

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

EXFL

Details	
Product Status	Obsolete
Core Processor	C166SV2
Core Size	16/32-Bit
Speed	66MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	49
Program Memory Size	160KB (160K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-64-6
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc2331d20f66laakxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XC233[01]D Data Sheet

Revision History: V1.3 2015-02

Previous '	/ersions:
V1.0 2010	-12
V1.1 2011	-09
V1.2 2012	2-07
Page	Subjects (major changes since last revision)
6	Added SAK-XC2331D-20FxLR to Basic Device Types.
7	Moved SAK-XC2331D-20FxL from Basic Device Types to Special Device Types.
104	Added package type PG-LQFP-64-24.

Trademarks

C166[™], TriCore[™] and DAVE[™] are trademarks of Infineon Technologies AG.

We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: mcdocu.comments@infineon.com

Table of Contents

4.7	AC Parameters	2
4.7.1	Testing Waveforms 8	2
4.7.2	Definition of Internal Timing 8	3
4.7.2.1	Phase Locked Loop (PLL) 8	4
4.7.2.2	Wakeup Clock	7
4.7.2.3	Selecting and Changing the Operating Frequency	7
4.7.3	External Clock Input Parameters 8	8
4.7.4	Pad Properties	0
4.7.5	Synchronous Serial Interface Timing	3
4.7.6	Debug Interface Timing 9	7
5	Package and Reliability 10	4
5.1	Packaging	14
5.2	Thermal Considerations 10	6
5.3	Quality Declarations 10	7

Summary of Features

16/32-Bit Single-Chip Microcontroller with 32-Bit Performance XC233[01]D (XC2000 Family)

1 Summary of Features

For a quick overview and easy reference, the features of the XC233[01]D are summarized here.

- High-performance CPU with five-stage pipeline and MPU
 - 12.5 ns instruction cycle @ 80 MHz CPU clock (single-cycle execution)
 - One-cycle 32-bit addition and subtraction with 40-bit result
 - One-cycle multiplication (16 × 16 bit)
 - Background division (32 / 16 bit) in 21 cycles
 - One-cycle multiply-and-accumulate (MAC) instructions
 - Enhanced Boolean bit manipulation facilities
 - Zero-cycle jump execution
 - Additional instructions to support HLL and operating systems
 - Register-based design with multiple variable register banks
 - Fast context switching support with two additional local register banks
 - 16 Mbytes total linear address space for code and data
 - 1,024 Bytes on-chip special function register area (C166 Family compatible)
 - Integrated Memory Protection Unit (MPU)
- Interrupt system with 16 priority levels providing 64 interrupt nodes
 - Selectable external inputs for interrupt generation and wake-up
 - Fastest sample-rate 12.5 ns
- Eight-channel interrupt-driven single-cycle data transfer with Peripheral Event Controller (PEC), 24-bit pointers cover total address space
- Clock generation from internal or external clock sources, using on-chip PLL or prescaler
- Hardware CRC-Checker with Programmable Polynomial to Supervise On-Chip Memory Areas
- On-chip memory modules
 - 2 Kbytes on-chip dual-port RAM (DPRAM)
 - 6 Kbytes on-chip data SRAM (DSRAM)
 - 4 Kbytes on-chip program/data SRAM (PSRAM)
 - Up to 160 Kbytes on-chip program memory (Flash memory)
 - Memory content protection through Error Correction Code (ECC) for Flash memory and through parity for RAMs

Summary of Features

1.3 Definition of Feature Variants

The XC233[01]D types are offered with several Flash memory sizes. **Table 3** and **Table 4** describe the location of the available Flash memory.

Table 3 Continuous Flash Memory Ranges

Total Flash Size	1st Range ¹⁾	2nd Range	3rd Range
160 Kbytes	C0'0000 _H	C1'0000 _H	C4'0000 _H
	C0'EFFF _H	C2'0FFF _H	C4'7FFF _H
96 Kbytes	C0'0000 _H	C1'0000 _H	C4'0000 _H
	C0'EFFF _H	C1'0FFF _H	C4'7FFF _H

1) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0'F000_H to C0'FFFF_H).

Table 4 Flash Memory Module Allocation (in Kbytes)

Total Flash Size	Flash 0 ¹⁾	Flash 1
160	128	32
96	64	32

1) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0'F000_H to C0'FFF_H).

The XC233[01]D types are offered with different interface options. Table 5 lists the available channels for each option.

Table 5 Interface Channel Association

Total Number	Available Channels / Message Objects
19 ADC0 channels	CH[11:0], CH13, CH[20:15]
2 CAN nodes	CAN0, CAN1 32 message objects
4 serial channels	U0C0, U0C1, U1C0, U1C1

XC2330D, XC2331D XC2000 Family / Econo Line

General Device Information

Tabl	e 6 Pin De	finitior	ns and	Functions (cont'd)
Pin	Symbol	Ctrl.	Туре	Function
43	P10.0	O0 / I	St/B	Bit 0 of Port 10, General Purpose Input/Output
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output
	CCU60_CC6 0	O2	St/B	CCU60 Channel 0 Output
	CCU60_CC6 0INA	I	St/B	CCU60 Channel 0 Input
	ESR1_2	I	St/B	ESR1 Trigger Input 2
	U0C0_DX0A	I	St/B	USIC0 Channel 0 Shift Data Input
	U0C1_DX0A	I	St/B	USIC0 Channel 1 Shift Data Input
	U1C1_DX0C	I	St/B	USIC1 Channel 1 Shift Data Input
44	P10.1	O0 / I	St/B	Bit 1 of Port 10, General Purpose Input/Output
	U0C0_DOUT	01	St/B	USIC0 Channel 0 Shift Data Output
	CCU60_CC6 1	O2	St/B	CCU60 Channel 1 Output
	CCU60_CC6 1INA	I	St/B	CCU60 Channel 1 Input
	U0C0_DX0B	I	St/B	USIC0 Channel 0 Shift Data Input
	U0C0_DX1A	I	St/B	USIC0 Channel 0 Shift Clock Input
45	P10.2	O0 / I	St/B	Bit 2 of Port 10, General Purpose Input/Output
	U0C0_SCLK OUT	01	St/B	USIC0 Channel 0 Shift Clock Output
	CCU60_CC6 2	O2	St/B	CCU60 Channel 2 Output
	CCU60_CC6 2INA	I	St/B	CCU60 Channel 2 Input
	U0C0_DX1B	I	St/B	USIC0 Channel 0 Shift Clock Input
46	P10.3	O0 / I	St/B	Bit 3 of Port 10, General Purpose Input/Output
	CCU60_COU T60	O2	St/B	CCU60 Channel 0 Output
	U0C0_DX2A	I	St/B	USIC0 Channel 0 Shift Control Input
	U0C1_DX2A	I	St/B	USIC0 Channel 1 Shift Control Input
	RxDC1D	I	St/B	CAN Node 1 Receive Data Input

Functional Description

3.1 Memory Subsystem and Organization

The memory space of the XC233[01]D is configured in the von Neumann architecture. In this architecture all internal and external resources, including code memory, data memory, registers and I/O ports, are organized in the same linear address space.

Address Area	Start Loc.	End Loc.	Area Size ²⁾	Notes
IMB register space	FF'FF00 _H	FF'FFFF _H	256 bytes	
Reserved	F0'0000 _H	FF'FEFF _H	< 1 Mbyte	Minus IMB registers.
Reserved for EPSRAM	E8'1000 _H	EF'FFFF _H	508 Kbytes	Mirrors EPSRAM
Emulated PSRAM	E8'0000 _H	E8'0FFF _H	up to 4 Kbytes	With Flash timing.
Reserved for PSRAM	E0'1000 _H	E7'FFFF _H	508 Kbytes	Mirrors PSRAM
PSRAM	E0'0000 _H	E0'0FFF _H	up to 4 Kbytes	Program SRAM.
Reserved for Flash	C4'8000 _H	DF'FFFF _H	1760 Kbytes	
Flash 1	C4'0000 _H	C4'7FFF _H	32 Kbytes	
Reserved for Flash	C2'1000 _H	C3'FFFF _H	124 Kbytes	
Flash 0	C0'0000 _H	C2'0FFF _H	132 Kbytes ³⁾	
External memory area	40'0000 _H	BF'FFFF _H	8 Mbytes	
External IO area ⁴⁾	21'0000 _H	3F'FFFF _H	1984 Kbytes	
Reserved	20'B800 _H	20'FFFF _H	18 Kbytes	
USIC0-1 alternate regs.	20'B000 _H	20'B7FF _H	2 Kbytes	Accessed via LXBus Controller
MultiCAN alternate regs.	20'8000 _H	20'AFFF _H	12 Kbytes	Accessed via LXBus Controller
Reserved	20'5000 _H	20'7FFF _H	12 Kbytes	
USIC0-1 registers	20'4000 _H	20'4FFF _H	4 Kbytes	Accessed via LXBus Controller
MultiCAN registers	20'0000 _H	20'3FFF _H	16 Kbytes	Accessed via LXBus Controller
External memory area	01'0000 _H	1F'FFFF _H	1984 Kbytes	
SFR area	00'FE00 _H	00'FFFF _H	0.5 Kbytes	
Dual-port RAM (DPRAM)	00'F600 _H	00'FDFF _H	2 Kbytes	
Reserved for DPRAM	00'F200 _H	00'F5FF _H	1 Kbytes	

Table 8XC233[01]D Memory Map 1)

Functional Description

3.9 General Purpose Timer (GPT12E) Unit

The GPT12E unit is a very flexible multifunctional timer/counter structure which can be used for many different timing tasks such as event timing and counting, pulse width and duty cycle measurements, pulse generation, or pulse multiplication.

The GPT12E unit incorporates five 16-bit timers organized in two separate modules, GPT1 and GPT2. Each timer in each module may either operate independently in a number of different modes or be concatenated with another timer of the same module.

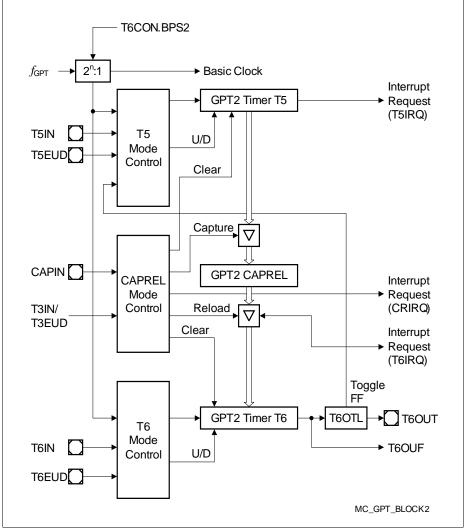
Each of the three timers T2, T3, T4 of **module GPT1** can be configured individually for one of four basic modes of operation: Timer, Gated Timer, Counter, and Incremental Interface Mode. In Timer Mode, the input clock for a timer is derived from the system clock and divided by a programmable prescaler. Counter Mode allows timer clocking in reference to external events.

Pulse width or duty cycle measurement is supported in Gated Timer Mode, where the operation of a timer is controlled by the 'gate' level on an external input pin. For these purposes each timer has one associated port pin (TxIN) which serves as a gate or clock input. The maximum resolution of the timers in module GPT1 is 4 system clock cycles.

The counting direction (up/down) for each timer can be programmed by software or altered dynamically by an external signal on a port pin (TxEUD), e.g. to facilitate position tracking.

In Incremental Interface Mode the GPT1 timers can be directly connected to the incremental position sensor signals A and B through their respective inputs TxIN and TxEUD. Direction and counting signals are internally derived from these two input signals, so that the contents of the respective timer Tx corresponds to the sensor position. The third position sensor signal TOP0 can be connected to an interrupt input.

Timer T3 has an output toggle latch (T3OTL) which changes its state on each timer overflow/underflow. The state of this latch may be output on pin T3OUT e.g. for time out monitoring of external hardware components. It may also be used internally to clock timers T2 and T4 for measuring long time periods with high resolution.

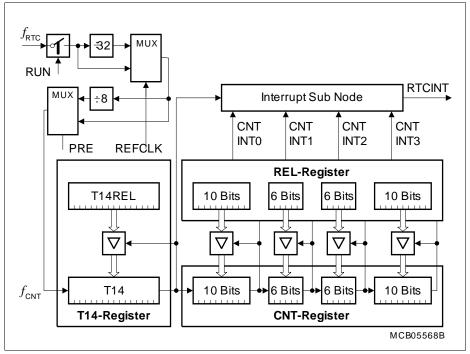

In addition to the basic operating modes, T2 and T4 may be configured as reload or capture register for timer T3. A timer used as capture or reload register is stopped. The contents of timer T3 is captured into T2 or T4 in response to a signal at the associated input pin (TxIN). Timer T3 is reloaded with the contents of T2 or T4, triggered either by an external signal or a selectable state transition of its toggle latch T3OTL. When both T2 and T4 are configured to alternately reload T3 on opposite state transitions of T3OTL with the low and high times of a PWM signal, this signal can be continuously generated without software intervention.

Note: Signals T2IN, T2EUD, T4EUD, T6IN and T6EUD are not connected to pins.

XC2330D, XC2331D XC2000 Family / Econo Line

Functional Description

Functional Description


3.10 Real Time Clock

The Real Time Clock (RTC) module of the XC233[01]D can be clocked with a clock signal selected from internal sources or external sources (pins).

The RTC basically consists of a chain of divider blocks:

- Selectable 32:1 and 8:1 dividers (on off)
- The reloadable 16-bit timer T14
- The 32-bit RTC timer block (accessible via registers RTCH and RTCL) consisting of:
 a reloadable 10-bit timer
 - a reloadable 6-bit timer
 - a reloadable 6-bit timer
 - a reloadable 10-bit timer

All timers count up. Each timer can generate an interrupt request. All requests are combined to a common node request.

Figure 9 RTC Block Diagram

Note: The registers associated with the RTC are only affected by a power reset.

8) Value is controlled by on-chip regulator.

4.2 Voltage Range definitions

The XC233[01]D timing depends on the supply voltage. If such a dependency exists the timing values are given for 2 voltage areas commonly used. The voltage areas are defined in the following tables.

Table 14 Upper Voltage Range Definition

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Digital supply voltage for IO pads and voltage regulators	$V_{\rm DDP}{ m SR}$	4.5	5.0	5.5	V	

Table 15 Lower Voltage Range Definition

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Digital supply voltage for IO pads and voltage regulators	$V_{\rm DDP}{ m SR}$	3.0	3.3	4.5	V	

4.2.1 Parameter Interpretation

The parameters listed in the following include both the characteristics of the XC233[01]D and its demands on the system. To aid in correctly interpreting the parameters when evaluating them for a design, they are marked accordingly in the column "Symbol":

CC (Controller Characteristics):

The logic of the XC233[01]D provides signals with the specified characteristics.

SR (System Requirement):

The external system must provide signals with the specified characteristics to the XC233[01]D.

4.3 DC Parameters

These parameters are static or average values that may be exceeded during switching transitions (e.g. output current).

The XC233[01]D can operate within a wide supply voltage range from 3.0 V to 5.5 V. However, during operation this supply voltage must remain within 10 percent of the selected nominal supply voltage. It cannot vary across the full operating voltage range.

Because of the supply voltage restriction and because electrical behavior depends on the supply voltage, the parameters are specified separately for the upper and the lower voltage range.

During operation, the supply voltages may only change with a maximum speed of dV/dt < 1 V/ms.

Leakage current is strongly dependent on the operating temperature and the voltage level at the respective pin. The maximum values in the following tables apply under worst case conditions, i.e. maximum temperature and an input level equal to the supply voltage.

The value for the leakage current in an application can be determined by using the respective leakage derating formula (see tables) with values from that application.

The pads of the XC233[01]D are designed to operate in various driver modes. The DC parameter specifications refer to the pad current limits specified in **Section 4.7.4**.

4.3.1 DC Parameters for Upper Voltage Area

Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current I_{OV} .

Note: Operating Conditions apply.

Table 16 is valid under the following conditions: $V_{\text{DDP}} \le 5.5 \text{ V}$; V_{DDP} typ. 5 V; $V_{\text{DDP}} \ge 4.5 \text{ V}$

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Pin capacitance (digital inputs/outputs).	C _{IO} CC	_	-	10	pF	not subject to production test
Input Hysteresis ¹⁾	HYS CC	0.11 x V_{DDP}	_	_	V	$R_{\rm S}$ = 0 Ohm
Absolute input leakage current on pins of analog ports ²⁾	I _{OZ1} CC	-	10	200	nA	$V_{\rm IN}$ > $V_{\rm SS}$; $V_{\rm IN}$ < $V_{\rm DDP}$
Absolute input leakage current for all other pins. 2)3)	I _{OZ2} CC	_	0.2	5	μΑ	$T_{ m J} \leq$ 110 °C; $V_{ m IN} > V_{ m SS}$; $V_{ m IN} < V_{ m DDP}$
		-	0.2	10	μA	$T_{ m J} \leq$ 150 °C; $V_{ m IN} > V_{ m SS}$; $V_{ m IN} < V_{ m DDP}$
Pull Level Force Current ⁴⁾	I _{PLF} SR	220	-	-	μΑ	$V_{\text{IN}} \geq V_{\text{IHmin}}$ (pulldown_ena bled); $V_{\text{IN}} \leq V_{\text{ILmax}}$ (pullup_enable d)
Pull Level Keep Current ⁵⁾	I _{PLK} SR	_	_	30	μΑ	$V_{\rm IN} \ge V_{\rm IHmin}$ (pullup_enable d); $V_{\rm IN} \le V_{\rm ILmax}$ (pulldown_ena bled)
Input high voltage (all except XTAL1)	$V_{\rm IH}{\rm SR}$	$0.7 ext{ x}$ $V_{ ext{DDP}}$	-	V _{DDP} + 0.3	V	

 Table 16
 DC Characteristics for Upper Voltage Range

4.4 Analog/Digital Converter Parameters

These parameters describe the conditions for optimum ADC performance.

Note: Operating Conditions apply.

Table 20 ADC Parameters for All Voltage Ranges

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Switched capacitance at an analog input	C _{AINSW} CC	_	9	20	pF	not subject to production test
Total capacitance at an analog input	C _{AINT} CC	_	20	30	pF	not subject to production test
Switched capacitance at the reference input	C _{AREFSW} CC	_	15	30	pF	not subject to production test
Total capacitance at the reference input	C _{AREFT} CC	_	20	40	pF	not subject to production test
Broken wire detection delay against VAGND ²⁾	t _{BWG} CC	-	-	50 ³⁾		
Broken wire detection delay against VAREF ²⁾	t _{BWR} CC	-	-	50 ⁴⁾		
Conversion time for 8-bit result ²⁾	t _{c8} CC	(10 + S t _{SYS}	TC x t _{AD}	_{CI} + 2 x		
Conversion time for 10-bit result ²⁾	<i>t</i> _{c10} CC	(12 + S t _{SYS}	TC x t _{AD}	_{CI} + 2 x		
Conversion time for 12-bit result ²⁾	$t_{c12} CC$	$(16 + \text{STC x } t_{\text{ADCI}} + 2 \text{ x})$				
Analog reference ground	V_{AGND} SR	V _{SS} - 0.05	-	1.5	V	
Analog input voltage range	$V_{\rm AIN}{ m SR}$	$V_{\rm AGND}$	-	V_{AREF}	V	5)
Analog reference voltage	V _{AREF} SR	V _{AGND} + 1.0	-	V _{DDPB} + 0.05	V	

1) These parameter values cover the complete operating range. Under relaxed operating conditions (temperature, supply voltage) typical values can be used for calculation.

- 2) This parameter includes the sample time (also the additional sample time specified by STC), the time to determine the digital result and the time to load the result register with the conversion result. Values for the basic clock t_{ADC1} depend on programming.
- The broken wire detection delay against V_{AGND} is measured in numbers of consecutive precharge cycles at a conversion rate of not more than 500 μs. Result below 10% (66_H)
- 4) The broken wire detection delay against V_{AREF} is measured in numbers of consecutive precharge cycles at a conversion rate of not more than 10 μs. This function is influenced by leakage current, in particular at high temperature. Result above 80% (332_µ)
- V_{AIN} may exceed V_{AGND} or V_{AREF} up to the absolute maximum ratings. However, the conversion result in these cases will be X000_H or X3FF_H, respectively.

Parameter	Symbol		Values	S	Unit	Note /
		Min.	Тур.	Max.		Test Condition
Input resistance of the selected analog channel	R _{AIN} CC	-	0.9	1.5	kOh m	not subject to production test
Input resistance of the reference input	R _{AREF} CC	-	0.5	1	kOh m	not subject to production test
Differential Non-Linearity Error ²⁾³⁾⁴⁾⁵⁾	EA _{DNL} CC	-	2.5	5.0	LSB	
Gain Error ²⁾³⁾⁴⁾⁵⁾	EA _{GAIN} CC	-	2.5	6.0	LSB	
Integral Non- Linearity ²⁾³⁾⁴⁾⁵⁾	EA _{INL} CC	-	2.0	4.0	LSB	
Offset Error ²⁾³⁾⁴⁾⁵⁾	EA _{OFF} CC	-	2.0	4.0	LSB	
Analog clock frequency	$f_{\sf ADCI}{\sf SR}$	2	-	20	MHz	Std. reference input (V_{AREF})
		2	-	17.5	MHz	Alt. reference input (CH0)
Total Unadjusted Error ³⁾⁴⁾	TUE CC	-	2.5	5.5	LSB	6)7)
Wakeup time from analog powerdown, fast mode	t _{WAF} CC	-	-	7.0	μS	
Wakeup time from analog powerdown, slow mode	t _{WAS} CC	-	-	11.5	μS	

Table 21 ADC Parameters for Upper Voltage Range

Coding of bit fields LEVxV in SWD Configuration Registers

After power-on the supply watch dog is preconfigured to operate in the lower voltage range.

Code	Default Voltage Level	Notes ¹⁾
0000 _B	-	out of valid operation range
0001 _B	3.0 V	LEV1V: reset request
0010 _B - 0101 _B	3.1 V - 3.4 V	step width is 0.1 V
0110 _B	3.6 V	
0111 _B	4.0 V	
1000 _B	4.2 V	
1001 _B	4.5 V	LEV2V: no request
1010 _B - 1110 _B	4.6 V - 5.0 V	step width is 0.1 V
1111 _B	5.5 V	

Table 25 Coding of bit fields LEVxV in Register SWDCON0

1) The indicated default levels are selected automatically after a power reset.

Coding of bit fields LEVxV in PVC Configuration Registers

The core voltages are controlled internally to the nominal value of 1.5 V; a variation of ± 10 % is allowed. These operation conditions limit the possible PVC monitoring values to the predefined reset values shown in Table 26.

Table 26 Coding of bit fields LEVxV in Registers PVCyC
--

Code	Default Voltage Level	Notes ¹⁾
000 _B - 011 _B	-	out of valid operation range
100 _B	1.35 V	LEV1V: reset request
101 _B	1.45 V	LEV2V: interrupt request ²⁾
110 _B - 111 _B	-	out of valid operation range

1) The indicated default levels are selected automatically after a power reset.

2) Due to variations of the tolerance of both the Embedded Voltage Regulators (EVR) and PVC levels, this interrupt can be triggered inadvertently, even though the core voltage is within the normal range. It is, therefore, recommended not to use this warning level.

4.6 Flash Memory Parameters

The XC233[01]D is delivered with all Flash sectors erased and with no protection installed.

The data retention time of the XC233[01]D's Flash memory (i.e. the time after which stored data can still be retrieved) depends on the number of times the Flash memory has been erased and programmed.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Table 27Flash Parameters

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Parallel Flash module program/erase limit depending on Flash read activity	N _{PP} SR	-	_	2 ¹⁾		$N_{FL_RD} \leq 1$
		-	-	1 ²⁾		N _{FL_RD} > 1
Flash erase endurance for security pages	$N_{\rm SEC}~{ m SR}$	10	-	-	cycle s	$t_{\rm RET} \ge 20$ years
Flash wait states ³⁾	N _{WSFLASH} SR	1	-	-		f _{SYS} ≤ 8 MHz
		2	-	-		$f_{SYS} \le 13 \text{ MHz}$
		3	-	-		$f_{\rm SYS} \le 17 \; \rm MHz$
		4	-	-		$f_{\rm SYS}$ > 17 MHz
Erase time per sector/page	t _{ER} CC	-	7 ⁴⁾	8.0	ms	
Programming time per page	t _{PR} CC	-	3 ⁴⁾	3.5	ms	
Data retention time	t _{RET} CC	20	-	-	year s	$N_{\rm ER} \le$ 1,000 cycl es
Drain disturb limit	$N_{\rm DD}{ m SR}$	32	-	-	cycle s	

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Number of erase cycles	N _{ER} SR	-	-	15000	cycle s	$t_{\text{RET}} \ge 5$ years; Valid for up to 64 user selected sectors (data storage)
		-	-	1000	cycle s	$t_{\text{RET}} \ge 20$ years

Table 27 Flash Parameters (cont'd)

 All Flash module(s) can be erased/programmed while code is executed and/or data is read from only one Flash module or from PSRAM. The Flash module that delivers code/data can, of course, not be erased/programmed.

2) Flash module 1 can be erased/programmed while code is executed and/or data is read from Flash module 0.

- 3) Value of IMB_IMBCTRL.WSFLASH.
- 4) Programming and erase times depend on the internal Flash clock source. The control state machine needs a few system clock cycles. This increases the stated durations noticably only at extremely low system clock frequencies.

Access to the XC233[01]D Flash modules is controlled by the IMB. Built-in prefetch mechanisms optimize the performance for sequential access.

Flash access waitstates only affect non-sequential access. Due to prefetch mechanisms, the performance for sequential access (depending on the software structure) is only partially influenced by waitstates.

4.7.4 Pad Properties

The output pad drivers of the XC233[01]D can operate in several user-selectable modes. Strong driver mode allows controlling external components requiring higher currents such as power bridges or LEDs. Reducing the driving power of an output pad reduces electromagnetic emissions (EME). In strong driver mode, selecting a slower edge reduces EME.

The dynamic behavior, i.e. the rise time and fall time, depends on the applied external capacitance that must be charged and discharged. Timing values are given for a capacitance of 20 pF, unless otherwise noted.

In general, the performance of a pad driver depends on the available supply voltage V_{DDP} . Therefore the following tables list the pad parameters for the upper voltage range and the lower voltage range, respectively.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Table 30 is valid under the following conditions: $V_{\text{DDP}} \le 5.5 \text{ V}$; V_{DDP} typ. 5 V; $V_{\text{DDP}} \ge 4.5 \text{ V}$

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Maximum output driver current (absolute value) ¹⁾	I _{Omax} CC	-	-	3.0	mA	Driver_Strength = Medium
		-	-	5.0	mA	Driver_Strength = Strong
		-	-	0.5	mA	Driver_Strength = Weak
Nominal output driver current (absolute value)	I _{Onom} CC	-	-	1.0	mA	Driver_Strength = Medium
		-	-	1.6	mA	Driver_Strength = Strong
		-	-	0.25	mA	Driver_Strength = Weak

 Table 30
 Standard Pad Parameters for Upper Voltage Range

Table 37 is valid under the following conditions: C_{L} = 20 pF; voltage_range= lower

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
DAP0 clock period	<i>t</i> ₁₁ SR	100 ¹⁾	-	-	ns	
DAP0 high time	t ₁₂ SR	8	-	-	ns	
DAP0 low time	t ₁₃ SR	8	-	-	ns	
DAP0 clock rise time	t ₁₄ SR	-	-	4	ns	
DAP0 clock fall time	t ₁₅ SR	-	-	4	ns	
DAP1 setup to DAP0 rising edge	<i>t</i> ₁₆ SR	6	-	-	ns	pad_type= stan dard
DAP1 hold after DAP0 rising edge	<i>t</i> ₁₇ SR	6	-	-	ns	pad_type= stan dard
DAP1 valid per DAP0 clock period ²⁾	<i>t</i> ₁₉ CC	87	92	-	ns	pad_type= stan dard

 Table 37
 DAP Interface Timing for Lower Voltage Range

1) The debug interface cannot operate faster than the overall system, therefore $t_{11} \ge t_{SYS}$.

2) The Host has to find a suitable sampling point by analyzing the sync telegram response.

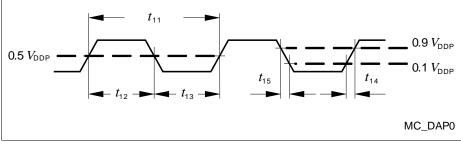


Figure 22 Test Clock Timing (DAP0)

Package and Reliability

5 Package and Reliability

The XC2000 Family devices use the package type:

• PG-LQFP (Plastic Green - Low Profile Quad Flat Package)

The following specifications must be regarded to ensure proper integration of the XC233[01]D in its target environment.

5.1 Packaging

These parameters specify the packaging rather than the silicon.

Parameter	Symbol	Limit	Values	Unit	Notes
		Min.	Max.		
Exposed Pad Dimension	$E x \times E y$	_	5.4 imes 5.4	mm	-
Power Dissipation	P_{DISS}	-	0.7	W	-
Thermal resistance Junction-Ambient	$R_{\odot JA}$	-	65	K/W	No thermal via, 2-layer ¹⁾
			47	K/W	No thermal via, 4-layer ²⁾
			45	K/W	4-layer, no pad ³⁾
			32	K/W	4-layer, pad ⁴⁾

Table 40 Package Parameters (PG-LQFP-64-22/-24)

 Device mounted on a 2-layer JEDEC board (according to JESD 51-3) without thermal vias; exposed pad not soldered.

 Device mounted on a 4-layer JEDEC board (according to JESD 51-7) without thermal vias; exposed pad not soldered.

- Device mounted on a 4-layer JEDEC board (according to JESD 51-7) with thermal vias; exposed pad not soldered.
- Device mounted on a 4-layer JEDEC board (according to JESD 51-7) with thermal vias; exposed pad soldered to the board.
- Note: To improve the EMC behavior, it is recommended to connect the exposed pad to the board ground, independent of the thermal requirements. Board layout examples are given in an application note.

Package Compatibility Considerations

The XC233[01]D is a member of the XC2000 Family of microcontrollers. It is also compatible to a certain extent with members of similar families or subfamilies.

Each package is optimized for the device it houses. Therefore, there may be slight differences between packages of the same pin-count but for different device types. In