD} + 0.3	V	
V _{OL(NRST)}	NRST Output low level voltage (1)	I _{OL} = 2 mA			0.5		
R _{PU(NRST)}	NRST Pull-up resistor ⁽²⁾		30	55	80	kΩ	
t _{IFP(NRST)}	NRST Input filtered pulse ⁽³⁾				75	ns	
t _{INFP(NRST)}	NRST Input not filtered pulse ⁽³⁾		500			ns	
t _{OP(NRST)}	NRST output pulse ⁽¹⁾		15			μs	

Table 41.	NRST	pin	characteristics
		PIII	character istics

1. Data based on characterization results, not tested in production.

2. The $\rm R_{\rm PU}$ pull-up equivalent resistor is based on a resistive transistor

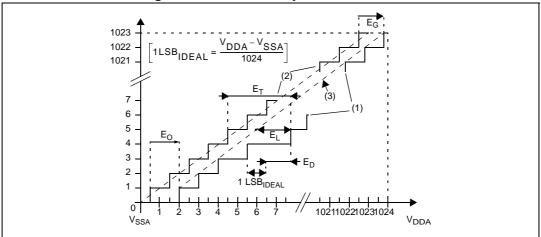
3. Data guaranteed by design, not tested in production.

Figure 33. Typical NRST $\rm V_{IL}$ and $\rm V_{IH}$ vs $\rm V_{DD}$ @ 4 temperatures

10.3.8 SPI serial peripheral interface

Unless otherwise specified, the parameters given in *Table 42* are derived from tests performed under ambient temperature, f_{MASTER} frequency and V_{DD} supply voltage conditions. $t_{MASTER} = 1/f_{MASTER}$.

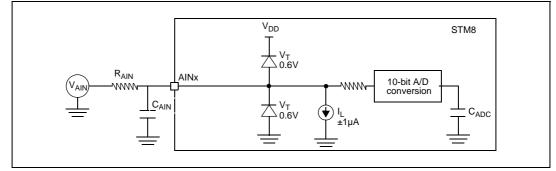
Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).


Symbol	Parameter	Conditions	Min	Max	Unit
f _{SCK}		Master mode	0	10	MHz
1/t _{c(SCK)}	SPI clock frequency	Slave mode	0	6	IVITIZ
t _{r(SCK)} t _{f(SCK)}	SPI clock rise and fall time	Capacitive load: C = 30 pF		25	
t _{su(NSS)} ⁽¹⁾	NSS setup time	Slave mode	4 x t _{MASTER}		
t _{h(NSS)} ⁽¹⁾	NSS hold time	Slave mode	70		
t _{w(SCKH)} (1) t _{w(SCKL)} (1)	SCK high and low time	Master mode	t _{SCK} /2 - 15	t _{SCK} /2 + 15	
t _{su(MI)} (1)	Data input setup time	Master mode	5		
t _{su(SI)} (1)		Slave mode	5		
t _{h(MI)} (1)	Data input hold time	Master mode	7		ns
t _{h(MI)} (1) t _{h(SI)} (1)		Slave mode	10		
t _{a(SO)} (1)(2)	Data output access time	Slave mode		3 x t _{MASTER}	
t _{dis(SO)} ⁽¹⁾⁽³⁾	Data output disable time	Slave mode	25		
t _{v(SO)} ⁽¹⁾	Data output valid time	Slave mode (after enable edge)		75	
t _{v(MO)} ⁽¹⁾	Data output valid time	Master mode (after enable edge)		30	
t _{h(SO)} ⁽¹⁾	Data autaut hald time	Slave mode (after enable edge)	31		
t _{h(MO)} ⁽¹⁾	Data output hold time	Master mode (after enable edge)	12		

1. Values based on design simulation and/or characterization results, and not tested in production.

2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.



1. Example of an actual transfer curve.

- 2. The ideal transfer curve
- 3.

End point correlation line E_T = Total unadjusted error: maximum deviation between the actual and the ideal transfer curves. E_0 = Offset error: deviation between the first actual transition and the first ideal one. E_G = Gain error: deviation between the last ideal transition and the last actual one. E_D = Differential linearity error: maximum deviation between actual steps and the ideal one. E_L = Integral linearity error: maximum deviation between any actual transition and the end point correlation between any actual transition and the end point correlation line.

Electromagnetic interference (EMI)

Emission tests conform to the SAE IEC 61967-2 standard for test software, board layout and pin loading.

			Conditions				
Symbol	Parameter		Monitored	Max	Unit		
		General conditions	frequency band	8 MHz/ 8 MHz	8 MHz/ 16 MHz	8 MHz/ 24 MHz	
		k level $V_{DD} = 5 V$ $T_A = 25 °C$ LQFP80 package conforming to SAE IEC	0.1MHz to 30 MHz	15	20	24	
	Peak level		30 MHz to 130 MHz	18	21	16	dBµV
S _{EMI}			130 MHz to 1 GHz	-1	1	4	
SAE EMI level		61967-2	SAE EMI level	2	2.5	2.5	

1. Data based on characterization results, not tested in production.

Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

Electrostatic discharge (ESD)

Electrostatic discharges (3 positive then 3 negative pulses separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test conforms to the JESD22-A114A/A115A standard. For more details, refer to the application note AN1181.

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (Human body model)	$T_A = 25^{\circ}C$, conforming to JESD22-A114	А	2000	V
V _{ESD(CDM)}	Electrostatic discharge voltage (Charge device model)	T _A = 25°C, conforming to JESD22-C101	IV	1000	V

Table 49. ESD absolute maximum ratings

1. Data based on characterization results, not tested in production.

Static latch-up

Two complementary static tests are required on 10 parts to assess the latch-up performance:

- A supply overvoltage (applied to each power supply pin)
- A current injection (applied to each input, output and configurable I/O pin) is performed on each sample.

This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.

Symbol	Parameter	Conditions	Class ⁽¹⁾
LU Static latch-		T _A = 25 °C	А
	Static latch-up class	$T_A = 85 \ ^{\circ}C$	А
		T _A = 125 °C	А

Table 50. I	Electrical	sensitivities
-------------	------------	---------------

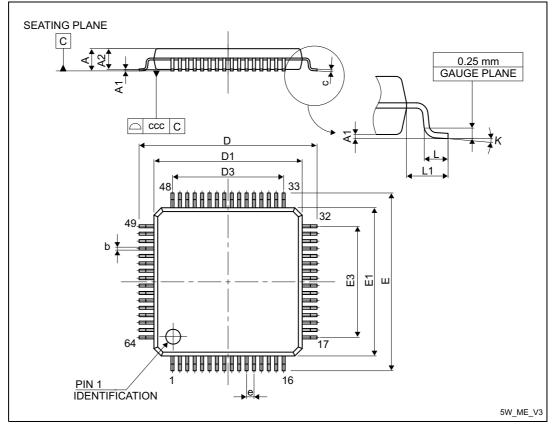

1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B class strictly covers all the JEDEC criteria (international standard).

Table 52. LQFP64 - 64-pin, 14 x 14 mm low-profile quad flat package mechanical	
data (continued)	

Symbol		mm			inches ⁽¹⁾	
	Min	Тур	Max	Min	Тур	Max
k	0.0 °	3.5 °	7.0 °	0.0 °	3.5 °	7.0 °
CCC			0.100			0.0039

1. Values in inches are converted from mm and rounded to four decimal places.

Figure 47. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline

Table 53. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data

Gala							
Sympol		mm			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Мах	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	

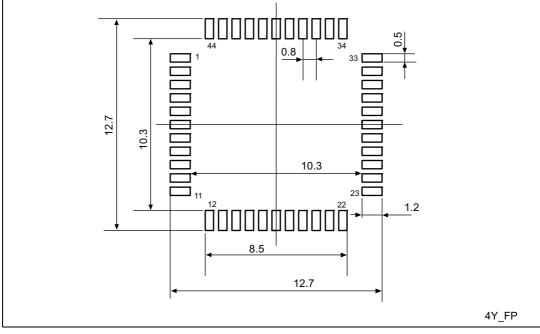


Figure 54. LQFP44 - 44-pin, 10 x 10 mm low-profile quad flat recommended footprint

1. Dimensions are expressed in millimeters.

Device marking

The following figure shows the marking for the LQFP44 package.

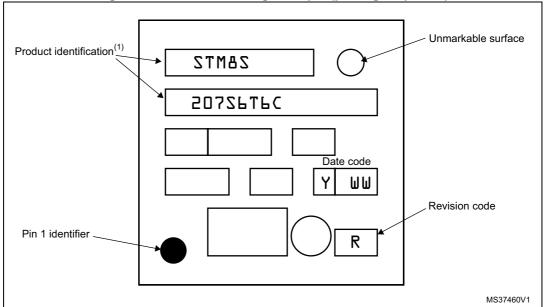
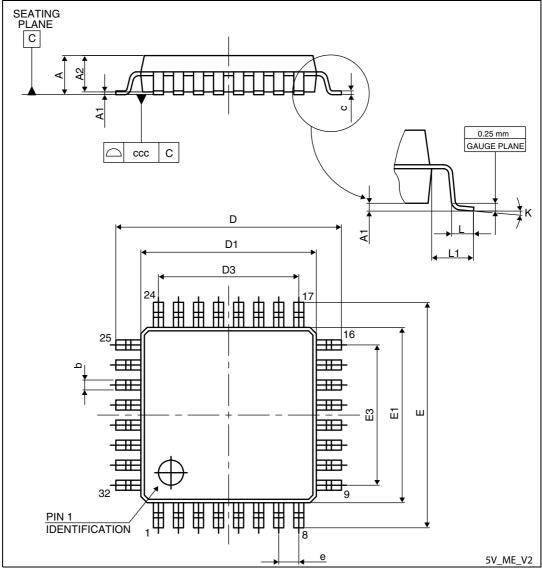


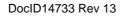
Figure 55. LQFP44 marking example (package top view)


 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

DocID14733 Rev 13

11.1.5 LQFP32 package information

Figure 56. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline



DocID14733 Rev 13

Date	Revision	Changes
10-Jul-2009	8 cont'd	Section 10: Electrical characteristics: Added data for TBD values; updated Table 15: Voltage characteristics and Table 18: General operating conditions; updated VCAP specifications in Table 18 and in Section 10.3.1: VCAP external capacitor, updated Figure 18; replaced Figure 19; updated Table 35: RAM and hardware registers; updated Figure 22 and Figure 35; added Figure 40: Typical application with I2C bus and timing diagram. Removed Table 56: Junction temperature range. Added link between ordering information Figure 59 and STM8S20xx features Table 2.
13-Apr-2010	9	Document status changed from "preliminary data" to "datasheet". <i>Table 2: STM8S20xxx performance line features</i> : high sink I/O for STM8S207C8 is 16 (not 13). <i>Table 3: Peripheral clock gating bit assignments in</i> <i>CLK_PCKENR1/2 registers</i> : updated bit positions for TIM2 and TIM3. <i>Figure 5: LQFP 48-pin pinout</i> : added CAN_TX and CAN_RX to pins 35 and 36; noted that these pins are available only in STM8S208xx devices. <i>Figure 7: LQFP 32-pin pinout</i> : replaced uart2 with uart3. <i>Table 6: Pin description</i> : added footnotes concerning beCAN availability and UART1_RX and UART3_RX pins. <i>Table 13: Option byte description</i> : added description of STM8L bootloader option bytes to the option byte description table. Added <i>Section 9: Unique ID</i> (and listed this attribute in <i>Features</i>). <i>Section 10.3: Operating conditions</i> : replaced "C _{EXT} " with "VCAP" and added data for ESR and ESL; removed "low power dissipation" condition for T _A . <i>Table 26: Total current consumption in halt mode at VDD = 5 V</i> : replaced max value of I _{DD(H)} at 85 °C from 30 µA to 35 µA for the condition "Flash in power-down mode, HSI clock after wakeup". <i>Table 33: HSI oscillator characteristics</i> : updated the ACC _{HSI} factory calibrated values. <i>Functional EMS (electromagnetic susceptibility)</i> and <i>Table 47</i> : replaced "IEC 1000" with "IEC 61000". <i>Electromagnetic interference (EMI)</i> and <i>Table 48</i> : replaced "SAE J1752/3" with "IEC 61967-2". <i>Table 57: Thermal characteristics</i> : changed the thermal resistance junction-ambient value of LQFP32 (7x7 mm) from 59 °C/W to 60 °C/W.

Table 58. Document revision history (continued)

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved

DocID14733 Rev 13