

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	24MHz
Connectivity	I ² C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART
Peripherals	Brown-out Detect/Reset, CapSense, LCD, LVD, POR, PWM, WDT
Number of I/O	27
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4025lqi-s402t

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

Functional Definition	4
CPU and Memory Subsystem	4
System Resources	4
Analog Blocks	5
Programmable Digital Blocks	5
Fixed Function Digital	5
GPIO	6
Special Function Peripherals	6
Pinouts	7
Alternate Pin Functions	8
Power	10
Mode 1: 1.8 V to 5.5 V External Supply	10
Mode 2: 1.8 V ±5% External Supply	10
Development Support	11
Documentation	11
Online	11
Tools	11
Electrical Specifications	
Absolute Maximum Ratings	
Device Level Specifications	

Analog Peripherals	
Digital Peripherals	
Memory	
System Resources	
Ordering Information	
Packaging	
Package Diagrams	
Acronyms	
Document Conventions	
Units of Measure	
Revision History	
Sales, Solutions, and Legal Info	
Worldwide Sales and Design	
Products	• •
PSoC® Solutions	
Cypress Developer Communi	
Technical Support	

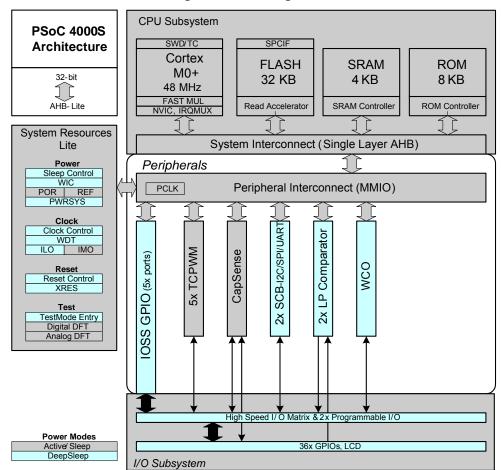


Figure 1. Block Diagram

PSoC 4000S devices include extensive support for programming, testing, debugging, and tracing both hardware and firmware.

The ARM Serial-Wire Debug (SWD) interface supports all programming and debug features of the device.

Complete debug-on-chip functionality enables full-device debugging in the final system using the standard production device. It does not require special interfaces, debugging pods, simulators, or emulators. Only the standard programming connections are required to fully support debug.

The PSoC Creator IDE provides fully integrated programming and debug support for the PSoC 4000S devices. The SWD interface is fully compatible with industry-standard third-party tools. The PSoC 4000S family provides a level of security not possible with multi-chip application solutions or with microcontrollers. It has the following advantages:

- Allows disabling of debug features
- Robust flash protection
- Allows customer-proprietary functionality to be implemented in on-chip programmable blocks

The debug circuits are enabled by default and can be disabled in firmware. If they are not enabled, the only way to re-enable them is to erase the entire device, clear flash protection, and reprogram the device with new firmware that enables debugging. Thus firmware control of debugging cannot be over-ridden without erasing the firmware thus providing security.

Additionally, all device interfaces can be permanently disabled (device security) for applications concerned about phishing attacks due to a maliciously reprogrammed device or attempts to defeat security by starting and interrupting flash programming sequences. All programming, debug, and test interfaces are disabled when maximum device security is enabled. Therefore, PSoC 4000S, with device security enabled, may not be returned for failure analysis. This is a trade-off the PSoC 4000S allows the customer to make.

Functional Definition

CPU and Memory Subsystem

CPU

The Cortex-M0+ CPU in the PSoC 4000S is part of the 32-bit MCU subsystem, which is optimized for low-power operation with extensive clock gating. Most instructions are 16 bits in length and the CPU executes a subset of the Thumb-2 instruction set. It includes a nested vectored interrupt controller (NVIC) block with eight interrupt inputs and also includes a Wakeup Interrupt Controller (WIC). The WIC can wake the processor from Deep Sleep mode, allowing power to be switched off to the main processor when the chip is in Deep Sleep mode.

The CPU also includes a debug interface, the serial wire debug (SWD) interface, which is a two-wire form of JTAG. The debug configuration used for PSoC 4000S has four breakpoint (address) comparators and two watchpoint (data) comparators.

Flash

The PSoC 4000S device has a flash module with a flash accelerator, tightly coupled to the CPU to improve average access times from the flash block. The low-power flash block is designed to deliver two wait-state (WS) access time at 48 MHz. The flash accelerator delivers 85% of single-cycle SRAM access performance on average.

SRAM

Four KB of SRAM are provided with zero wait-state access at 48 MHz.

SROM

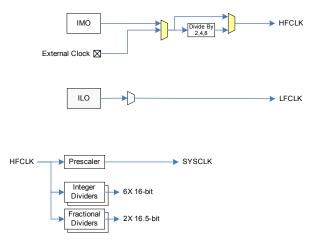
A supervisory ROM that contains boot and configuration routines is provided.

System Resources

Power System

The power system is described in detail in the section Power on page 10. It provides assurance that voltage levels are as required for each respective mode and either delays mode entry (for example, on power-on reset (POR)) until voltage levels are as required for proper functionality, or generates resets (for example, on brown-out detection). The PSoC 4000S operates with a single external supply over the range of either 1.8 V \pm 5% (externally regulated) or 1.8 to 5.5 V (internally regulated) and has three different power modes, transitions between which are managed by the power system. The PSoC 4000S provides Active, Sleep, and Deep Sleep low-power modes.

All subsystems are operational in Active mode. The CPU subsystem (CPU, flash, and SRAM) is clock-gated off in Sleep mode, while all peripherals and interrupts are active with instantaneous wake-up on a wake-up event. In Deep Sleep mode, the high-speed clock and associated circuitry is switched off; wake-up from this mode takes 35 µs. The opamps can remain operational in Deep Sleep mode.


Clock System

The PSoC 4000S clock system is responsible for providing clocks to all subsystems that require clocks and for switching between different clock sources without glitching. In addition, the clock system ensures that there are no metastable conditions.

The clock system for the PSoC 4000S consists of the internal main oscillator (IMO), internal low-frequency oscillator (ILO), a 32 kHz Watch Crystal Oscillator (WCO) and provision for an external clock. Clock dividers are provided to generate clocks for peripherals on a fine-grained basis. Fractional dividers are also provided to enable clocking of higher data rates for UARTs.

The HFCLK signal can be divided down to generate synchronous clocks for the analog and digital peripherals. There are eight clock dividers for the PSoC 4000S, two of those are fractional dividers. The 16-bit capability allows flexible generation of fine-grained frequency values, and is fully supported in PSoC Creator.

Figure 2. PSoC 4000S MCU Clocking Architecture

IMO Clock Source

The IMO is the primary source of internal clocking in the PSoC 4000S. It is trimmed during testing to achieve the specified accuracy. The IMO default frequency is 24 MHz and it can be adjusted from 24 to 48 MHz in steps of 4 MHz. The IMO tolerance with Cypress-provided calibration settings is ±2%.

ILO Clock Source

The ILO is a very low power, nominally 40-kHz oscillator, which is primarily used to generate clocks for the watchdog timer (WDT) and peripheral operation in Deep Sleep mode. ILO-driven counters can be calibrated to the IMO to improve accuracy. Cypress provides a software component, which does the calibration.

Watch Crystal Oscillator (WCO)

The PSoC 4000S clock subsystem also implements a low-frequency (32-kHz watch crystal) oscillator that can be used for precision timing applications.

Watchdog Timer

A watchdog timer is implemented in the clock block running from the ILO; this allows watchdog operation during Deep Sleep and generates a watchdog reset if not serviced before the set timeout occurs. The watchdog reset is recorded in a Reset Cause register, which is firmware readable.

Reset

The PSoC 4000S can be reset from a variety of sources including a software reset. Reset events are asynchronous and guarantee reversion to a known state. The reset cause is recorded in a register, which is sticky through reset and allows software to determine the cause of the reset. An XRES pin is reserved for external reset by asserting it active low. The XRES pin has an internal pull-up resistor that is always enabled.

Voltage Reference

The PSoC 4000S reference system generates all internally required references. A 1.2-V voltage reference is provided for the comparator. The IDACs are based on a $\pm 5\%$ reference.

Analog Blocks

Low-power Comparators (LPC)

The PSoC 4000S has a pair of low-power comparators, which can also operate in Deep Sleep modes. This allows the analog system blocks to be disabled while retaining the ability to monitor external voltage levels during low-power modes. The comparator outputs are normally synchronized to avoid metastability unless operating in an asynchronous power mode where the system wake-up circuit is activated by a comparator switch event. The LPC outputs can be routed to pins.

Current DACs

The PSoC 4000S has two IDACs, which can drive any of the pins on the chip. These IDACs have programmable current ranges.

Analog Multiplexed Buses

The PSoC 4000S has two concentric independent buses that go around the periphery of the chip. These buses (called amux buses) are connected to firmware-programmable analog switches that allow the chip's internal resources (IDACs, comparator) to connect to any pin on the I/O Ports.

Programmable Digital Blocks

The programmable I/O (Smart I/O) block is a fabric of switches and LUTs that allows Boolean functions to be performed in signals being routed to the pins of a GPIO port. The Smart I/O can perform logical operations on input pins to the chip and on signals going out as outputs.

Fixed Function Digital

Timer/Counter/PWM (TCPWM) Block

The TCPWM block consists of a 16-bit counter with user-programmable period length. There is a capture register to record the count value at the time of an event (which may be an I/O event), a period register that is used to either stop or auto-reload the counter when its count is equal to the period register, and compare registers to generate compare value signals that are used as PWM duty cycle outputs. The block also provides true and complementary outputs with programmable offset between them to allow use as dead-band programmable complementary PWM outputs. It also has a Kill input to force outputs to a predetermined state; for example, this is used in motor drive systems when an over-current state is indicated and the PWM driving the FETs needs to be shut off immediately with no time for software intervention. There are five TCPWM blocks in the PSoC 4000S.

Serial Communication Block (SCB)

The PSoC 4000S has two serial communication blocks, which can be programmed to have SPI, I2C, or UART functionality.

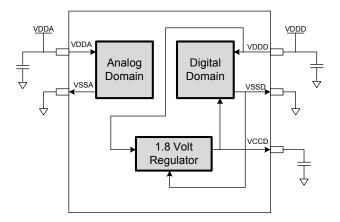
I²C Mode: The hardware I²C block implements a full multi-master and slave interface (it is capable of multi-master arbitration). This block is capable of operating at speeds of up to 400 kbps (Fast Mode) and has flexible buffering options to reduce interrupt overhead and latency for the CPU. It also supports EZI2C that creates a mailbox address range in the memory of the PSoC 4000S and effectively reduces I²C communication to reading from and writing to an array in memory. In addition, the block supports an 8-deep FIFO for receive and transmit which, by increasing the time given for the CPU to read data, greatly reduces the need for clock stretching caused by the CPU not having read data on time.

The I²C peripheral is compatible with the I²C Standard-mode and Fast-mode devices as defined in the NXP I²C-bus specification and user manual (UM10204). The I²C bus I/O is implemented with GPIO in open-drain modes.

The PSoC 4000S is not completely compliant with the I^2C spec in the following respect:

GPIO cells are not overvoltage tolerant and, therefore, cannot be hot-swapped or powered up independently of the rest of the I²C system.

UART Mode: This is a full-feature UART operating at up to 1 Mbps. It supports automotive single-wire interface (LIN), infrared interface (IrDA), and SmartCard (ISO7816) protocols, all of which are minor variants of the basic UART protocol. In addition, it supports the 9-bit multiprocessor mode that allows addressing of peripherals connected over common RX and TX lines. Common UART functions such as parity error, break detect, and frame error are supported. An 8-deep FIFO allows much greater CPU service latencies to be tolerated.


SPI Mode: The SPI mode supports full Motorola SPI, TI SSP (adds a start pulse used to synchronize SPI Codecs), and National Microwire (half-duplex form of SPI). The SPI block can use the FIFO.

Power

The following power system diagram shows the set of power supply pins as implemented for the PSoC 4000S. The system has one regulator in Active mode for the digital circuitry. There is no analog regulator; the analog circuits run directly from the V_{DD} input.

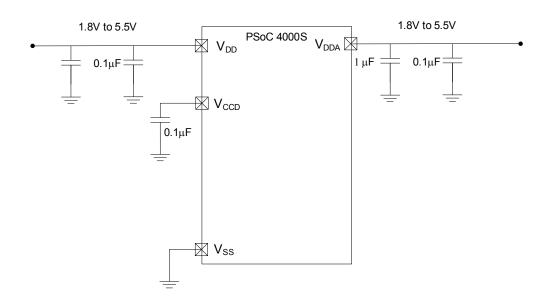
Figure 3. Power Supply Connections

There are two distinct modes of operation. In Mode 1, the supply voltage range is 1.8 V to 5.5 V (unregulated externally; internal regulator operational). In Mode 2, the supply range is $1.8 \text{ V} \pm 5\%$ (externally regulated; 1.71 to 1.89, internal regulator bypassed).

Mode 1: 1.8 V to 5.5 V External Supply

In this mode, the PSoC 4000S is powered by an external power supply that can be anywhere in the range of 1.8 to 5.5 V. This range is also designed for battery-powered operation. For example, the chip can be powered from a battery system that starts at 3.5 V and works down to 1.8 V. In this mode, the internal regulator of the PSoC 4000S supplies the internal logic and its output is connected to the V_{CCD} pin. The VCCD pin must be bypassed to ground via an external capacitor (0.1 μ F; X5R ceramic or better) and must not be connected to anything else.

Mode 2: 1.8 V ±5% External Supply


In this mode, the PSoC 4000S is powered by an external power supply that must be within the range of 1.71 to 1.89 V; note that this range needs to include the power supply ripple too. In this mode, the VDD and VCCD pins are shorted together and bypassed. The internal regulator can be disabled in the firmware.

Bypass capacitors must be used from VDDD to ground. The typical practice for systems in this frequency range is to use a capacitor in the 1- μ F range, in parallel with a smaller capacitor (0.1 μ F, for example). Note that these are simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the bypass capacitor parasitic should be simulated to design and obtain optimal bypassing.

An example of a bypass scheme is shown in the following diagram.

Figure 4. External Supply Range from 1.8 V to 5.5 V with Internal Regulator Active

Power supply bypass connections example

Development Support

The PSoC 4000S family has a rich set of documentation, development tools, and online resources to assist you during your development process. Visit www.cypress.com/go/psoc4 to find out more.

Documentation

A suite of documentation supports the PSoC 4000S family to ensure that you can find answers to your questions quickly. This section contains a list of some of the key documents.

Software User Guide: A step-by-step guide for using PSoC Creator. The software user guide shows you how the PSoC Creator build process works in detail, how to use source control with PSoC Creator, and much more.

Component Datasheets: The flexibility of PSoC allows the creation of new peripherals (components) long after the device has gone into production. Component data sheets provide all of the information needed to select and use a particular component, including a functional description, API documentation, example code, and AC/DC specifications.

Application Notes: PSoC application notes discuss a particular application of PSoC in depth; examples include brushless DC motor control and on-chip filtering. Application notes often include example projects in addition to the application note document.

Technical Reference Manual: The Technical Reference Manual (TRM) contains all the technical detail you need to use a PSoC device, including a complete description of all PSoC registers. The TRM is available in the Documentation section at www.cypress.com/psoc4.

Online

In addition to print documentation, the Cypress PSoC forums connect you with fellow PSoC users and experts in PSoC from around the world, 24 hours a day, 7 days a week.

Tools

With industry standard cores, programming, and debugging interfaces, the PSoC 4000S family is part of a development tool ecosystem. Visit us at www.cypress.com/go/psoccreator for the latest information on the revolutionary, easy to use PSoC Creator IDE, supported third party compilers, programmers, debuggers, and development kits.

Electrical Specifications

Absolute Maximum Ratings

Table 2. Absolute Maximum Ratings^[1]

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID1	V _{DDD_ABS}	Digital supply relative to V _{SS}	-0.5	I	6		-
SID2	V _{CCD_ABS}	Direct digital core voltage input relative to V_{SS}	-0.5	-	1.95	V	_
SID3	V _{GPIO_ABS}	GPIO voltage	-0.5	-	V _{DD} +0.5	1	-
SID4	I _{GPIO_ABS}	Maximum current per GPIO	-25	-	25		-
SID5	I _{GPIO_injection}	GPIO injection current, Max for V _{IH} > V _{DDD} , and Min for V _{IL} < V _{SS}	-0.5	-	0.5	mA	Current injected per pin
BID44	ESD_HBM	Electrostatic discharge human body model	2200	-	-	V	_
BID45	ESD_CDM	Electrostatic discharge charged device model	500	-	-		_
BID46	LU	Pin current for latch-up	-140	-	140	mA	_

Device Level Specifications

All specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

Table 3. DC Specifications

Typical values measured at V_{DD} = 3.3 V and 25 °C.

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID53	V _{DD}	Power supply input voltage	1.8	-	5.5		Internally regulated supply
SID255	V _{DD}	Power supply input voltage (V_{CCD} = V_{DD} = V_{DDA})	1.71	-	1.89	V	Internally unregulated supply
SID54	V _{CCD}	Output voltage (for core logic)	-	1.8	-		-
SID55	C _{EFC}	External regulator voltage bypass	_	0.1	_		X5R ceramic or better
SID56	C _{EXC}	Power supply bypass capacitor	_	1	_	μF	X5R ceramic or better
Active Mode,	V _{DD} = 1.8 V to 5.	5 V. Typical values measured at VDD =	3.3 V and	d 25 °C.			
SID10	I _{DD5}	Execute from flash; CPU at 6 MHz	-	1.2	2.0		-
SID16	I _{DD8}	Execute from flash; CPU at 24 MHz	-	2.4	4.0	mA	-
SID19	I _{DD11}	Execute from flash; CPU at 48 MHz	-	4.6	5.9		-
Sleep Mode, V							
SID22	I _{DD17}	I ² C wakeup WDT, and Comparators on	-	1.1	1.6	mA	6 MHz
SID25	I _{DD20}	I ² C wakeup, WDT, and Comparators on	_	1.4	1.9		12 MHz

Note

Usage above the absolute maximum conditions listed in Table 2 may cause permanent damage to the device. Exposure to Absolute Maximum conditions for extended periods of time may affect device reliability. The Maximum Storage Temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When used below Absolute Maximum conditions but above normal operating conditions, the device may not operate to specification.

Table 3. DC Specifications (continued)

Typical values measured at V_DD = 3.3 V and 25 $^\circ\text{C}.$

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions			
Sleep Mode, V	Sleep Mode, V _{DDD} = 1.71 V to 1.89 V (Regulator bypassed)									
SID28	I _{DD23}	I ² C wakeup, WDT, and Comparators on	_	0.7	0.9	mA	6 MHz			
SID28A	I _{DD23A}	I ² C wakeup, WDT, and Comparators on	-	0.9	1.1	mA	12 MHz			
Deep Sleep Me	ode, V _{DD} = 1.8 V	to 3.6 V (Regulator on)					•			
SID31	I _{DD26}	I ² C wakeup and WDT on	-	2.5	60	μA	-			
Deep Sleep Me	ode, V _{DD} = 3.6 V	to 5.5 V (Regulator on)					•			
SID34	I _{DD29}	I ² C wakeup and WDT on	-	2.5	60	μA	-			
Deep Sleep Me	ode, V _{DD} = V _{CCD}	= 1.71 V to 1.89 V (Regulator bypasse	d)				•			
SID37	I _{DD32}	I ² C wakeup and WDT on	-	2.5	60	μA	-			
XRES Current	KRES Current									
SID307	I _{DD_XR}	Supply current while XRES asserted	_	2	5	mA	_			

Table 4. AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID48	F _{CPU}	CPU frequency	DC	-	48	MHz	$1.71 \leq V_{DD} \leq 5.5$
SID49 ^[3]	T _{SLEEP}	Wakeup from Sleep mode	-	0	-	110	
SID50 ^[3]	T _{DEEPSLEEP}	Wakeup from Deep Sleep mode	-	35	-	μs	

Analog Peripherals

Table 9. Comparator DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID84	V _{OFFSET1}	Input offset voltage, Factory trim	-	-	±10		-
SID85	V _{OFFSET2}	Input offset voltage, Custom trim	-	-	±4	mV	-
SID86	V _{HYST}	Hysteresis when enabled	-	10	35		-
SID87	V _{ICM1}	Input common mode voltage in normal mode	0	-	V _{DDD} -0.1		Modes 1 and 2
SID247	V _{ICM2}	Input common mode voltage in low power mode	0	-	V _{DDD}	v	-
SID247A	V _{ICM3}	Input common mode voltage in ultra low power mode	0	-	V _{DDD} -1.15		V _{DDD} ≥ 2.2 V at _40 °C
SID88	C _{MRR}	Common mode rejection ratio	50	-	_	dB	V _{DDD} ≥ 2.7V
SID88A	C _{MRR}	Common mode rejection ratio	42	-	-	uБ	$V_{DDD} \le 2.7V$
SID89	I _{CMP1}	Block current, normal mode	-	-	400		-
SID248	I _{CMP2}	Block current, low power mode	-	-	100	μA	-
SID259	I _{CMP3}	Block current in ultra low-power mode	-	6	28	- Fr. (V _{DDD} ≥ 2.2 V at _40 °C
SID90	Z _{CMP}	DC Input impedance of comparator	35	-	-	MΩ	-

Table 10. Comparator AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID91	TRESP1	Response time, normal mode, 50 mV overdrive	-	38	110	ns	_
SID258	TRESP2	Response time, low power mode, 50 mV overdrive	-	70	200	115	_
SID92	TRESP3	Response time, ultra-low power mode, 200 mV overdrive	-	2.3	15	μs	V _{DDD} ≥ 2.2 V at _40 °C

CSD

Table 11. CSD and IDAC Specifications

SPEC ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SYS.PER#3	VDD_RIPPLE	Max allowed ripple on power supply, DC to 10 MHz	-	-	±50	mV	V _{DD} > 2 V (with ripple), 25 °C T _A , Sensitivity = 0.1 pF
SYS.PER#16	VDD_RIPPLE_1.8	Max allowed ripple on power supply, DC to 10 MHz	-	_	±25	mV	V_{DD} > 1.75V (with ripple), 25 °C T _A , Parasitic Capaci- tance (C _P) < 20 pF, Sensitivity ≥ 0.4 pF
SID.CSD.BLK	ICSD	Maximum block current	-	_	4000	μA	Maximum block current for both IDACs in dynamic (switching) mode including comparators, buffer, and reference generator.
SID.CSD#15	V _{REF}	Voltage reference for CSD and Comparator	0.6	1.2	V _{DDA} - 0.6	V	V _{DDA} - 0.06 or 4.4, whichever is lower
SID.CSD#15A	VREF_EXT	External Voltage reference for CSD and Comparator	0.6		V _{DDA} - 0.6	V	V _{DDA} - 0.06 or 4.4, whichever is lower
SID.CSD#16	IDAC1IDD	IDAC1 (7-bits) block current	-	-	1750	μA	
SID.CSD#17	IDAC2IDD	IDAC2 (7-bits) block current	-	-	1750	μA	
SID308	VCSD	Voltage range of operation	1.71	-	5.5	V	1.8 V ±5% or 1.8 V to 5.5 V
SID308A	VCOMPIDAC	Voltage compliance range of IDAC	0.6	-	V _{DDA} –0.6	V	V _{DDA} - 0.06 or 4.4, whichever is lower
SID309	IDAC1DNL	DNL	-1	-	1	LSB	
SID310	IDAC1INL	INL	-2	-	2	LSB	INL is ±5.5 LSB for V _{DDA} < 2 V
SID311	IDAC2DNL	DNL	-1	-	1	LSB	
SID312	IDAC2INL	INL	-2	-	2	LSB	INL is ± 5.5 LSB for V _{DDA} < 2 V
SID313	SNR	Ratio of counts of finger to noise. Guaranteed by characterization	5	-	-	Ratio	Capacitance range of 5 to 35 pF, 0.1-pF sensitivity. All use cases. V _{DDA} > 2 V.
SID314	IDAC1CRT1	Output current of IDAC1 (7 bits) in low range	4.2	-	5.4	μA	LSB = 37.5-nA typ.
SID314A	IDAC1CRT2	Output current of IDAC1(7 bits) in medium range	34	-	41	μA	LSB = 300-nA typ.
SID314B	IDAC1CRT3	Output current of IDAC1(7 bits) in high range	275	-	330	μA	LSB = 2.4-µA typ.
SID314C	IDAC1CRT12	Output current of IDAC1 (7 bits) in low range, 2X mode	8	-	10.5	μA	LSB = 75-nA typ.
SID314D	IDAC1CRT22	Output current of IDAC1(7 bits) in medium range, 2X mode	69	-	82	μA	LSB = 600-nA typ.
SID314E	IDAC1CRT32	Output current of IDAC1(7 bits) in high range, 2X mode	540	-	660	μA	LSB = 4.8-µA typ.
SID315	IDAC2CRT1	Output current of IDAC2 (7 bits) in low range	4.2	-	5.4	μA	LSB = 37.5-nA typ.
SID315A	IDAC2CRT2	Output current of IDAC2 (7 bits) in medium range	34	-	41	μA	LSB = 300-nA typ.
SID315B	IDAC2CRT3	Output current of IDAC2 (7 bits) in high range	275	-	330	μA	LSB = 2.4-µA typ.
SID315C	IDAC2CRT12	Output current of IDAC2 (7 bits) in low range, 2X mode	8	-	10.5	μA	LSB = 75-nA typ.
SID315D	IDAC2CRT22	Output current of IDAC2(7 bits) in medium range, 2X mode	69	-	82	μA	LSB = 600-nA typ.
SID315E	IDAC2CRT32	Output current of IDAC2(7 bits) in high range, 2X mode	540	-	660	μA	LSB = 4.8-µA typ.
SID315F	IDAC3CRT13	Output current of IDAC in 8-bit mode in low range	8	-	10.5	μA	LSB = 37.5-nA typ.

Table 12. 10-bit CapSense ADC Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SIDA109	A_SND	Signal-to-noise and Distortion ratio (SINAD)	-	61	_	dB	With 10-Hz input sine wave, external 2.4-V reference, V _{REF} (2.4 V) mode
SIDA110	A_BW	Input bandwidth without aliasing	-	-	22.4	kHz	8-bit resolution
SIDA111	A_INL	Integral Non Linearity. 1 ksps	-	-	2	LSB	V _{REF} = 2.4 V or greater
SIDA112	A_DNL	Differential Non Linearity. 1 ksps	-	_	1	LSB	

Digital Peripherals

Timer Counter Pulse-Width Modulator (TCPWM)

Table 13. TCPWM Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.TCPWM.1	ITCPWM1	Block current consumption at 3 MHz	-	-	45		All modes (TCPWM)
SID.TCPWM.2	ITCPWM2	Block current consumption at 12 MHz	-	-	155	μA	All modes (TCPWM)
SID.TCPWM.2A	ITCPWM3	Block current consumption at 48 MHz	-	-	650		All modes (TCPWM)
SID.TCPWM.3	TCPWM _{FREQ}	Operating frequency	_	_	Fc	MHz	Fc max = CLK_SYS Maximum = 48 MHz
SID.TCPWM.4	TPWM _{ENEXT}	Input trigger pulse width	2/Fc	-	_		For all trigger events ^[6]
SID.TCPWM.5	TPWM _{EXT}	Output trigger pulse widths	2/Fc	_	_		Minimum possible width of Overflow, Underflow, and CC (Counter equals Compare value) outputs
SID.TCPWM.5A	TC _{RES}	Resolution of counter	1/Fc	_	_	ns	Minimum time between successive counts
SID.TCPWM.5B	PWM _{RES}	PWM resolution	1/Fc	_	_		Minimum pulse width of PWM Output
SID.TCPWM.5C	Q _{RES}	Quadrature inputs resolution	1/Fc	_	_		Minimum pulse width between Quadrature phase inputs

Memory

Table 22. Flash DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID173	V _{PE}	Erase and program voltage	1.71	-	5.5	V	-

Table 23. Flash AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID174	T _{ROWWRITE} ^[9]	Row (block) write time (erase and program)	-	-	20		Row (block) = 128 bytes
SID175	T _{ROWERASE} ^[9]	Row erase time	-	-	16	ms	-
SID176	T _{ROWPROGRAM} ^[9]	Row program time after erase	-	_	4		-
SID178		Bulk erase time (32 KB)	-	_	35		-
SID180 ^[10]	T _{DEVPROG} ^[9]	Total device program time	-	-	7	Seconds	-
SID181 ^[10]	F _{END}	Flash endurance	100 K	-	-	Cycles	-
SID182 ^[10]		Flash retention. $T_A \le 55 \degree$ C, 100 K P/E cycles	20	_	-	Years	-
SID182A ^[10]	-	Flash retention. $T_A \le 85 \text{ °C}$, 10 K P/E cycles	10	_	-	Tears	_
SID256	TWS48	Number of Wait states at 48 MHz	2	_	_		CPU execution from Flash
SID257	TWS24	Number of Wait states at 24 MHz	1	_	_		CPU execution from Flash

System Resources

Power-on Reset (POR)

Table 24. Power On Reset (PRES)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.CLK#6	SR_POWER_UP	Power supply slew rate	1	-	67	V/ms	At power-up
SID185 ^[10]	V _{RISEIPOR}	Rising trip voltage	0.80	-	1.5	V	-
SID186 ^[10]	V _{FALLIPOR}	Falling trip voltage	0.70	-	1.4		-

Table 25. Brown-out Detect (BOD) for $V_{\mbox{\scriptsize CCD}}$

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
	V _{FALLPPOR}	BOD trip voltage in active and sleep modes	1.48	Ι	1.62	V	_
SID192 ^[10]	V _{FALLDPSLP}	BOD trip voltage in Deep Sleep	1.11		1.5		_

Notes
 9. It can take as much as 20 milliseconds to write to Flash. During this time the device should not be Reset, or Flash operations will be interrupted and cannot be relied on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs. Make certain that these are not inadvertently activated.

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SID398	FWCO	Crystal Frequency	-	32.768	-	kHz	
SID399	FTOL	Frequency tolerance	-	50	250	ppm	With 20-ppm crystal
SID400	ESR	Equivalent series resistance	-	50	-	kΩ	
SID401	PD	Drive Level	-	-	1	μW	
SID402	TSTART	Startup time	-	-	500	ms	
SID403	CL	Crystal Load Capacitance	6	-	12.5	pF	
SID404	C0	Crystal Shunt Capacitance	-	1.35	-	pF	
SID405	IWCO1	Operating Current (high power mode)	-	-	8	uA	
SID406	IWCO2	Operating Current (low power mode)	-	-	1	uA	

Table 31. Watch Crystal Oscillator (WCO) Specifications

Table 32. External Clock Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
	1	External clock input frequency	0	-	48	MHz	-
SID306 ^[12]	ExtClkDuty	Duty cycle; measured at V _{DD/2}	45	-	55	%	-

Table 33. Block Specs

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID262 ^[12]	T _{CLKSWITCH}	System clock source switching time	3	-	4	Periods	-

Table 34. Smart I/O Pass-through Time (Delay in Bypass Mode)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SID252	PRG_BYPASS	Max delay added by Smart I/O in bypass mode	-	-	1.6	ns	

Packaging

The PSoC 4000S will be offered in 48-pin TQFP, 40-pin QFN, 32-pin QFN, 24-pin QFN, and 25-ball WLCSP packages. Package dimensions and Cypress drawing numbers are in the following table.

Table 36. Package List

Spec ID#	Package	Description	Package Dwg
BID20	48-pin TQFP	$7 \times 7 \times 1.4$ mm height with 0.5-mm pitch	51-85135
BID27	40-pin QFN	6 × 6 × 0.6 mm height with 0.5-mm pitch	001-80659
BID34A	32-pin QFN	$5 \times 5 \times 0.6$ mm height with 0.5-mm pitch	001-42168
BID34	24-pin QFN	$4 \times 4 \times 0.6$ mm height with 0.5-mm pitch	001-13937
BID34F	25-ball WLCSP	2.02 × 1.93 × 0.48 mm height with 0.35-mm pitch	002-09957

Table 37. Package Thermal Characteristics

Parameter	Description	Package	Min	Тур	Max	Units
TA	Operating ambient temperature		-40	25	85	°C
TJ	Operating junction temperature		-40	-	100	°C
Tja	Package θ _{JA}	48-pin TQFP	-	73.5	-	°C/Watt
TJC	Package θ_{JC}	48-pin TQFP	-	33.5	-	°C/Watt
Tja	Package θ _{JA}	40-pin QFN	-	17.8	-	°C/Watt
TJC	Package θ _{JC}	40-pin QFN	-	2.8	-	°C/Watt
Tja	Package θ _{JA}	32-pin QFN	-	20.8	-	°C/Watt
TJC	Package θ _{JC}	32-pin QFN	-	5.9	-	°C/Watt
Tja	Package θ _{JA}	24-pin QFN	-	21.7	-	°C/Watt
TJC	Package θ _{JC}	24-pin QFN	-	5.6	-	°C/Watt
Tja	Package θ _{JA}	25-ball WLCSP	-	54.6	-	°C/Watt
TJC	Package θ_{JC}	25-ball WLCSP	-	0.5	-	°C/Watt

Table 38. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Maximum Time at Peak Temperature
All	260 °C	30 seconds

Table 39. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-020

Package	MSL
All except WLCSP	MSL 3
25-ball WLCSP	MSL 1

Package Diagrams

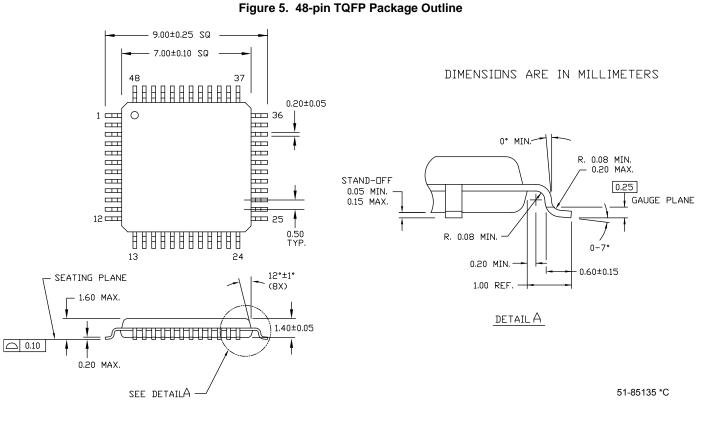


Figure 6. 40-pin QFN Package Outline

TOP VIEW

6.00 ±0.10

PIN 1 DOT

31

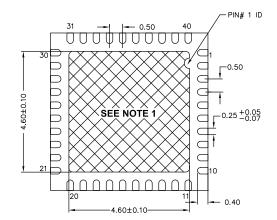
30

21

20

±0.10

6.00


40

Ο

11

0.08

BOTTOM VIEW

NOTES:

10

1. XXX HATCH AREA IS SOLDERABLE EXPOSED PAD

2. REFERENCE JEDEC # MO-248

3. PACKAGE WEIGHT: 68 ±2 mg

4. ALL DIMENSIONS ARE IN MILLIMETERS

001-80659 *A

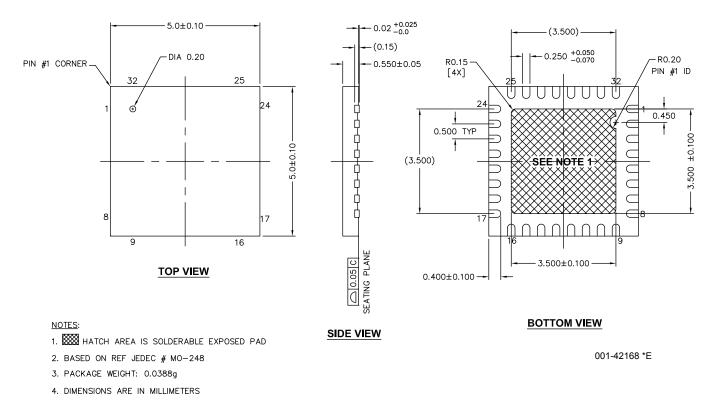
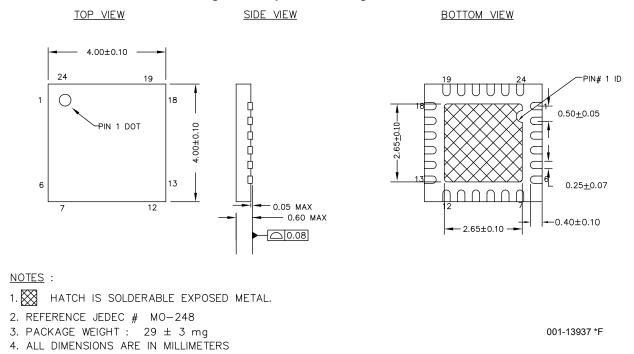
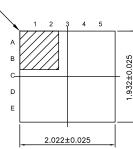



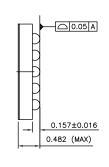
Figure 7. 32-pin QFN Package Outline

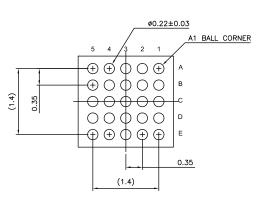
Figure 8. 24-pin QFN Package Outline



The center pad on the QFN package should be connected to ground (VSS) for best mechanical, thermal, and electrical performance. If not connected to ground, it should be electrically floating and not connected to any other signal.

Figure 9. 25-Ball WLCSP





TOP VIEW

<u>SIDE VIEW</u>

BOTTOM VIEW

ALL DIMENSIONS ARE IN MM JEDEC Publication 95; Design Guide 4.18 002-09957 **

Acronyms

Table 40. Acronyms Used in this Document

Acronym	Description			
abus	analog local bus			
ADC	analog-to-digital converter			
AG	analog global			
АНВ	AMBA (advanced microcontroller bus architecture) high-performance bus, an ARM data transfer bus			
ALU	arithmetic logic unit			
AMUXBUS	analog multiplexer bus			
API	application programming interface			
APSR	application program status register			
ARM®	advanced RISC machine, a CPU architecture			
ATM	automatic thump mode			
BW	bandwidth			
CAN	Controller Area Network, a communications protocol			
CMRR	common-mode rejection ratio			
CPU	central processing unit			
CRC	cyclic redundancy check, an error-checking protocol			
DAC	digital-to-analog converter, see also IDAC, VDAC			
DFB	digital filter block			
DIO	digital input/output, GPIO with only digital capabilities, no analog. See GPIO.			
DMIPS	Dhrystone million instructions per second			
DMA	direct memory access, see also TD			
DNL	differential nonlinearity, see also INL			
DNU	do not use			
DR	port write data registers			
DSI	digital system interconnect			
DWT	data watchpoint and trace			
ECC	error correcting code			
ECO	external crystal oscillator			
EEPROM	electrically erasable programmable read-only memory			
EMI	electromagnetic interference			
EMIF	external memory interface			
EOC	end of conversion			
EOF	end of frame			
EPSR	execution program status register			
ESD	electrostatic discharge			

Table 40. Acronyms Used in this Document (continued)

Acronym	Description		
ETM	embedded trace macrocell		
FIR	finite impulse response, see also IIR		
FPB	flash patch and breakpoint		
FS	full-speed		
GPIO	general-purpose input/output, applies to a PSoC pin		
HVI	high-voltage interrupt, see also LVI, LVD		
IC	integrated circuit		
IDAC	current DAC, see also DAC, VDAC		
IDE	integrated development environment		
I ² C, or IIC	Inter-Integrated Circuit, a communications protocol		
lir	infinite impulse response, see also FIR		
ILO	internal low-speed oscillator, see also IMO		
IMO	internal main oscillator, see also ILO		
INL	integral nonlinearity, see also DNL		
I/O	input/output, see also GPIO, DIO, SIO, USBIO		
IPOR	initial power-on reset		
IPSR	interrupt program status register		
IRQ	interrupt request		
ITM	instrumentation trace macrocell		
LCD	liquid crystal display		
LIN	Local Interconnect Network, a communications protocol.		
LR	link register		
LUT	lookup table		
LVD	low-voltage detect, see also LVI		
LVI	low-voltage interrupt, see also HVI		
LVTTL	low-voltage transistor-transistor logic		
MAC	multiply-accumulate		
MCU	microcontroller unit		
MISO	master-in slave-out		
NC	no connect		
NMI	nonmaskable interrupt		
NRZ	non-return-to-zero		
NVIC	nested vectored interrupt controller		
NVL	nonvolatile latch, see also WOL		
opamp	operational amplifier		
PAL	programmable array logic, see also PLD		

Acronym	Description			
PC	program counter			
PCB	printed circuit board			
PGA	programmable gain amplifier			
PHUB	peripheral hub			
PHY	physical layer			
PICU	port interrupt control unit			
PLA	programmable logic array			
PLD	programmable logic device, see also PAL			
PLL	phase-locked loop			
PMDD	package material declaration data sheet			
POR	power-on reset			
PRES	precise power-on reset			
PRS	pseudo random sequence			
PS	port read data register			
PSoC [®]	Programmable System-on-Chip™			
PSRR	power supply rejection ratio			
PWM	pulse-width modulator			
RAM	random-access memory			
RISC	reduced-instruction-set computing			
RMS	root-mean-square			
RTC	real-time clock			
RTL	register transfer language			
RTR	remote transmission request			
RX	receive			
SAR	successive approximation register			
SC/CT	switched capacitor/continuous time			
SCL	I ² C serial clock			
SDA	I ² C serial data			
S/H	sample and hold			
SINAD	signal to noise and distortion ratio			
SIO	special input/output, GPIO with advanced features. See GPIO.			
SOC	start of conversion			
SOF	start of frame			
SPI	Serial Peripheral Interface, a communications protocol			
SR	slew rate			
SRAM	static random access memory			
SRES	software reset			
SWD	serial wire debug, a test protocol			
-	-			

Table 40. Acronyms Used in this Document (continued)

Acronym Description SWV single-wire viewer TD transaction descriptor, see also DMA THD total harmonic distortion TIA transimpedance amplifier TRM technical reference manual TTL transistor-transistor logic ΤХ transmit UART Universal Asynchronous Transmitter Receiver, a communications protocol UDB universal digital block USB Universal Serial Bus USBIO USB input/output, PSoC pins used to connect to a USB port VDAC voltage DAC, see also DAC, IDAC WDT watchdog timer WOL write once latch, see also NVL WRES watchdog timer reset XRES external reset I/O pin XTAL crystal

Table 40. Acronyms Used in this Document (continued)

Revision History

Descriptio Document	Description Title: PSoC [®] 4: PSoC 4000S Family Datasheet Programmable System-on-Chip (PSoC) Document Number: 002-00123						
Revision	ECN	Orig. of Change	Submission Date	Description of Change			
**	4883809	WKA	08/28/2015	New datasheet			
*A	4992376	WKA	10/30/2015	Updated Pinouts. Added $V_{DDD} \ge 2.2V$ at -40 °C under Conditions for specs SID247A, SID90, SID92. Updated Table 12. Updated Ordering Information.			
*B	5037826	SLAN	12/08/2015	Changed datasheet status to Preliminary			
*C	5104369	WKA	01/27/2016	Added Errata. Added 25 WLCSP package details. Updated theta J_A and J_C values for all packages.			
*D	5139206	WKA	02/16/2016	Updated copyright information at the end of the document.			
*E	5173961	WKA	03/15/2016	Updated Pinouts. Updated values for SID79, BID194. SID175, and SID176. Updated CSD and IDAC Specifications. Updated 10-bit CapSense ADC Specifications.			
*F	5268662	WKA	05/12/2016	Updated Alternate Pin Functions. Updated the following specs: SID310, SID312, SID313, SID314, SID314C, SID314D, SID314E, SID315, SID315C, SID315D, SID315E, SID322A, SID322B, SIDA109. Removed Errata section. Updated the Cypress logo and copyright information based on the template.			
*G	5330930	WKA	07/27/2016	Updated LCD Segment Drive. Updated SID60 conditions. Updated IDD specs. Corrected package dimensions for WLCSP package and added WLCSP MSL condition. Moved datasheet status to Final.			
*H	5415365	WKA	09/14/2016	Added 40-pin QFN pin and package details. Updated IDD spec values in DC Specifications.			
*	5561833	WKA	01/09/2017	Changed PRGIO references to Smart I/O.			
*J	5704046	GNKK	04/26/2017	Updated the Cypress logo and copyright information.			