

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	78
	20
Core Size	8-Bit
Speed	16MHz
Connectivity	-
Peripherals	POR, WDT
Number of I/O	21
Program Memory Size	4KB (4K x 8)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	237 x 8
Voltage - Supply (Vcc/Vdd)	3.5V ~ 5.5V
Data Converters	A/D 8x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z86e8316seg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 7. Z86E83 EPROM Programming Mode 28-Pin PLCC Pin Configuration

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to Ground. Positive current flows into the referenced pin (Figure 8).

V_{DD} **SPECIFICATION**

 V_{DD} = 3.5V to 5.5V (Z86E83 only at 0° C to 70° C)

V_{DD} = 3.0V to 5.5V (Z86C83/C84)

 V_{DD} = 4.5V to 5.5V (Z86E83 only at -40° C to 105° C)

CAPACITANCE

 $T_A = 25^{\circ}C$, $V_{CC} = GND = 0V$, f = 1.0 MHz, unmeasured pins returned to GND.

Parameter	Min	Max
Input capacitance	0	15 pF
Output capacitance	0	15 pF
I/O capacitance	0	15 pF

Sym	Parameter	V _{cc} Note 3	T _A = (to +7 Min	0°C Max	T _A = 1 to +1 Min	–40°C I05°C Max	Typical [13] @ 25°C	Units	Conditions	Notes
I CC1	Standby Current (HALT Mode)	3.0V		4.5		4.5	2.0	mA	V _{IN} =0V, V _{CC} @ 16 MHz	4
		5.5V		8		8	3.7	mA	V _{IN} = 0V, V _{CC} @ 16 MHz	4
		3.0V		3.4		3.4	1.5	mA	Clock Divide-by-16 @ 16 MHz	4
		5.5V		7.0		7.0	2.9	mA	Clock Divide-by-16 @ 16 MHz	4
I _{CC2}	Standby Current (STOP Mode)	3.0V		8		15	1	μA	V _{IN} = 0V,V _{CC} Vcc WDT is not Running	1,6,11
		5.5V		10		20	2	μA	V _{IN} = 0V, V _{CC} WDT is not Running	1,6,11
		3.0V		500		600	310	μA	V _{IN} = 0V, V _{CC} WDT is Running	1,6,11,14
		5.5V		800		1000	600	μA	V _{IN} = 0V, V _{CC} WDT is not Running	1,6,11,14
V _{ICR}	Input Common Mode	3.0	0	V _{CC} - 1.0V	0	V _{CC} - 1.5V		V		10
	Voltage Range	5.5	0	V _{CC} - 1.0V	0	V _{CC} - 1.5V		V		10
I _{ALL}	Auto Latch Low	3.0V		8		10	5	μA	$0V < V_{IN} < V_{CC}$	9
	Current	5.5V		15		20	11	μA	$0V < V_{IN} < V_{CC}$	9
I _{ALH}	Auto Latch High	3.0V		-5		-7	-3	μA	$0V < V_{IN} < V_{CC}$	9
	Current	5.5V		-8		-10	-6	μA	$0V < V_{IN} < V_{CC}$	9
V _{LV}	V _{CC} Low-Voltage Protection Voltage		2.0	3.3	2.2	3.5	3.0	V	2 MHz max Int. CLK Freq.	7

Notes:

1. Combined digital V_{CC} and Analog AV_{CC} supply currents.

2. GND = 0V.

3. V_{CC} voltage specification of 3.0V guarantees 3.3V ±0.3V, and V_{CC} voltage specification of 5.5V guarantees 5.0V ±0.5V.

4. All outputs unloaded, I/O pins floating, inputs at rail.

5. CL1 = CL2 = 22 pF.

6. Same as note [4] except inputs at $V_{\rm \scriptscriptstyle cc}.$

- 7. The V_{LV} increases as the temperature decreases.
- 8. Standard Mode (not Low EMI).
- 9. Auto Latch (mask option) selected.
- 10. For analog comparator, inputs when analog comparators are enabled.
- 11. Clock must be forced Low, when XTAL 1 is clock-driven and XTAL2 is floating.
- 12. Excludes clock pins.
- 13. Typicals are at V_{CC} = 5.0V and 3.3V.
- 14. Internal RC selected
- 15. For Z86C83 only

AC ELECTRICAL CHARACTERISTICS

For Z86C83/C84 Only. Low EMI Mode Only.

				T _A = 0°C	to +70°C	T _A = -40°	to +105°C		
				4 N	ΛHz	4 N	ΛHz		
No	Symbol	Parameter	V _{CC} [6]	Min	Мах	Min	Max	Units	Notes
1	ТрС	Input Clock Period	3.0V	250	DC	250	DC	ns	1,7,8
			5.5V	250	DC	250	DC	ns	1,7,8
2	TrC, TfC	Clock Input Rise & Fall Times	3.0V		25		25	ns	1,7,8
			5.5V		25		25	ns	1,7,8
3	TwC	Input Clock Width	3.0V	125		125		ns	1,7,8
			5.5V	125		125		ns	1,7,8
4	TwTinL	Timer Input Low Width	3.0V	100		100		ns	1,7,8
			5.5V	100		100		ns	1,7,8
5	TwTinH	Timer Input High Width	3.0V	3TpC		3TpC		ns	1,7,8
			5.5V	3TpC		3TpC		ns	1,7,8
6	TpTin	Timer Input Period	3.0V	4TpC		4TpC			1,7,8
			5.5V	4TpC		4TpC			1,7,8
7	TrTin,	Timer Input Rise & Fall Timer	3.0V		100		100	ns	1,7,8
	TfTin		5.5V		100		100	ns	1,7,8
8A	TwIL	Int. Request Low Time	3.0V	100		100		ns	1,7,8
			5.5V	70		70		ns	1,7,8
8B	TwIL	Int. Request Low Time	3.0V	3TpC		3TpC		ns	1,3,7,8
			5.5V	3TpC		3TpC		ns	1,3,7,8
9	TwIH	Int. Request Input High Time	3.0V	3TpC		3TpC		ns	1,2,7,8
			5.5V	3TpC		3TpC		ns	1,2,7,8
10	Twsm	Stop-Mode Recovery Width	3.0V	12		12		ns	4,8
		Spec	5.5V	12		12		ns	4,8
11	Tost	Oscillator Start-up Time	3.0V		5TpC		5TpC		4,8,9
			5.5V		5TpC		5TpC		4,8,9

Notes:

1. Timing Reference uses 0.7 V_{CC} for a logic 1 and 0.2 V_{CC} for a logic 0.

2. Interrupt request via Port 3 (P33-P31)

3. Interrupt request via Port 3 (P30)

4. SMR-D5 = 1, POR STOP Mode delay is on.

5. Reg. WDTMR

6. The V_{CC} voltage specification of 3.0V guarantees $3.3V \pm 0.3V$, and the V_{CC} voltage specification of 5.5V guarantees $5.0V \pm 0.5V$.

7. SMR D1 = 0

8. Maximum frequency for internal system clock is 4 MHz when using XTAL divide-by-one mode

9. For LC oscillator and for oscillator driven by clock driver

AC ELECTRICAL CHARACTERISTICS

Additional Timing Diagram

AC ELECTRICAL CHARACTERISTICS

Additional Timing Table (SCLK/TCLK = XTAL/2) For Z86E83 Only

No Symbol Parameter Note 6 Min Max Min Max Min Max Units Notes 1 TpC Input Clock Period $3.5V$ 83 DC 62.5 DC ns 1 2 TrC, TfC Clock Input Rise & Fall Times $3.5V$ 15 15 ns 1 3 TwC Input Clock Width $3.5V$ 15 15 ns 1 4 TwTinL Timer Input Low Width $3.5V$ 100 100 ms 1 5 TwTinH Timer Input High Width $3.5V$ 5TpC 5TpC 1 6 TpTin Timer Input Period $3.5V$ 8TpC 8TpC 1 7 TrTin, Timer Input Rise & Fall Timer $3.5V$ 100 100 ns 1 8A TwiL Int. Request Low Time $3.5V$ 100 100 ns 1.2 7 TrTin, Timer Input Rise & Fall Timer				V	-	$T_A = 0^{\circ}C$; to +70	°C		
No Symbol Parameter Note 6 Min Max Win Max Units Notes 1 TpC Input Clock Period 3.5V 83 DC 62.5 DC ns 1 2 TrC, TfC Clock Input Rise & Fall Times 3.5V 15 15 ns 1 3 TwC Input Clock Width 3.5V 41 31 ms 1 4 TwTinL Timer Input Low Width 3.5V 41 31 ns 1 5 TwTinH Timer Input High Width 3.5V 70 70 ns 1 5.5V 5TpC 5TpC 5TpC 1			D	VCC	12	MHz	16	MHz		N I (
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	NO	Symbol	Parameter	Note 6	Min	Мах	Min	Мах	Units	Notes
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	ТрС	Input Clock Period	3.5V	83	DC	62.5	DC	ns	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				5.5V	83	DC	62.5	DC	ns	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	TrC,TfC	Clock Input Rise & Fall Times	3.5V		15		15	ns	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				5.5V		15		15	ns	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	TwC	Input Clock Width	3.5V	41		31		ms	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				5.5V	41		31		ns	1
	4	TwTinL	Timer Input Low Width	3.5V	100		100		ms	1
				5.5V	70		70		ns	1
	5	TwTinH	Timer Input High Width	3.5V	5TpC		5TpC			1
6 TpTin Timer Input Period 3.5V 8TpC 8TpC 8TpC 1 7 TrTin, TfTin Timer Input Rise & Fall Timer 3.5V 100 100 ns 1 8A TwlL Int. Request Low Time 3.5V 100 100 ns 1 8B TwlL Int. Request Low Time 3.5V 100 100 ns 1,2 9 TwlH Int. Request Low Time 3.5V 5TpC 5TpC 1,3 9 TwlH Int. Request Input High Time 3.5V 5TpC 5TpC 1,2 10 Twsm Stop-Mode Recovery Width Spec 3.5V 5TpC 5TpC 1,2 10 Twsm Stop-Mode Recovery Width Spec 3.5V 5TpC 5TpC 4 11 Tost Oscillator Start-up Time 3.5V 5TpC 5TpC 4 12 Twdt Watch-Dog Timer Delay Time 3.5V 5TpC 5TpC 4 12 Twdt Watch-				5.5V	5TpC		5TpC			1
	6	TpTin	Timer Input Period	3.5V	8TpC		8TpC			1
7 TrTin, TfTin Timer Input Rise & Fall Timer 3.5V 100 100 ns 1 8A TwiL Int. Request Low Time 3.5V 100 100 ns 1 8A TwiL Int. Request Low Time 3.5V 100 100 ns 1,2 8B TwiL Int. Request Low Time 3.5V 5TpC 5TpC 1,3 9 TwiH Int. Request Input High Time 3.5V 5TpC 5TpC 1,2 10 Twsm Stop-Mode Recovery Width Spec 3.5V 5TpC 5TpC 1,2 11 Tost Oscillator Start-up Time 3.5V 5TpC 5TpC 4 12 Twdt Watch-Dog Timer Delay Time 3.5V 5TpC 5TpC 4 5.5V 12.5 12.5 ms 0,0,[7] 5.5V 12.5 ms 0,1,[7] 12 Twdt Watch-Dog Timer Delay Time 5.5V 6.25 6.25 ms 0,0,[7] 5.5V				5.5V	8TpC		8TpC			1
TfTin 5.5V 100 100 ns 1 8A TwlL Int. Request Low Time 3.5V 100 100 ns 1,2 8B TwlL Int. Request Low Time 3.5V 5TpC 5TpC 1,3 9 TwlH Int. Request Input High Time 3.5V 5TpC 5TpC 1,2 9 TwlH Int. Request Input High Time 3.5V 5TpC 5TpC 1,2 10 Twsm Stop-Mode Recovery Width Spec 3.5V 5TpC 5TpC 1,2 10 Twsm Stop-Mode Recovery Width Spec 3.5V 12 12 ns 11 Tost Oscillator Start-up Time 3.5V 5TpC 5TpC 4 12 Twdt Watch-Dog Timer Delay Time S.5V 5TpC 5TpC 4 12.5V 6.25 6.25 ms 0,0,[7] 5.5V 12.5 12.5 ms 0,0,[7] 5.5V 12.5 12.5 ms	7	TrTin,	Timer Input Rise & Fall Timer	3.5V		100		100	ns	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		TfTin		5.5V		100		100	ns	1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8A	TwIL	Int. Request Low Time	3.5V	100		100		ns	1,2
8B TwlL Int. Request Low Time 3.5V 5TpC 5TpC 5TpC 1,3 9 TwlH Int. Request Input High Time 3.5V 5TpC 5TpC 1,3 10 Twsm Stop-Mode Recovery Width Spec 3.5V 5TpC 5TpC 1,2 10 Twsm Stop-Mode Recovery Width Spec 3.5V 12 12 ns 11 Tost Oscillator Start-up Time 3.5V 5TpC 5TpC 4 12 Twdt Watch-Dog Timer Delay Time 3.5V 5TpC 5TpC 4 12 Twdt Watch-Dog Timer Delay Time 5.5V 6.25 6.25 ms 0,0,[7] 5.5V 12.5 12.5 ms 0,0,[7] 5.5V 25 25 ms 0,0,[7] 13 T _{POR} Power On Reset Delay 3.5V 7 24 7 25 ms 7 13 Stov 7 24 7 25 ms 7				5.5V	70		70		ns	1,2
5.5V 5TpC 5TpC 1,3 9 TwlH Int. Request Input High Time 3.5V 5TpC 5TpC 1,2 10 Twsm Stop-Mode Recovery Width Spec 3.5V 12 12 ns 10 Twsm Stop-Mode Recovery Width Spec 3.5V 12 12 ns 11 Tost Oscillator Start-up Time 3.5V 5TpC 5TpC 4 12 Twdt Watch-Dog Timer Delay Time 3.5V 5TpC 5TpC 4 12 Twdt Watch-Dog Timer Delay Time 5.5V 6.25 6.25 ms 0,0,[7] 5.5V 12.5 12.5 ms 0,1,[7] 5.5V 12.5 ms 0,1,[7] 13 T _{POR} Power On Reset Delay 3.5V 7 24 7 25 ms 7 13 T _{POR} Stov 7 24 7 25 ms 7	8B	TwIL	Int. Request Low Time	3.5V	5TpC		5TpC			1,3
9 TwlH Int. Request Input High Time 3.5V 5TpC 5TpC 1,2 10 Twsm Stop-Mode Recovery Width Spec 3.5V 12 12 ns 10 Twsm Stop-Mode Recovery Width Spec 3.5V 12 12 ns 11 Tost Oscillator Start-up Time 3.5V 5TpC 5TpC 4 12 Twdt Watch-Dog Timer Delay Time 3.5V 5TpC 5TpC 4 12 Twdt Watch-Dog Timer Delay Time 5.5V 6.25 6.25 ms 0,0,[7] 5.5V 12.5 12.5 ms 0,1,[7] 5.5V 25 25 ms 0,1,[7] 13 T _{POR} Power On Reset Delay 3.5V 7 24 7 25 ms 7 13 T _{POR} Power On Reset Delay 3.5V 7 24 7 25 ms 7				5.5V	5TpC		5TpC			1,3
5.5V 5TpC 5TpC 1,2 10 Twsm Stop-Mode Recovery Width Spec 3.5V 12 12 ns 11 Tost Oscillator Start-up Time 3.5V 5TpC 5TpC 4 11 Tost Oscillator Start-up Time 3.5V 5TpC 5TpC 4 12 Twdt Watch-Dog Timer Delay Time 5.5V 6.25 6.25 ms 0,0,[7] 5.5V 12.5 12.5 ms 0,0,[7] 5.5V 25 ms 0,1,[7] 5.5V 25 25 ms 1,0,[7] 5.5V 100 100 ms 1,1,[7] 13 T _{POR} Power On Reset Delay 3.5V 7 24 7 25 ms 7 5.5V 3 13 3 14 ms 7	9	TwIH	Int. Request Input High Time	3.5V	5TpC		5TpC			1,2
10 Twsm Stop-Mode Recovery Width Spec 3.5V 12 12 ns 11 Tost Oscillator Start-up Time 3.5V 5TpC 5TpC 4 11 Tost Oscillator Start-up Time 3.5V 5TpC 5TpC 4 12 Twdt Watch-Dog Timer Delay Time 5.5V 6.25 6.25 ms 0,0,[7] 5.5V 12.5 12.5 ms 0,0,[7] 5.5V 12.5 ms 0,1,[7] 5.5V 25 25 ms 1,0,[7] 5.5V 100 100 ms 1,1,[7] 13 T _{POR} Power On Reset Delay 3.5V 7 24 7 25 ms 7				5.5V	5TpC		5TpC			1,2
5.5V 12 12 ns 11 Tost Oscillator Start-up Time 3.5V 5TpC 5TpC 4 12 Twdt Watch-Dog Timer Delay Time $3.5V$ 5TpC 5TpC 4 12 Twdt Watch-Dog Timer Delay Time $VDTMR$ Reg D1,D0 5.5V 6.25 6.25 ms 0,0,[7] 5.5V 12.5 12.5 ms 0,1,[7] 5.5V 25 25 ms 1,0,[7] 5.5V 100 100 ms 1,1,[7] 13 T _{POR} Power On Reset Delay 3.5V 7 24 7 25 ms 7 5.5V 3 13 3 14 ms 7	10	Twsm	Stop-Mode Recovery Width Spec	3.5V	12		12		ns	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				5.5V	12		12		ns	
5.5V 5TpC 5TpC 4 12 Twdt Watch-Dog Timer Delay Time WDTMR Reg D1,D0 5.5V 6.25 6.25 ms 0,0,[7] 5.5V 12.5 12.5 ms 0,1,[7] 5.5V 25 25 ms 1,0,[7] 5.5V 100 100 ms 1,1,[7] 13 T _{POR} Power On Reset Delay 3.5V 7 24 7 25 ms 7 5.5V 3 13 3 14 ms 7	11	Tost	Oscillator Start-up Time	3.5V		5TpC		5TpC		4
12 Twdt Watch-Dog Timer Delay Time WDTMR Reg D1,D0 5.5V 6.25 6.25 ms 0,0,[7] 5.5V 12.5 12.5 ms 0,1,[7] 5.5V 25 25 ms 1,0,[7] 5.5V 100 100 ms 1,1,[7] 13 T _{POR} Power On Reset Delay 3.5V 7 24 7 25 ms 7 5.5V 3 13 3 14 ms 7				5.5V		5TpC		5TpC		4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12	Twdt	Watch-Dog Timer Delay Time					WDTMR	Reg	D1,D0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				5.5V	6.25		6.25		ms	0,0,[7]
5.5V 25 25 ms 1,0,[7] 5.5V 100 100 ms 1,1,[7] 13 T _{POR} Power On Reset Delay 3.5V 7 24 7 25 ms 7 5.5V 3 13 3 14 ms 7				5.5V	12.5		12.5		ms	0,1,[7]
5.5V 100 100 ms 1,1,[7] 13 T _{POR} Power On Reset Delay 3.5V 7 24 7 25 ms 7 5.5V 3 13 3 14 ms 7				5.5V	25		25		ms	1,0,[7]
13 T _{POR} Power On Reset Delay 3.5V 7 24 7 25 ms 7 5.5V 3 13 3 14 ms 7				5.5V	100		100		ms	1,1,[7]
5.5V 3 13 3 14 ms 7	13		Power On Reset Delay	3.5V	7	24	7	25	ms	7
		FUR	-	5.5V	3	13	3	14	ms	7

Notes:

1. Timing Reference uses 0.7 V $_{\rm CC}$ for a logic 1 and 0.2 V $_{\rm CC}$ for a logic 0.

2. Interrupt request via Port 3 (P31-P33).

3. Interrupt request via Port 3 (P30).

4. SMR-D5 = 0.

5. Reg. WDTMR.

6. The V voltage specification of 3.5V guarantees 3.5V, and the V voltage specification of 5.5V guarantees 5.0V \pm 0.5V. CC

7. Using internal on-board RC oscillator.

CAPACITANCE (Continued)

Additional Timing Table (SKLK/TCLK = XTAL/2) For Z86C83/C84 Only

				Т	A = 0°C	to +70°	°C	T _A	= -40°C	to +15	0°C		
			vcc	12	MHz	16	ИНz	12	MHz	16	MHz		
No	Sym	Parameter	[6]	Min	Max	Min	Max	Min	Max	Min	Max	Units	Notes
1	ТрС	Input Clock Period	3.0V	83	DC	62.5	DC	83	DC	62.5	DC	ns	1
			5.5V	83	DC	62.5	DC	83	DC	62.5	DC	ns	1
2	TrC,	Clock Input Rise &	3.0V		15		15		15		15	ns	1
	TfC	Fall Times	5.5V		15		15		15		15	ns	1
3	TwC	Input Clock Width	3.0V	41		31		41		31		ns	1
			5.5V	41		31		41		31		ns	1
4	TwTinL	Timer Input Low	3.0V	100		100		100		100		ns	1
		Width	5.5V	70		70		70		70		ns	1
5	TwTinH	Timer Input High	3.0V	5TpC		5TpC		5TpC		5TpC			1
		Width	5.5V	5TpC		5TpC		5TpC		5TpC			1
6	TpTin	Timer Input Period	3.0V	8TpC		8TpC		8TpC		8TpC			1
			5.5V	8TpC		8TpC		8TpC		8TpC			1
7	TrTin,	Timer Input Rise &	3.0V		100		100		100		100	ns	1
	TfTin	Fall Timer	5.5V		100		100		100		100	ns	1
8A	TwIL	Int. Request Low	3.0V	100		100		100		100		ns	1,2
		Time	5.5V	70		70		70		70		ns	1,2
8B	TwIL	Int. Request Low	3.0V	5TpC		5TpC		5TpC		5TpC			1,3
		Time	5.5V	5TpC		5TpC		5TpC		5TpC			1,3
9	TwIH	Int. Request High	3.0V	5TpC		5TpC		5TpC		5TpC			1,2
		Time	5.5V	5TpC		5TpC		5TpC		5TpC			1,2
10	Twsm	Stop-Mode Recovery	3.0V	12		12		12		12		ns	
		Width Spec	5.5V	12		12		12		12		ns	
11	Tost	Oscillator Start-up	3.0V		5TpC		5TpC		5TpC		5TpC		
		Time	5.5V		5TpC		5TpC		5TpC		5TpC		
12	Twdt	Watch-Dog Timer									WDTMR	Reg	D1,D0
		Delay Time	5.5V	6.25		6.25		6.25		6.25		ms	0,0 [6]
			5.5V	12.5		12.5		12.5		12.5		ms	0,1 [6]
			5.5V	25		25		25		25		ms	1,0 [6]
			5.5V	100		100		100		100		ms	1,1 [6]
13	T _{POR}	Power On Reset	3.0V	7	24	7	25	7	24	7	25	ms	6
		Delay	5.5V	3	13	3	14	3	13	3	14	ms	6

Notes:

1. Timing References used 0.7 V_{CC} for a logic 1 and 0.2 V_{CC} for a logic 0.

2. Interrupt request via Port 3 (P31-P33)

3. Interrupt request via Port 3 (P30)

4. SMR-D5 = 0

5. The V_{CC} voltage specification of 3.0V guarantees $3.3V \pm 0.3V$, and the V_{CC} voltage specification of 5.5V guarantees $5.0V \pm 0.5V$.

6. Using internal on-board RC oscillator

Table 8.	A/D Converter	Electrical	Characteristics
	V _{cc}	= 3.5V	

	66			
Parameter	Minimum	Typical	Maximum	Units
Resolution		8		Bits
Integral non-linearity		0.5	1	LSB
Differential non-linearity		0.5	1	LSB
Zero Error at 25°C			5.0	mV
Supply Range	3.5			Volts
Power dissipation, no load		20	40	mW
Clock frequency			16	MHz
Input voltage range	VA _{LO}		VA _{HI}	Volts
Conversion time			35 x SCLK	µsec
Input capacitance on ANA	25		40	pF
VA _{HI} range	VA _{LO} +2.5		AV _{cc}	Volts
VA _{LO} range	AN_{GND}		AV _{cc} –2.5	Volts
VA _{HI} VA _{LO}	2.5		AV _{cc}	Volts

Notes:

Voltage: 3.5V

Temp: 0-70°C

Conversion time is defined as the time from initiation of A-D conversion to storage of the digital result in the ADR register. SCLK = Internal Z8 System Clock (Bus Speed)

For Z86E83

Table 9.	A/D Converter	Electrical	Characteristics
	V _{cc} = 5	.0V ±10%	

Parameter	Minimum	Typical	Maximum	Units
Resolution		8		Bits
Integral non-linearity		0.5	1	LSB
Differential non-linearity		0.5	1	LSB
Zero Error at 25°C			45	mV
Supply Range	4.5	5.0	5.5	Volts
Power dissipation, no load		50	85	mW
Clock frequency			16	MHz
Input voltage range	VA _{LO}		VA _{HI}	Volts
Conversion time	4.3		35 x SCLK	µsec
Input capacitance on ANA	25		40	pF
VA _{HI} range	VA _{LO} +2.5		AV _{cc}	Volts
VA _{LO} range	AN_{GND}		AV _{cc} –2.5	Volts
VA _{HI} VA _{LO}	2.5		AV _{cc}	Volts

Notes:

Voltage: 4.5V -5.5V

Temp: 0-70°C

Conversion time is defined as the time from initiation of A-D conversion to storage of the digital result in the ADR register. SCLK = Internal Z8 System Clock (Bus Speed)

Figure 10. Port 0 Configuration

Figure 16. Expanded Register File Architecture

Counter/Timers. There are two 8-bit programmable counter/timers (T0-T1), each driven by its own 6-bit programmable prescaler. The T1 prescaler is driven by internal or external clock sources; however, the T0 prescaler is driven by the internal clock only (Figure 19).

The 6-bit prescalers can divide the input frequency of the clock source by any integer number from 1 to 64. Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When the counter reaches the end of the count, a timer interrupt request, IRQ4 (T0) or IRQ5 (T1), is generated.

The counters can be programmed to start, stop, restart to continue, or restart from the initial value. The counters can

also be programmed to stop upon reaching zero (single pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode).

The counters, **but not the prescalers**, are read at any time without disturbing their value or count mode. The clock source for T1 is user-definable and is either the internal microprocessor clock divide-by-four, or an external signal input through Port 3. The Timer Mode register configures the external timer input (P31) as an external clock, a trigger input that can be retriggerable or non-retriggerable, or as a gate input for the internal clock. The counter/timers can be cascaded by connecting the T0 output to the input of T1. T_{IN} Mode is enabled by setting R243 PRE1 Bit D1 to 0.

Figure 19. Counter/Timer Block Diagram

FUNCTIONAL DESCRIPTION (Continued)

Interrupts. The Z8 has six different interrupts from six different sources. These interrupts are maskable, prioritized (Figure 20) and the six sources are divided as follows: four sources are claimed by Port 3 lines P33-P30, and two in counter/timers (Table 11). The Interrupt Mask Register globally or individually enables or disables the six interrupt requests.

When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register. An interrupt machine cycle is activated when an interrupt request is granted. This action disables all subsequent interrupts, saves the Program Counter and Status Flags, and then branches to the program memory vector location reserved for that interrupt.

Table 11.	Interrupt	Types,	Sources,	and	Vectors
-----------	-----------	--------	----------	-----	---------

Name	Source	Vector Location	Comments
IRQ0	/DAV0, IRQ0	0, 1	External (P32), Rise Fall Edge Triggered
IRQ1,	IRQ1	2, 3	External (P33), Fall Edge Triggered
IRQ2	/DAV2, IRQ2, T _{IN}	4, 5	External (P31), Rise Fall Edge Triggered
IRQ3	IRQ3	6, 7	By User Software
IRQ4	ТО	8, 9	Internal
IRQ5	T1	10, 11	Internal

FUNCTIONAL DESCRIPTION (Continued)

Figure 27 shows the input circuit of the ADC. When conversion starts the analog input voltage is connected to the MSB and LSB flash converter inputs as shown in the Input Impedance CKT diagram. Effectively, shunting 31 parallel internal resistance of the analog switches and simultaneously charging 31 parallel 0.5 pF capacitors, which is equivalent to seeing a 400 Ohms input impedance in par-

allel with a 16 pF capacitor. Other input stray capacitance adds about 10 pF to the input load. For input source resistances up to 2 Kohms can be used under normal operating condition without any degradation of the input settling time. For larger input source resistance, increasing conversion cycle time or adding a capacitor to the input may be required to compensate the input settling time problem.

Figure 27. Input Impedance of ADC

Typical Z8 A/D Conversion Sequence

- Set the register pointer to Extended Bank (C), that is, SRP #%0C instruction.
- 4. Next, set ADE flag by loading ADC1 Control Register Bank (C) Register 9, bit 7. Also, load bits 0-4 of this same register to select a AV_{CC} or A_{GND} offset value. A precision voltage divider connected to the A/D resistive ladder can offset conversion dynamic range to specified limits within the AV_{CC} and A_{GND} limits. By loading Bank (C) Register 9, bits 0-4, with the appropriate value it is possible to select from these groups:
 - a. No Offset. The Converter Dynamic range is from 0V to 5.0V for $AV_{CC} = 5.0V$.
 - b. 35 Percent A_{GND} Offset. The Converter Dynamic range is 1.75V 5.0V for AV_{CC} = 5.0V.
 - c. 50 Percent A_{GND} Offset. The Converter Dynamic range is 2.5V 5.0V for AV_{CC} = 5.0V.

- Select one of the eight A/D inputs for conversion by loading Bank (C) Register 8 with the desired attributes: Bits 0 - 2 select an A/D input, bits 3 and 4 select A/D conversion (or digital port I/O).
- Set Bank (C) Register 8, bit 3 to enable A/D conversion. (This flag can be set concurrently with step 3.) This flag is automatically reset when the A/D conversion is completed, so a bit test can be performed to determine A/D readiness if necessary.
- Read the A/D result in Bank (C) Register A. Please note that the A/D result is not valid (indeterminate) unless ADE flag (Register 9, bit 7) was previously set, otherwise A/D converter output is tri-stated.

Stop-Mode Recovery Source (D2, D3, and D4). These three bits of the SMR register specify the wake-up source of the STOP recovery (Figure 37 and Table 13). When the Stop-Mode Recovery Sources are selected in this register then SMR2 register bits D0,D1 must be set to zero. P33-P31 and Port 2 cannot wake up from STOP Mode if the input lines are configured as analog inputs to the Analog comparator or Analog-to-Digital Converter.

Note: If the Port 2 pin is configured as an output, this output level will be read by the SMR circuitry.

Table 13.	Stop-Mode	Recovery Set	ource
-----------	-----------	---------------------	-------

SMR:432		2	Operation
D4	D3	D2	Description of Action
0	0	0	POR and/or external reset recovery
0	0	1	Reserved
0	1	0	P31 transition (not in Analog Mode)
0	1	1	P32 transition (not in Analog Mode)
1	0	0	P33 transition (not in Analog Mode)
1	0	1	P27 transition
1	1	0	Logical NOR of P20 through P23
1	1	1	Logical NOR of P20 through P27

Stop-Mode Recovery Delay Select (D5). This bit, if High, enables the T_{POR} /RESET delay after Stop-Mode Recovery. The default configuration of this bit is "1". A POR or

WDT reset will override the selection and cause the reset delay to occur.

Stop-Mode Recovery Edge Select (D6). A "1" in this bit position indicates that a high level on the output to the exclusive Or-Gate input from the selected recovery source wakes the Z86C83/C84/E83 from STOP Mode. A "0" indicates low-level recovery. The default is 0 on POR. This bit is used for either SMR or SMR2.

Cold or Warm Start (D7). This bit is set by the device upon entering STOP Mode. A 0 in this bit (cold) indicates that the device resets by POR/WDT reset. A "1" in this bit (warm) indicates that the device awakens by a Stop-Mode Recovery source.

Note: A WDT reset out of STOP Mode will also set this bit to a "1".

Stop-Mode Recovery Register 2 (SMR2). This register contains additional Stop-Mode Recovery sources. When the Stop-Mode Recovery sources are selected in this register then SMR Register Bits D2, D3, and D4 must be 0.

Table 14. Stop-Mode Recovery Source

SMR:10 D1 D0		Operation Description of Action
0	0	POR and/or external reset recovery
0	1	Logical AND of P20 through P23
1	0	Logical AND of P20 through P27

Figure 37. Stop-Mode Recovery Source

Watch-Dog Timer Mode Register (WDTMR). The WDT is a retriggerable one-shot timer that resets the Z8 if it reaches its terminal count. The WDT is initially enabled by executing the WDT instruction and refreshed on subsequent executions of the WDT instruction. The WDT circuit is driven by an on-board RC oscillator or external oscillator from the XTAL1 pin. The POR clock source is selected with bit 4 of the WDT register (Figure 38).

WDT instruction affects the Z (Zero), S (Sign), and V (Overflow) flags. The WDTMR must be written to within 64 internal system clocks. After that, the WDTMR is write protected.

Note: WDT time-out while in Stop-Mode will not reset SMR, PCON, WDTMR, P2M, P3M, Ports 2 and 3 Data Registers, but will cause the reset delay to occur.

The Power-On Reset (POR) clock source is selected with bit 4 of the WDTMR. Bits 0 and 1 control a tap circuit that determines the time-out period. Bit 2 determines whether the WDT is active during HALT and bit 3 determines WDT activity during STOP. If bits 3 and 4 of this register are both set to "1," the WDT is only driven by the external clock during STOP Mode. This feature makes it possible to wake up from STOP Mode from an internal source. Bits 5 through 7 of the WDTMR are reserved (Figure 39). This register is accessible only during the first 60 processor cycles (60 SCLKs) from the execution of the first instruction after Power-On-Reset, Watch-Dog Reset or a Stop-Mode Recovery. After this point, the register cannot be modified by any means, intentional or otherwise. The WDTMR cannot be read and is located in Bank F of the Expanded Register group at address location 0FH.

Figure 38. Resets and WDT

Figure 39. Watch-Dog Timer Mode Register (Write Only)

WDT Time Select (D1, D0). Selects the WDT time-out period. It is configured as shown in Table 15.

D1	D0	Time-Out of Internal RC OSC	Time-Out of SCLK Clock
0	0	6.25 ms min	256 SCLK
0	1	12.5 ms min	512 SCLK
1	0	25 ms min	1024 SCLK
1	1	100 ms min	4096 SCLK

Table 15. WDT Time Select (Min. @ 5.0V)

WDT During HALT (D2). This bit determines whether or not the WDT is active during HALT Mode. A "1" indicates active during HALT. The default is "1".

Note: If WDT is permanently selected (always ON mode), the WDT will continue to run even if set not to run in STOP or HALT Mode.

WDT During STOP (D3). This bit determines whether or not the WDT is active during STOP Mode. Since XTAL clock is stopped during STOP Mode, unless as specified below, the on-board RC has to be selected as the clock source to the POR counter. A "1" indicates active during STOP. The default is "1". If bits D3 and D4 are both set to "1", the WDT only, is driven by the external clock during STOP Mode.

Notes:

- 1. If WDT is permanently selected (always ON mode) using internal on-board RC oscillator, the WDT will continue to run even if set not to run in STOP or HALT Mode.
- WDT instructions affect the Z (Zero), S (Sign), and V (Overflow) flags.

On-Board, Power-On-Reset RC or External XTAL1 Oscillator Select (D4). This bit determines which oscillator source is used to clock the internal POR and WDT counter chain. If the bit is a "1", the internal RC oscillator is bypassed and the POR and WDT clock source is driven from the external pin, XTAL1. The default configuration of this bit is 0, which selects the RC oscillator. If the XTAL1 pin is selected as the oscillator source for the WDT, during STOP Mode, the oscillator will be stopped and the WDT will not run. This is true even if the WDT is selected to run during STOP Mode.

 V_{CC} Voltage Comparator. An on-board Voltage Comparator checks that V_{CC} is at the required level to ensure correct operation of the device. RESET is globally driven if V_{CC} is below the specified voltage (typically 2.6V).

ROM Protect. ROM Protect is mask or OTP bit-programmable. It is selected by the customer at the time the ROM code is submitted.

ROM Mask Selectable Options

There are two ROM mask options that must be selected at the time the ROM mask is ordered (ROM code submitted) for the Z86C83/C84 and three Z86E83 OTP bit options.

Table 16. Selectable Options

Option	Selection
Permanent WDT	Yes/No
ROM Protect	Yes/No
EPROM/TEST Mode Disable*	Yes/No

Note:

*For Z86E83 only

EPROM/TEST Mode Disable - On the Z86E83, the user can permanently disable entry into EPROM Mode and TEST Mode by programming this bit.

Figure 44. D/A 2 Control Register

Figure 45. D/A 1 Data Register

Figure 46. D/A 2 Data Register

Figure 41. ADC Control Register 1 (Read/Write)

Figure 42. AD Result Register (Read Only)

PACKAGE INFORMATION

Figure 68. 28-Pin DIP Package Diagram

Figure 69. 28-Pin SOIC Package Diagram

ORDERING INFORMATION

	Z86C83 16 MHz			Z86E83 16 MHz	
28-Pin DIP	28-Pin SOIC	28-Pin PLCC	28-Pin DIP	28-Pin SOIC	28-Pin PLCC
Z86C8316PSC	Z86C8316SSC	Z86C8316VSC	Z86E8316PSC	Z86E8316SSC	Z86E8316VSC
Z86C8316PEC	Z86C8316SEC	Z86C8316VEC	Z86E8316PEC	Z86E8316SEC	Z86E8316VEC
	Z86C84 16 MHz				
28-Pin DIP	28-Pin SOIC	28-Pin PLCC			
Z86C8416PSC	Z86C8416SSC	Z86C8416VSC			
Z86C8416PEC	Z86C8416SEC	Z86C8416VEC			

For fast results, contact your local Zilog sales office for assistance in ordering the part desired.

Package

P = Plastic DIP S = Plastic SOIC

Temperature

 $S = 0^{\circ}C$ to $+ 70^{\circ}C$ $E = -40^{\circ}C$ to $+105^{\circ}C$

Example:

Z 86C83 16 P S C is a Z86C83, 16 MHz, DIP, 0°C to +70°C, Plastic Standard Flow **Environmental Flow** Temperature Package Speed

> Product Number Zilog Prefix

Speed

16 = 16 MHz

Environmental

C = Plastic Standard

DS97DZ80700

© 1997 by Zilog, Inc. All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Zilog, Inc. The information in this document is subject to change without notice. Devices sold by Zilog, Inc. are covered by warranty and patent indemnification provisions appearing in Zilog, Inc. Terms and Conditions of Sale only.

ZILOG, INC. MAKES NO WARRANTY, EXPRESS, STATUTORY, IMPLIED OR BY DESCRIPTION, REGARDING THE INFORMATION SET FORTH HEREIN OR REGARDING THE FREEDOM OF THE DESCRIBED DEVICES FROM INTELLECTUAL PROPERTY INFRINGEMENT. ZILOG, INC. MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PURPOSE. Zilog, Inc. shall not be responsible for any errors that may appear in this document. Zilog, Inc. makes no commitment to update or keep current the information contained in this document.

Zilog's products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to such intended use is executed between the customer and Zilog prior to use. Life support devices or systems are those which are intended for surgical implantation into the body, or which sustains life whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave. Campbell, CA 95008-6600 Telephone (408) 370-8000 FAX 408 370-8056