



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Details                    |                                                        |
|----------------------------|--------------------------------------------------------|
| Product Status             | Obsolete                                               |
| Core Processor             | Z8                                                     |
| Core Size                  | 8-Bit                                                  |
| Speed                      | 16MHz                                                  |
| Connectivity               | -                                                      |
| Peripherals                | POR, WDT                                               |
| Number of I/O              | 21                                                     |
| Program Memory Size        | 4KB (4K x 8)                                           |
| Program Memory Type        | OTP                                                    |
| EEPROM Size                | -                                                      |
| RAM Size                   | 237 x 8                                                |
| Voltage - Supply (Vcc/Vdd) | 3.5V ~ 5.5V                                            |
| Data Converters            | A/D 8x8b                                               |
| Oscillator Type            | Internal                                               |
| Operating Temperature      | 0°C ~ 70°C (TA)                                        |
| Mounting Type              | Through Hole                                           |
| Package / Case             | 28-DIP (0.600", 15.24mm)                               |
| Supplier Device Package    | -                                                      |
| Purchase URL               | https://www.e-xfl.com/product-detail/zilog/z86e8316psc |
|                            |                                                        |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

|     | $\bigcirc$   |   |      |
|-----|--------------|---|------|
| D1  | 1 28         | Þ | D0   |
| D2  |              | Þ | NC   |
| D3  |              | Þ | NC   |
| D4  |              | Þ | NC   |
| D5  | Z86E83       | Þ | NC   |
| D6  | (EPROM Mode) | þ | NC   |
| D7  | DIP/SOIC     | Þ | NC   |
| NC  | 28 - Pin     | Þ | /PGM |
| /CE |              | Þ | CLK  |
| NC  |              | þ | CLR  |
| GND |              | þ | NC   |
| VCC |              | Þ | NC   |
| /OE |              | þ | NC   |
| EPM | 14 15        | Þ | VPP  |
|     |              |   |      |

## Figure 4. Z86E83 EPROM Programing Mode 28-Pin DIP and SOIC Pin Configuration

| No    | Symbol          | Function           | Direction    |
|-------|-----------------|--------------------|--------------|
| 1-7   | D1-D7           | Data 1,2,3,4,5,6,7 | Input/Output |
| 8     | NC              | No Connection      |              |
| 9     | /CE             | Chip Enable        | Input        |
| 10    | NC              | No Connection      |              |
| 11    | GND             | Ground             |              |
| 12    | V <sub>cc</sub> | Power              |              |
| 13    | /OE             | Output Enable      | Input        |
| 14    | EPM             | EPROM Program Mode | Input        |
| 15    | V <sub>PP</sub> | Program Voltage    | Input        |
| 16-18 | NC              | No Connection      |              |
| 19    | CLR             | Clear CLock        | Input        |
| 20    | CLK             | Address            | Input        |
| 21    | /PGM            | Program Mode       | Input        |
| 22-27 | NC              | No Connection      |              |
| 28    | D0              | Data 0             | Input/Output |

## Table 3. Z86E83 EPROM Programming Mode 28-Pin DIP, PLCC and SOIC Pin Identification




Figure 7. Z86E83 EPROM Programming Mode 28-Pin PLCC Pin Configuration

# **ABSOLUTE MAXIMUM RATING**

| Parameter                                                          | Min  | Max                | Units | Notes |
|--------------------------------------------------------------------|------|--------------------|-------|-------|
| Ambient Temperature under Bias                                     | -40  | +105               | С     |       |
| Storage Temperature                                                | -65  | +150               | С     |       |
| Voltage on any Pin with Respect to $V_{ss}$                        | -0.6 | +7                 | V     | 1     |
| Voltage on $V_{cc}$ Pin with Respect to $V_{ss}$                   | -0.3 | +7                 | V     |       |
| Voltage on /RESET Pin with Respect to V <sub>ss</sub>              | -0.6 | V <sub>cc</sub> +1 | V     | 2     |
| Voltage on P32, P33 and /Reset Pin with Respect to V <sub>SS</sub> | -0.6 | V <sub>cc</sub> +1 | V     | 2,5   |
| Total Power Dissipation                                            |      | 770                | mW    |       |
| Maximum Current out of V <sub>ss</sub>                             |      | 140                | mA    |       |
| Maximum Current into V <sub>cc</sub>                               |      | 125                | mA    |       |
| Maximum Current into an Input Pin                                  | -600 | +600               | μA    | 3     |
| Maximum Current into an Open-Drain Pin                             | -600 | +600               | μA    | 4     |
| Maximum Output Current Sinked by Any I/O Pin                       |      | 25                 | mA    |       |
| Maximum Output Current Sourced by Any I/O Pin                      |      | 25                 | mA    |       |

### Notes:

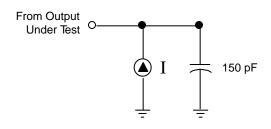
1. This applies to all pins except /RESET pin and where otherwise noted.

2. There is no input protection diode from pin to  $V_{cc}$ .

3. This excludes XTAL pins.

4. Device pin is not at an output Low state.

5. For Z86E83 only


### Notice:

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability. Total power dissipation should not exceed 770 mW for the package.

Power dissipation is calculated as follows:

# STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to Ground. Positive current flows into the referenced pin (Figure 8).





# **V**<sub>DD</sub> **SPECIFICATION**

 $V_{DD}$  = 3.5V to 5.5V (Z86E83 only at 0° C to 70° C)

V<sub>DD</sub> = 3.0V to 5.5V (Z86C83/C84)

 $V_{DD}$  = 4.5V to 5.5V (Z86E83 only at -40° C to 105° C)

## CAPACITANCE

 $T_A = 25^{\circ}C$ ,  $V_{CC} = GND = 0V$ , f = 1.0 MHz, unmeasured pins returned to GND.

| Parameter          | Min | Мах   |
|--------------------|-----|-------|
| Input capacitance  | 0   | 15 pF |
| Output capacitance | 0   | 15 pF |
| I/O capacitance    | 0   | 15 pF |

|                  |                                                   | V <sub>cc</sub> |     | 0° C<br>70°C              |     | –40°C<br>105°C            | Typical<br>[13] |       |                                                                   |           |
|------------------|---------------------------------------------------|-----------------|-----|---------------------------|-----|---------------------------|-----------------|-------|-------------------------------------------------------------------|-----------|
| Sym              | Parameter                                         | Note 3          | Min | Max                       | Min | Max                       |                 | Units | Conditions                                                        | Notes     |
| I<br>CC1         | Standby Current<br>(HALT Mode)                    | 3.0V            |     | 4.5                       |     | 4.5                       | 2.0             | mA    | V <sub>IN</sub> =0V, V <sub>CC</sub> @ 16<br>MHz                  | 4         |
|                  |                                                   | 5.5V            |     | 8                         |     | 8                         | 3.7             | mA    | V <sub>IN</sub> = 0V, V <sub>CC</sub> @<br>16 MHz                 | 4         |
|                  |                                                   | 3.0V            |     | 3.4                       |     | 3.4                       | 1.5             | mA    | Clock Divide-by-16<br>@ 16 MHz                                    | 4         |
|                  |                                                   | 5.5V            |     | 7.0                       |     | 7.0                       | 2.9             | mA    | Clock Divide-by-16<br>@ 16 MHz                                    | 4         |
| I <sub>CC2</sub> | Standby Current<br>(STOP Mode)                    | 3.0V            |     | 8                         |     | 15                        | 1               | μA    | V <sub>IN</sub> = 0V,V <sub>CC</sub><br>Vcc WDT is not<br>Running | 1,6,11    |
|                  |                                                   | 5.5V            |     | 10                        |     | 20                        | 2               | μA    | V <sub>IN</sub> = 0V, V <sub>CC</sub><br>WDT is not<br>Running    | 1,6,11    |
|                  |                                                   | 3.0V            |     | 500                       |     | 600                       | 310             | μA    | V <sub>IN</sub> = 0V, V <sub>CC</sub><br>WDT is Running           | 1,6,11,14 |
|                  |                                                   | 5.5V            |     | 800                       |     | 1000                      | 600             | μA    | V <sub>IN</sub> = 0V, V <sub>CC</sub><br>WDT is not<br>Running    | 1,6,11,14 |
| V <sub>ICR</sub> | Input Common<br>Mode                              | 3.0             | 0   | V <sub>CC</sub> -<br>1.0V | 0   | V <sub>CC</sub> -<br>1.5V |                 | V     |                                                                   | 10        |
|                  | Voltage Range                                     | 5.5             | 0   | V <sub>CC</sub> -<br>1.0V | 0   | V <sub>CC</sub> -<br>1.5V |                 | V     |                                                                   | 10        |
| I <sub>ALL</sub> | Auto Latch Low                                    | 3.0V            |     | 8                         |     | 10                        | 5               | μA    | $0V < V_{IN} < V_{CC}$                                            | 9         |
|                  | Current                                           | 5.5V            |     | 15                        |     | 20                        | 11              |       | $0V < V_{IN} < V_{CC}$                                            | 9         |
| I <sub>ALH</sub> | Auto Latch High                                   | 3.0V            |     | -5                        |     | -7                        | -3              | μA    | $0V < V_{IN} < V_{CC}$                                            | 9         |
|                  | Current                                           | 5.5V            |     | -8                        |     | -10                       | -6              | μA    | $0V < V_{IN} < V_{CC}$                                            | 9         |
| V <sub>LV</sub>  | V <sub>CC</sub> Low-Voltage<br>Protection Voltage | !               | 2.0 | 3.3                       | 2.2 | 3.5                       | 3.0             | V     | 2 MHz max Int.<br>CLK Freq.                                       | 7         |

Notes:

1. Combined digital  $V_{CC}$  and Analog  $AV_{CC}$  supply currents.

2. GND = 0V.

3.  $V_{CC}$  voltage specification of 3.0V guarantees 3.3V ±0.3V, and  $V_{CC}$  voltage specification of 5.5V guarantees 5.0V ±0.5V.

4. All outputs unloaded, I/O pins floating, inputs at rail.

5. CL1 = CL2 = 22 pF.

6. Same as note [4] except inputs at  $V_{\rm \scriptscriptstyle cc}.$ 

- 7. The  $V_{LV}$  increases as the temperature decreases.
- 8. Standard Mode (not Low EMI).
- 9. Auto Latch (mask option) selected.
- 10. For analog comparator, inputs when analog comparators are enabled.
- 11. Clock must be forced Low, when XTAL 1 is clock-driven and XTAL2 is floating.
- 12. Excludes clock pins.
- 13. Typicals are at  $V_{CC}$  = 5.0V and 3.3V.
- 14. Internal RC selected
- 15. For Z86C83 only

## **AC ELECTRICAL CHARACTERISTICS**

For Z86C83/C84 Only. Low EMI Mode Only.

|    |                            |                               |                     | T <sub>A</sub> = 0°C | to +70°C | T <sub>A</sub> = -40° | to +105°C |       |         |
|----|----------------------------|-------------------------------|---------------------|----------------------|----------|-----------------------|-----------|-------|---------|
|    |                            |                               |                     | 4 N                  | ١Hz      | 4 N                   | /IHz      |       |         |
| No | Symbol                     | Parameter                     | V <sub>CC</sub> [6] | Min                  | Мах      | Min                   | Мах       | Units | Notes   |
| 1  | ТрС                        | Input Clock Period            | 3.0V                | 250                  | DC       | 250                   | DC        | ns    | 1,7,8   |
|    |                            |                               | 5.5V                | 250                  | DC       | 250                   | DC        | ns    | 1,7,8   |
| 2  | TrC, TfC                   | Clock Input Rise & Fall Times | 3.0V                |                      | 25       |                       | 25        | ns    | 1,7,8   |
|    |                            |                               | 5.5V                |                      | 25       |                       | 25        | ns    | 1,7,8   |
| 3  | TwC                        | Input Clock Width             | 3.0V                | 125                  |          | 125                   |           | ns    | 1,7,8   |
|    |                            |                               | 5.5V                | 125                  |          | 125                   |           | ns    | 1,7,8   |
| 4  | 4 TwTinL Timer Input Low V | Timer Input Low Width         | 3.0V                | 100                  |          | 100                   |           | ns    | 1,7,8   |
|    |                            |                               | 5.5V                | 100                  |          | 100                   |           | ns    | 1,7,8   |
| 5  | TwTinH                     | Timer Input High Width        | 3.0V                | 3TpC                 |          | 3TpC                  |           | ns    | 1,7,8   |
|    |                            |                               | 5.5V                | ЗТрС                 |          | 3TpC                  |           | ns    | 1,7,8   |
| 6  | TpTin                      | Timer Input Period            | 3.0V                | 4TpC                 |          | 4TpC                  |           |       | 1,7,8   |
|    |                            |                               | 5.5V                | 4TpC                 |          | 4TpC                  |           |       | 1,7,8   |
| 7  | TrTin,                     | Timer Input Rise & Fall Timer | 3.0V                |                      | 100      |                       | 100       | ns    | 1,7,8   |
|    | TfTin                      |                               | 5.5V                |                      | 100      |                       | 100       | ns    | 1,7,8   |
| 8A | TwIL                       | Int. Request Low Time         | 3.0V                | 100                  |          | 100                   |           | ns    | 1,7,8   |
|    |                            |                               | 5.5V                | 70                   |          | 70                    |           | ns    | 1,7,8   |
| 8B | TwIL                       | Int. Request Low Time         | 3.0V                | 3TpC                 |          | 3TpC                  |           | ns    | 1,3,7,8 |
|    |                            |                               | 5.5V                | 3TpC                 |          | 3TpC                  |           | ns    | 1,3,7,8 |
| 9  | TwIH                       | Int. Request Input High Time  | 3.0V                | 3TpC                 |          | 3TpC                  |           | ns    | 1,2,7,8 |
|    |                            |                               | 5.5V                | 3TpC                 |          | 3TpC                  |           | ns    | 1,2,7,8 |
| 10 | Twsm                       | Stop-Mode Recovery Width      | 3.0V                | 12                   |          | 12                    |           | ns    | 4,8     |
|    |                            | Spec                          | 5.5V                | 12                   |          | 12                    |           | ns    | 4,8     |
| 11 | Tost                       | Oscillator Start-up Time      | 3.0V                |                      | 5TpC     |                       | 5TpC      |       | 4,8,9   |
|    |                            |                               | 5.5V                |                      | 5TpC     |                       | 5TpC      |       | 4,8,9   |

### Notes:

1. Timing Reference uses 0.7  $V_{CC}$  for a logic 1 and 0.2  $V_{CC}$  for a logic 0.

2. Interrupt request via Port 3 (P33-P31)

3. Interrupt request via Port 3 (P30)

4. SMR-D5 = 1, POR STOP Mode delay is on.

5. Reg. WDTMR

6. The V<sub>CC</sub> voltage specification of 3.0V guarantees  $3.3V \pm 0.3V$ , and the V<sub>CC</sub> voltage specification of 5.5V guarantees  $5.0V \pm 0.5V$ .

7. SMR D1 = 0

8. Maximum frequency for internal system clock is 4 MHz when using XTAL divide-by-one mode

9. For LC oscillator and for oscillator driven by clock driver

|                  |                                                   |                     | T <sub>A</sub> = | • 0° C                    | T <sub>A</sub> = | -40° C                | Typical |      |                                                             |               |
|------------------|---------------------------------------------------|---------------------|------------------|---------------------------|------------------|-----------------------|---------|------|-------------------------------------------------------------|---------------|
|                  |                                                   |                     | to +             | 70° C                     | to +             | 105° C                | [13]    |      |                                                             |               |
| Sym              | Parameter                                         | V <sub>CC</sub> [3] | Min              | Max                       | Min              | Max                   | @25°C   | Unit | s Conditions                                                | Notes         |
| I <sub>CC2</sub> | Standby Current<br>(STOP Mode)                    | 3.5V                |                  | 8                         |                  |                       | 1       | μA   | V <sub>IN</sub> = 0V, V <sub>CC</sub><br>WDT is not Running | 1,6,11        |
|                  |                                                   | 5.5V                |                  | 10                        |                  | 20                    | 2       | μA   | V <sub>IN</sub> = 0V, V <sub>CC</sub><br>WDT is not Running | 1,6,11        |
|                  |                                                   | 3.5V                |                  | 500                       |                  |                       | 310     | μA   | V <sub>IN</sub> = 0V, V <sub>CC</sub><br>WDT is Running     | 1,6,11,<br>14 |
|                  |                                                   | 5.5V                |                  | 800                       |                  | 1000                  | 600     | μA   | V <sub>IN</sub> = 0V, V <sub>CC</sub><br>WDT is Running     | 1,6,11,<br>14 |
| V <sub>ICR</sub> | Input Common<br>Mode                              | 3.5V                | 0                | V <sub>CC</sub> -<br>1.0V | 0                |                       |         | V    |                                                             | 10            |
|                  |                                                   | 5.5V                | 0                | V <sub>CC</sub> -<br>1.0V | 0                | V <sub>CC</sub> -1.5V |         | V    |                                                             | 10            |
| I <sub>ALL</sub> | Auto Latch Low                                    | 3.5V                |                  | 8                         |                  |                       | 5       | μA   | 0V <v<sub>IN<v<sub>CC</v<sub></v<sub>                       | 9             |
|                  | Current                                           | 5.5V                |                  | 15                        |                  | 20                    | 11      | μA   | 0V <v<sub>IN<v<sub>CC</v<sub></v<sub>                       | 9             |
| I <sub>ALH</sub> | Auto Latch High                                   | 3.5V                |                  | -5                        |                  |                       | -3      | μA   | 0V <v<sub>IN<v<sub>CC</v<sub></v<sub>                       | 9             |
|                  | Current                                           | 5.5V                |                  | -8                        |                  | -10                   | -6      | μA   | 0V <v<sub>IN<v<sub>CC</v<sub></v<sub>                       | 9             |
| V <sub>LV</sub>  | V <sub>CC</sub> Low-Voltage<br>Protection Voltage |                     | 2.0              | 3.3                       | 2.2              | 3.5                   | 3.0     | V    | 2 MHz max. Int. CLK<br>Frequency                            | 7             |

### Notes:

1. Combined digital  $V_{CC}$  and analog  ${\sf AV}_{CC}$  supply currents

- 2. GND = 0V
- 3. V<sub>CC</sub> voltage specification of 3.5V guarantees 3.5V, and V<sub>CC</sub> voltage specification of 5.5V guarantees 5.0V  $\pm$ 0.5V
- 4. All outputs unloaded, I/O pins floating, inputs at rail
- 5. CL1 = CL2 = 100 pF
- 6. Same as note [4] except inputs at  $V_{\mbox{CC}}$
- 7. The  $V_{\mbox{LV}}$  increases as the temperature decreases
- 8. Standard Mode (not Low EMI)
- 9. Auto Latch (mask option) selected
- 10. For analog comparator, inputs when analog comparators are enabled
- 11. Clock must be forced Low, when XTAL 1 is clock-driven and XTAL2 is floating
- 12. Excludes clock pins
- 13. Typicals are at  $V_{CC}$  = 3.5V and 5.0V
- 14. Internal RC selected

## **AC ELECTRICAL CHARACTERISTICS**

Additional Timing Table (Low EMI Mode Only) For Z86E83 Only

|    |                        |                               |          | T <sub>A</sub> = 0°C | to +70°C | T <sub>A</sub> = -40°C |      |       |         |
|----|------------------------|-------------------------------|----------|----------------------|----------|------------------------|------|-------|---------|
|    |                        |                               | vcc      | 4 1                  | ЛНz      | 4 N                    | /IHz |       |         |
| No | Symbol                 | Parameter                     | [Note 6] | Min                  | Max      | Min                    | Max  | Units | Notes   |
| 1  | ТрС                    | Input Clock Period            | 3.5V     | 250                  | DC       |                        |      | ns    | 1,7,8   |
|    |                        |                               | 5.5V     | 250                  | DC       | 250                    | DC   | ns    | 1,7,8   |
| 2  | TrC,TfC                | Clock Input Rise & Fall Times | 3.5V     |                      | 25       |                        |      | ns    | 1,7,8   |
|    |                        |                               | 5.5V     |                      | 25       |                        | 25   | ns    | 1,7,8   |
| 3  | TwC                    | Input Clock Width             | 3.5V     | 125                  |          |                        |      | ns    | 1,7,8   |
|    |                        |                               | 5.5V     | 125                  |          | 125                    |      | ns    | 1,7,8   |
| 4  | TwTinL                 | Timer Input Low Width         | 3.5V     | 100                  |          |                        |      | ns    | 1,7,8   |
|    |                        |                               | 5.5V     | 70                   |          | 70                     |      | ns    | 1,7,8   |
| 5  | 5 TwTinH Timer Input H | Timer Input High Width        | 3.5V     | 3TpC                 |          |                        |      |       | 1,7,8   |
|    |                        |                               | 5.5V     | 3TpC                 |          | 3TpC                   |      |       | 1,7,8   |
| 6  | TpTin                  | Timer Input Period            | 3.5V     | 4TpC                 |          |                        |      |       | 1,7,8   |
|    |                        |                               | 5.5V     | 4TpC                 |          | 4TpC                   |      |       | 1,7,8   |
| 7  | TrTin,                 | Timer Input Rise & Fall Timer | 3.5V     |                      | 100      |                        |      | ns    | 1,7,8   |
|    | TfTin                  |                               | 5.5V     |                      | 100      |                        | 100  | ns    | 1,7,8   |
| 8A | TwIL                   | Int. Request Low Time         | 3.5V     | 100                  |          |                        |      | ns    | 1,2,7,8 |
|    |                        |                               | 5.5V     | 70                   |          | 70                     |      | ns    | 1,2,7,8 |
| 8B | TwIL                   | Int. Request Low Time         | 3.5V     | 3TpC                 |          |                        |      |       | 1,3,7,8 |
|    |                        |                               | 5.5V     | 3TpC                 |          | 3TpC                   |      |       | 1,3,7,8 |
| 9  | TwIH                   | Int. Request Input High Time  | 3.5V     | 3TpC                 |          |                        |      |       | 1,2,7,8 |
|    |                        |                               | 5.5V     | 3TpC                 |          | 2TpC                   |      |       | 1,2,7,8 |
| 10 | Twsm                   | Stop-Mode Recovery Width      | 3.5V     | 12                   |          |                        |      | ns    | 4,8     |
|    |                        | Spec                          | 5.5V     | 12                   |          | 12                     |      | ns    | 4,8     |
| 11 | Tost                   | Oscillator Start-up Time      | 3.5V     |                      | 5TpC     |                        |      |       | 4,8,9   |
|    |                        |                               | 5.5V     |                      | 5TpC     |                        | 5TpC |       | 4,8,9   |

### Notes:

1. Timing Reference uses 0.7 V  $_{\rm CC}$  for a logic 1 and 0.2 V  $_{\rm CC}$  for a logic 0.

- 2. Interrupt request via Port 3 (P31-P33)
- 3. Interrupt request via Port 3 (P30)
- 4. SMR-D5 = 1, POR STOP Mode delay is on.
- 5. Reg. WDTMR
- 6. The V voltage specification of 3.5V guarantees 3.5V,  $_{\rm CC}$

and the V voltage specification of 5.5V guarantees 5.0V  $\pm 0.5$ V.

- 7. SMR D1 = 0
- 8. Maximum frequency for internal system clock is 4 MHz when using XTAL divide-by-one mode.
- 9. For LC oscillator and for oscillator driven by clock driver

# **CAPACITANCE** (Continued)

# Additional Timing Table (SKLK/TCLK = XTAL/2) For Z86C83/C84 Only

|    |                  |                     |      | Т    | A = 0°C | to +70° | C    | TA   | = -40°C | to +15 | 0°C   |       |         |
|----|------------------|---------------------|------|------|---------|---------|------|------|---------|--------|-------|-------|---------|
|    |                  |                     | vcc  | 12   | MHz     | 16N     | ЛНz  | 12 I | MHz     | 16     | MHz   |       |         |
| No | Sym              | Parameter           | [6]  | Min  | Max     | Min     | Max  | Min  | Max     | Min    | Мах   | Units | Notes   |
| 1  | ТрС              | Input Clock Period  | 3.0V | 83   | DC      | 62.5    | DC   | 83   | DC      | 62.5   | DC    | ns    | 1       |
|    |                  |                     | 5.5V | 83   | DC      | 62.5    | DC   | 83   | DC      | 62.5   | DC    | ns    | 1       |
| 2  | TrC,             | Clock Input Rise &  | 3.0V |      | 15      |         | 15   |      | 15      |        | 15    | ns    | 1       |
|    | TfC              | Fall Times          | 5.5V |      | 15      |         | 15   |      | 15      |        | 15    | ns    | 1       |
| 3  | TwC              | Input Clock Width   | 3.0V | 41   |         | 31      |      | 41   |         | 31     |       | ns    | 1       |
|    |                  |                     | 5.5V | 41   |         | 31      |      | 41   |         | 31     |       | ns    | 1       |
| 4  | TwTinL           | Timer Input Low     | 3.0V | 100  |         | 100     |      | 100  |         | 100    |       | ns    | 1       |
|    |                  | Width               | 5.5V | 70   |         | 70      |      | 70   |         | 70     |       | ns    | 1       |
| 5  | TwTinH           | Timer Input High    | 3.0V | 5TpC |         | 5TpC    |      | 5TpC |         | 5TpC   |       |       | 1       |
|    |                  | Width               | 5.5V | 5TpC |         | 5TpC    |      | 5TpC |         | 5TpC   |       |       | 1       |
| 6  | TpTin            | Timer Input Period  | 3.0V | 8TpC |         | 8TpC    |      | 8TpC |         | 8TpC   |       |       | 1       |
|    |                  |                     | 5.5V | 8TpC |         | 8TpC    |      | 8TpC |         | 8TpC   |       |       | 1       |
| 7  | TrTin,           | Timer Input Rise &  | 3.0V |      | 100     |         | 100  |      | 100     |        | 100   | ns    | 1       |
|    | TfTin            | Fall Timer          | 5.5V |      | 100     |         | 100  |      | 100     |        | 100   | ns    | 1       |
| 8A | TwIL             | Int. Request Low    | 3.0V | 100  |         | 100     |      | 100  |         | 100    |       | ns    | 1,2     |
|    |                  | Time                | 5.5V | 70   |         | 70      |      | 70   |         | 70     |       | ns    | 1,2     |
| 8B | TwIL             | Int. Request Low    | 3.0V | 5TpC |         | 5TpC    |      | 5TpC |         | 5TpC   |       |       | 1,3     |
|    |                  | Time                | 5.5V | 5TpC |         | 5TpC    |      | 5TpC |         | 5TpC   |       |       | 1,3     |
| 9  | TwIH             | Int. Request High   | 3.0V | 5TpC |         | 5TpC    |      | 5TpC |         | 5TpC   |       |       | 1,2     |
|    |                  | Time                | 5.5V | 5TpC |         | 5TpC    |      | 5TpC |         | 5TpC   |       |       | 1,2     |
| 10 | Twsm             | Stop-Mode Recovery  | 3.0V | 12   |         | 12      |      | 12   |         | 12     |       | ns    |         |
|    |                  | Width Spec          | 5.5V | 12   |         | 12      |      | 12   |         | 12     |       | ns    |         |
| 11 | Tost             | Oscillator Start-up | 3.0V |      | 5TpC    |         | 5TpC |      | 5TpC    |        | 5TpC  |       |         |
|    |                  | Time                | 5.5V |      | 5TpC    |         | 5TpC |      | 5TpC    |        | 5TpC  |       |         |
| 12 | Twdt             | Watch-Dog Timer     |      |      |         |         |      |      |         |        | WDTMR | Reg   | D1,D0   |
|    |                  | Delay Time          | 5.5V | 6.25 |         | 6.25    |      | 6.25 |         | 6.25   |       | ms    | 0,0 [6] |
|    |                  |                     | 5.5V | 12.5 |         | 12.5    |      | 12.5 |         | 12.5   |       | ms    | 0,1 [6] |
|    |                  |                     | 5.5V | 25   |         | 25      |      | 25   |         | 25     |       | ms    | 1,0 [6] |
|    |                  |                     | 5.5V | 100  |         | 100     |      | 100  |         | 100    |       | ms    | 1,1 [6] |
| 13 | T <sub>POR</sub> | Power On Reset      | 3.0V | 7    | 24      | 7       | 25   | 7    | 24      | 7      | 25    | ms    | 6       |
|    |                  | Delay               | 5.5V | 3    | 13      | 3       | 14   | 3    | 13      | 3      | 14    | ms    | 6       |

### Notes:

1. Timing References used 0.7  $V_{CC}$  for a logic 1 and 0.2  $V_{CC}$  for a logic 0.

2. Interrupt request via Port 3 (P31-P33)

3. Interrupt request via Port 3 (P30)

4. SMR-D5 = 0

5. The V<sub>CC</sub> voltage specification of 3.0V guarantees  $3.3V \pm 0.3V$ , and the V<sub>CC</sub> voltage specification of 5.5V guarantees  $5.0V \pm 0.5V$ .

6. Using internal on-board RC oscillator

# Table 4. D/A Converter Electrical Characteristics $V_{CC}$ = 3.3V ± 10%

| Parameter                  | Minimum Typi |      |     | Units  |  |
|----------------------------|--------------|------|-----|--------|--|
| Resolution                 |              | 8    |     | Bits   |  |
| Integral non-linearity     |              | 0.25 | 1   | LSB    |  |
| Differential non-linearity |              | 0.25 | 0.5 | LSB    |  |
| Setting time, 1/2 LSB      |              | 1.5  | 3.0 | µsec   |  |
| Zero Error at 25°C         |              | 10   | 20  | mV     |  |
| Full Scale error at 25°C   |              | 0.25 | 0.5 | LSB    |  |
| Supply Range               | 3.0          | 3.3  | 3.6 | Volts  |  |
| Power dissipation, no load |              | 10   |     | mW     |  |
| Ref Input resistance       | 2K           | 4K   | 10K | Ohms   |  |
| Output noise voltage       |              | 50   |     | µVp-p  |  |
| VDHI range at 3 volts      | 1.5          | 1.8  | 2.1 | Volts  |  |
| VDLO range at 3 volts      | 0.2          | 0.5  | 0.8 | Volts  |  |
| VDHI–VDLO, at 3 volts      | 1.3          | 1.6  | 1.9 | Volts  |  |
| Capacitive output load, CL |              |      | 20  | pF     |  |
| Resistive output load, RL  | 50K          |      |     | Ohms   |  |
| Output slew rate           | 1.0          | 3.0  |     | V/µseo |  |

## For Z86C84 Only

Temp: 0–70°C

# Table 5. D/A Converter Electrical Characteristics $V_{cc}$ = 5.0V ±10%

| Parameter                  | Minimum | Typical | Maximum | Units  |
|----------------------------|---------|---------|---------|--------|
| Resolution                 |         | 8       |         | Bits   |
| Integral non-linearity     |         | 0.25    | 1       | LSB    |
| Differential non-linearity |         | 0.25    | 0.5     | LSB    |
| Setting time, 1/2 LSB      |         | 1.5     | 3.0†    | µsec   |
| Zero Error at 25°C         |         | 10      | 20      | mV     |
| Full Scale error at 25°C   |         | 1       | 2       | % FSR  |
| Supply Range               | 4.5     | 5.0     | 5.5     | Volts  |
| Power dissipation, no load |         | 50      | 85      | mW     |
| Ref Input resistance       | 2K      | 4K      | 10K     | Ohms   |
| Output noise voltage       |         | 50      |         | µVp-p  |
| VDHI range at 5 volts      | 2.6     |         | 3.5     | Volts  |
| VDLO range at 5V volts     | 0.8     |         | 1.7     | Volts  |
| VDHI–VDLO, at 5V volts     | 0.9     |         | 2.7     | Volts  |
| Capacitive output load, CL |         |         | 30      | pF     |
| Resistive output load, RL  | 20K     |         |         | Ohms   |
| Output slew rate           | 1.0     | 3.0     |         | V/µsec |

Notes:

Temp: 0-70°C

† The C86C84 Emulator has maximum setting time of 20 μsec. (10 μsec. typical).

Voltage: 4.5V - 5.5V

| Table 8. | A/D Converter Electrical Characteristics |
|----------|------------------------------------------|
|          | $V_{cc} = 3.5V$                          |

| Parameter                         | Minimum               | Typical | Maximum               | Units |
|-----------------------------------|-----------------------|---------|-----------------------|-------|
| Resolution                        |                       | 8       |                       | Bits  |
| Integral non-linearity            |                       | 0.5     | 1                     | LSB   |
| Differential non-linearity        |                       | 0.5     | 1                     | LSB   |
| Zero Error at 25°C                |                       |         | 5.0                   | mV    |
| Supply Range                      | 3.5                   |         |                       | Volts |
| Power dissipation, no load        |                       | 20      | 40                    | mW    |
| Clock frequency                   |                       |         | 16                    | MHz   |
| Input voltage range               | VA <sub>LO</sub>      |         | VA <sub>HI</sub>      | Volts |
| Conversion time                   |                       |         | 35 x SCLK             | µsec  |
| Input capacitance on ANA          | 25                    |         | 40                    | pF    |
| VA <sub>H</sub> range             | VA <sub>LO</sub> +2.5 |         | AV <sub>cc</sub>      | Volts |
| VA <sub>LO</sub> range            | AN <sub>GND</sub>     |         | AV <sub>cc</sub> –2.5 | Volts |
| VA <sub>HI</sub> VA <sub>LO</sub> | 2.5                   |         | AV <sub>cc</sub>      | Volts |

### Notes:

Voltage: 3.5V

Temp: 0-70°C

Conversion time is defined as the time from initiation of A-D conversion to storage of the digital result in the ADR register. SCLK = Internal Z8 System Clock (Bus Speed)

## For Z86E83

| Table 9. | A/D Converter Electrical Characteristics |
|----------|------------------------------------------|
|          | $V_{cc} = 5.0V \pm 10\%$                 |

| Parameter                         | Minimum               | Typical | Maximum               | Units |
|-----------------------------------|-----------------------|---------|-----------------------|-------|
| Resolution                        |                       | 8       |                       | Bits  |
| Integral non-linearity            |                       | 0.5     | 1                     | LSB   |
| Differential non-linearity        |                       | 0.5     | 1                     | LSB   |
| Zero Error at 25°C                |                       |         | 45                    | mV    |
| Supply Range                      | 4.5                   | 5.0     | 5.5                   | Volts |
| Power dissipation, no load        |                       | 50      | 85                    | mW    |
| Clock frequency                   |                       |         | 16                    | MHz   |
| Input voltage range               | VA <sub>LO</sub>      |         | VA <sub>HI</sub>      | Volts |
| Conversion time                   | 4.3                   |         | 35 x SCLK             | µsec  |
| Input capacitance on ANA          | 25                    |         | 40                    | pF    |
| VA <sub>H</sub> range             | VA <sub>LO</sub> +2.5 |         | AV <sub>cc</sub>      | Volts |
| VA <sub>LO</sub> range            | AN <sub>GND</sub>     |         | AV <sub>cc</sub> -2.5 | Volts |
| VA <sub>HI</sub> VA <sub>LO</sub> | 2.5                   |         | AV <sub>cc</sub>      | Volts |

### Notes:

Voltage: 4.5V -5.5V

Temp: 0-70°C

Conversion time is defined as the time from initiation of A-D conversion to storage of the digital result in the ADR register. SCLK = Internal Z8 System Clock (Bus Speed)

# PIN FUNCTIONS (Continued)

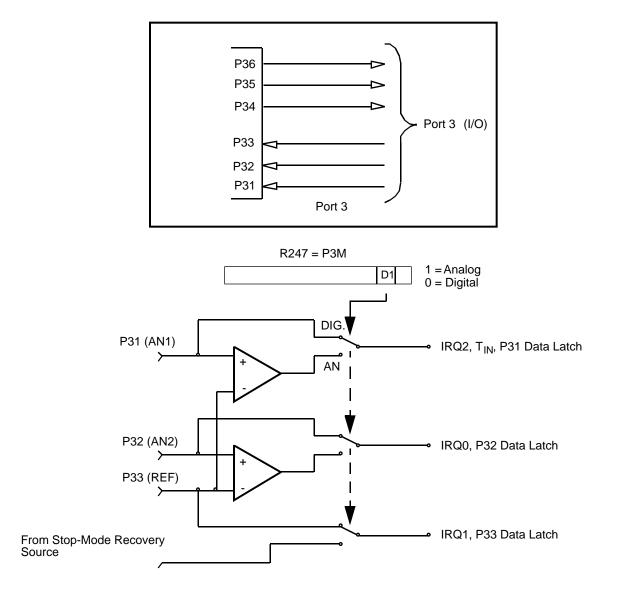



Figure 12. Port 3 Input Configuration

**Port Configuration Register (PCON).** The PCON configures the ports individually for comparator output on Port 3. The PCON Register is located in the Expanded Register File at Bank F, location 00 (Figure 13).

Bit 0 multiplexes comparator AN1 Output at P34. A "1" in this location brings the comparator output to P34 (Figure 14), and a "0" puts P34 into its standard I/O configuration.

**Note:** Only comparator output AN1 is multiplexed to a Port 3 output. Comparator AN2 output is not connected to any pins. Note that the PCON Register is reset upon the occurrence of a WDT RESET (not in STOP Mode), and Power-On Reset (POR).

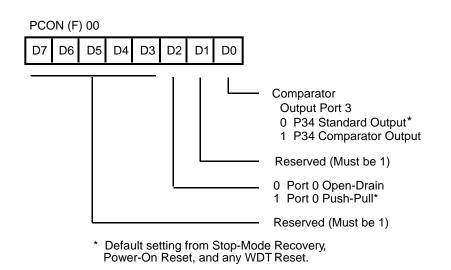



Figure 13. Port Configuration Register (PCON) (Write-Only)

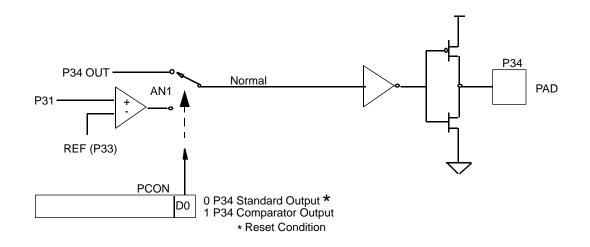
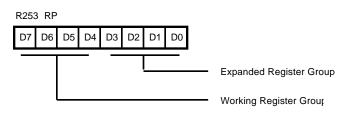




Figure 14. Port 3 P34 Output Configuration

# FUNCTIONAL DESCRIPTION (Continued)



Note: Default Setting After Reset = 00000000

### Figure 17. Register Pointer Register

**Register File.** The Register File consists of three I/O port registers, 237 general-purpose registers, 15 control and status registers, and four system configuration registers in the Expanded Register Group (Figure 16). The instructions can access registers directly or indirectly through an 8-bit address field. This allows a short 4-bit register address using the Register Pointer (Figure 18). In the 4-bit mode, the Register File is divided into 16 working register groups, each occupying 16 continuous locations. The Register Pointer (Figure 17) addresses the starting location of the active working-register group.

**Note:** Register Bank E0-EF is only accessed either as working registers or through indirect addressing modes.

# CAUTION: D4 of Control Register P01M (R251) must be 0.

**R254.** The C83/C84/E83 has one extra general-purpose register located at FEH (R254).

**Stack.** The C83/C84/E83 has an 8-bit Stack Pointer (R255) used for the internal stack that resides within the 236 general-purpose registers. Register R254 cannot be used for stack.

**General-Purpose Registers (GPR).** These registers are undefined after the device is powered up. The registers keep their last value after any reset, as long as the reset occurs in the  $V_{CC}$  voltage-specified operating range. It will not keep its last state from a  $V_{LV}$  reset if the  $V_{CC}$  drops below 1.8V. This includes Register R254.

**Note:** Register Bank E0-EF is only accessed either as working register or through indirect addressing modes.

**RAM Protect.** The upper portion of the RAM's address spaces %80F to %EF (excluding the control registers) are protected from writing. The user activates this feature from the internal ROM code to turn off/on the RAM Protect by loading either a 0 or 1 into the Interrupt Mask (IMR) register, bit D6. A 1 in D6 enables RAM Protect.

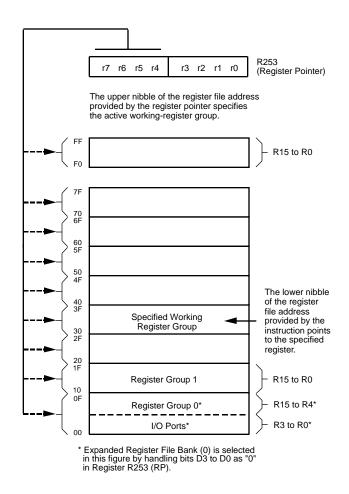



Figure 18. Register Pointer

## Zilog

All Z8 interrupts are vectored through locations in the program memory. This memory location and the next byte contain the 16-bit address of the interrupt service routine for that particular interrupt request. To accommodate polled interrupt systems, interrupt inputs are masked and the Interrupt Request register is polled to determine which of the interrupt requests need service.

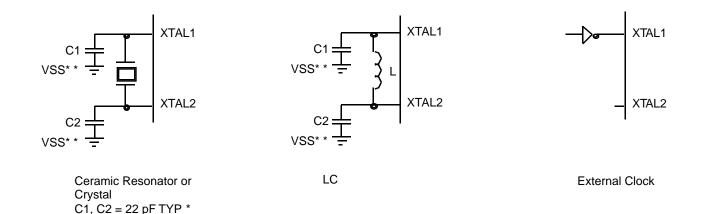
An interrupt resulting from AN1 is mapped into IRQ2, and an interrupt from AN2 is mapped into IRQ0. Interrupts IRQ2 and IRQ0 may be rising, falling, or both edge triggered, and are programmable by the user. The software may poll to identify the state of the pin.

Programming bits for the Interrupt Edge Select is located in the IRQ Register (R250), bits D7 and D6. The configuration is shown in Table 12.

### Table 12. IRQ Register

| IRQ |    | Interru | ot Edge |
|-----|----|---------|---------|
| D7  | D6 | P31     | P32     |
| 0   | 0  | F       | F       |
| 0   | 1  | F       | R       |
| 1   | 0  | R       | F       |
| 1   | 1  | R/F     | R/F     |
| toe |    |         |         |

Notes:


F = Falling Edge

R = Rising Edge

**Clock.** The Z8 on-chip oscillator has a high-gain, parallelresonant amplifier for connection to a crystal, LC, ceramic resonator, or any suitable external clock source (XTAL1 = Input, XTAL2 = Output). The crystal should be AT cut, 16 MHz max., with a series resistance (RS) of less than or equal to 100 Ohms when clocking from 1 MHz to 16 MHz.

The crystal should be connected across XTAL1 and XTAL2 using the vendor's recommended capacitor values from each pin directly to the device Ground pin to reduce Ground noise injection into the oscillator (Figure 21).

**Note:** For better noise immunity, the capacitors should be tied directly to the device Ground pin ( $V_{SS}$ ).



\* Preliminary value including pin parasitics

\* \* Device ground pin

f = 8 MHz

Figure 21. Oscillator Configuration

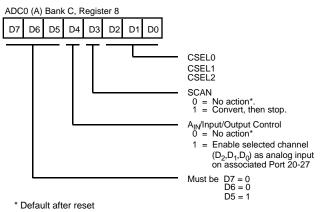



Figure 23. ADC Control Register 0 (Read/Write)

| SCAN |                           |
|------|---------------------------|
| 0    | No action*                |
| 1    | Convert channel then stop |
|      |                           |

## Channel Select (bits 2, 1, 0)

\* Default after reset

| CSEL1 | CSEL0                                              | Channel                                |
|-------|----------------------------------------------------|----------------------------------------|
| 0     | 0                                                  | 0 (P20)*                               |
| 0     | 1                                                  | 1 (P21)                                |
| 1     | 0                                                  | 2 (P22)                                |
| 1     | 1                                                  | 3 (P23)                                |
| 0     | 0                                                  | 4 (P24)                                |
| 0     | 1                                                  | 5 (P25)                                |
| 1     | 0                                                  | 6 (P26)                                |
| 1     | 1                                                  | 7 (P27)                                |
|       | CSEL1<br>0<br>1<br>1<br>0<br>0<br>0<br>1<br>1<br>1 | 0 0<br>0 1<br>1 0<br>1 1<br>0 0<br>0 1 |

**Note:** ADCO D4 must equal 1 to allow Port bit as ADC input.

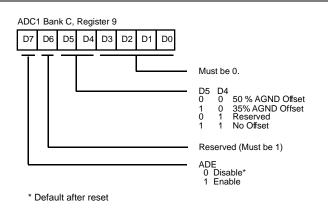



Figure 24. ADC Control Register 1 (Read/Write)

**ADE (bit 7).** A zero powers down and disables power and any A/D conversions or accessing any ADC registers except writing to ADE bit. A one Enables all ADC accesses. ADC result register is shown in Figure 25.





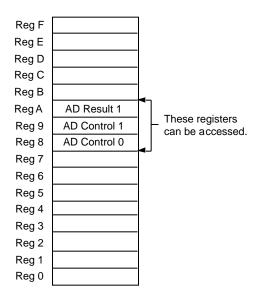



Figure 26. Bank C

## **Digital-to-Analog Converters**

The Z86C84 has two Digital-to-Analog Converters (DACs). Each DAC is an 8-bit resistor string, with a programmable 0.25X, 0.5X, or 1X gain output buffer. The DAC output voltage settles after the internal data is latched into the DAC Data register. The top and bottom ends of the resistor ladder are register-selected to be connected to either the analog supply rails,  $AV_{CC}$  and  $A_{GND}$ , or two externally-provided reference voltages, VDHI and VDLO. External references are recommended to explicitly set the DAC output limits. Since the gain stage cannot drive to the sup-

ply rails, VDHI and VDLO must be within ranges shown in the specifications. If either reference approaches the analog supply rails, the output will be unable to span the reference voltage range. The externally provided reference voltages should not exceed the supply voltages. The DAC outputs are latch-up protected and can drive output loads (Figure 28).

Note: The  $AV_{CC}$  must be the same value as  $V_{CC}$  and  $A_{GND}$  must be the same value as GND

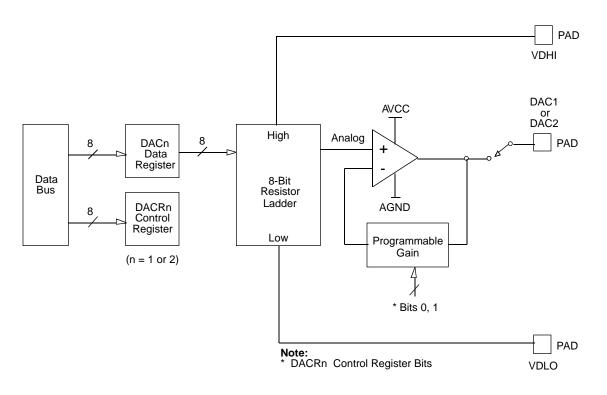



Figure 28. DAC Block Diagram

**Stop-Mode Recovery Source (D2, D3, and D4).** These three bits of the SMR register specify the wake-up source of the STOP recovery (Figure 37 and Table 13). When the Stop-Mode Recovery Sources are selected in this register then SMR2 register bits D0,D1 must be set to zero. P33-P31 and Port 2 cannot wake up from STOP Mode if the input lines are configured as analog inputs to the Analog comparator or Analog-to-Digital Converter.

**Note:** If the Port 2 pin is configured as an output, this output level will be read by the SMR circuitry.

| Table 13. | Stop-Mode | Recovery | y Source |
|-----------|-----------|----------|----------|
|-----------|-----------|----------|----------|

| S  | SMR:432  |   | Operation                           |
|----|----------|---|-------------------------------------|
| D4 | D4 D3 D2 |   | Description of Action               |
| 0  | 0        | 0 | POR and/or external reset recovery  |
| 0  | 0        | 1 | Reserved                            |
| 0  | 1        | 0 | P31 transition (not in Analog Mode) |
| 0  | 1        | 1 | P32 transition (not in Analog Mode) |
| 1  | 0        | 0 | P33 transition (not in Analog Mode) |
| 1  | 0        | 1 | P27 transition                      |
| 1  | 1        | 0 | Logical NOR of P20 through P23      |
| 1  | 1        | 1 | Logical NOR of P20 through P27      |

Stop-Mode Recovery Delay Select (D5). This bit, if High, enables the  $T_{POR}$  /RESET delay after Stop-Mode Recovery. The default configuration of this bit is "1". A POR or

WDT reset will override the selection and cause the reset delay to occur.

**Stop-Mode Recovery Edge Select (D6).** A "1" in this bit position indicates that a high level on the output to the exclusive Or-Gate input from the selected recovery source wakes the Z86C83/C84/E83 from STOP Mode. A "0" indicates low-level recovery. The default is 0 on POR. This bit is used for either SMR or SMR2.

**Cold or Warm Start (D7).** This bit is set by the device upon entering STOP Mode. A 0 in this bit (cold) indicates that the device resets by POR/WDT reset. A "1" in this bit (warm) indicates that the device awakens by a Stop-Mode Recovery source.

**Note:** A WDT reset out of STOP Mode will also set this bit to a "1".

**Stop-Mode Recovery Register 2 (SMR2).** This register contains additional Stop-Mode Recovery sources. When the Stop-Mode Recovery sources are selected in this register then SMR Register Bits D2, D3, and D4 must be 0.

### Table 14. Stop-Mode Recovery Source

| SMR:10<br>D1 D0 |   | Operation<br>Description of Action |
|-----------------|---|------------------------------------|
| 0               | 0 | POR and/or external reset recovery |
| 0               | 1 | Logical AND of P20 through P23     |
| 1               | 0 | Logical AND of P20 through P27     |



Figure 37. Stop-Mode Recovery Source

# **PACKAGE INFORMATION**

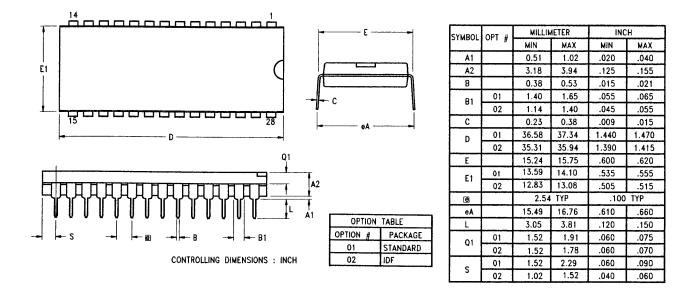



Figure 68. 28-Pin DIP Package Diagram

Figure 69. 28-Pin SOIC Package Diagram

# **ORDERING INFORMATION**

|             | Z86C83<br>16 MHz |             |             | Z86E83<br>16 MHz |             |
|-------------|------------------|-------------|-------------|------------------|-------------|
| 28-Pin DIP  | 28-Pin SOIC      | 28-Pin PLCC | 28-Pin DIP  | 28-Pin SOIC      | 28-Pin PLCC |
| Z86C8316PSC | Z86C8316SSC      | Z86C8316VSC | Z86E8316PSC | Z86E8316SSC      | Z86E8316VSC |
| Z86C8316PEC | Z86C8316SEC      | Z86C8316VEC | Z86E8316PEC | Z86E8316SEC      | Z86E8316VEC |
|             | Z86C84<br>16 MHz |             |             |                  |             |
| 28-Pin DIP  | 28-Pin SOIC      | 28-Pin PLCC |             |                  |             |
| Z86C8416PSC | Z86C8416SSC      | Z86C8416VSC |             |                  |             |
| Z86C8416PEC | Z86C8416SEC      | Z86C8416VEC |             |                  |             |

For fast results, contact your local Zilog sales office for assistance in ordering the part desired.

## Package

P = Plastic DIP S = Plastic SOIC

## Temperature

 $S = 0^{\circ}C$  to  $+ 70^{\circ}C$  $E = -40^{\circ}C$  to  $+105^{\circ}C$ 

## Example:

Z 86C83 16 P S C is a Z86C83, 16 MHz, DIP, 0°C to +70°C, Plastic Standard Flow **Environmental Flow** Temperature Package Speed

> Product Number Zilog Prefix

Speed

16 = 16 MHz

Environmental

C = Plastic Standard

DS97DZ80700