

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, Microwire, SmartCard, SPI, SSP, UART/USART
Peripherals	Brown-out Detect/Reset, CapSense, LCD, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	25-XFBGA, WLCSP
Supplier Device Package	25-WLCSP (2.02x1.93)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c4045fni-s412t

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

Functional Definition	4
CPU and Memory Subsystem	4
System Resources	4
Analog Blocks	5
Programmable Digital Blocks	5
Fixed Function Digital	5
GPIO	6
Special Function Peripherals	6
Pinouts	7
Alternate Pin Functions	8
Power	10
Mode 1: 1.8 V to 5.5 V External Supply	10
Mode 2: 1.8 V ±5% External Supply	10
Development Support	11
Documentation	11
Online	11
Tools	11
Electrical Specifications	
Absolute Maximum Ratings	
Device Level Specifications	

Analog Peripherals	
Digital Peripherals	
Memory	
System Resources	
Ordering Information	
Packaging	
Package Diagrams	
Acronyms	
Document Conventions	
Units of Measure	
Revision History	
Sales, Solutions, and Legal Info	
Worldwide Sales and Design	
Products	• •
PSoC® Solutions	
Cypress Developer Communi	
Technical Support	

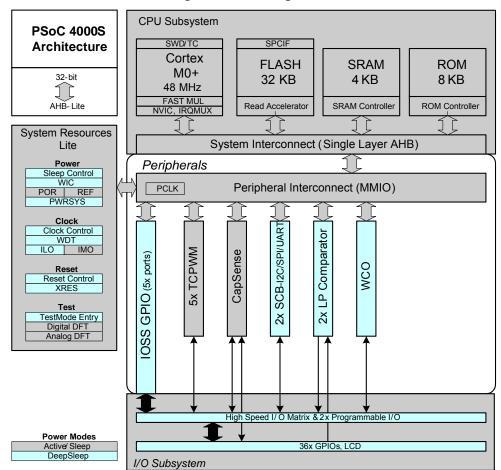


Figure 1. Block Diagram

PSoC 4000S devices include extensive support for programming, testing, debugging, and tracing both hardware and firmware.

The ARM Serial-Wire Debug (SWD) interface supports all programming and debug features of the device.

Complete debug-on-chip functionality enables full-device debugging in the final system using the standard production device. It does not require special interfaces, debugging pods, simulators, or emulators. Only the standard programming connections are required to fully support debug.

The PSoC Creator IDE provides fully integrated programming and debug support for the PSoC 4000S devices. The SWD interface is fully compatible with industry-standard third-party tools. The PSoC 4000S family provides a level of security not possible with multi-chip application solutions or with microcontrollers. It has the following advantages:

- Allows disabling of debug features
- Robust flash protection
- Allows customer-proprietary functionality to be implemented in on-chip programmable blocks

The debug circuits are enabled by default and can be disabled in firmware. If they are not enabled, the only way to re-enable them is to erase the entire device, clear flash protection, and reprogram the device with new firmware that enables debugging. Thus firmware control of debugging cannot be over-ridden without erasing the firmware thus providing security.

Additionally, all device interfaces can be permanently disabled (device security) for applications concerned about phishing attacks due to a maliciously reprogrammed device or attempts to defeat security by starting and interrupting flash programming sequences. All programming, debug, and test interfaces are disabled when maximum device security is enabled. Therefore, PSoC 4000S, with device security enabled, may not be returned for failure analysis. This is a trade-off the PSoC 4000S allows the customer to make.

Watchdog Timer

A watchdog timer is implemented in the clock block running from the ILO; this allows watchdog operation during Deep Sleep and generates a watchdog reset if not serviced before the set timeout occurs. The watchdog reset is recorded in a Reset Cause register, which is firmware readable.

Reset

The PSoC 4000S can be reset from a variety of sources including a software reset. Reset events are asynchronous and guarantee reversion to a known state. The reset cause is recorded in a register, which is sticky through reset and allows software to determine the cause of the reset. An XRES pin is reserved for external reset by asserting it active low. The XRES pin has an internal pull-up resistor that is always enabled.

Voltage Reference

The PSoC 4000S reference system generates all internally required references. A 1.2-V voltage reference is provided for the comparator. The IDACs are based on a $\pm 5\%$ reference.

Analog Blocks

Low-power Comparators (LPC)

The PSoC 4000S has a pair of low-power comparators, which can also operate in Deep Sleep modes. This allows the analog system blocks to be disabled while retaining the ability to monitor external voltage levels during low-power modes. The comparator outputs are normally synchronized to avoid metastability unless operating in an asynchronous power mode where the system wake-up circuit is activated by a comparator switch event. The LPC outputs can be routed to pins.

Current DACs

The PSoC 4000S has two IDACs, which can drive any of the pins on the chip. These IDACs have programmable current ranges.

Analog Multiplexed Buses

The PSoC 4000S has two concentric independent buses that go around the periphery of the chip. These buses (called amux buses) are connected to firmware-programmable analog switches that allow the chip's internal resources (IDACs, comparator) to connect to any pin on the I/O Ports.

Programmable Digital Blocks

The programmable I/O (Smart I/O) block is a fabric of switches and LUTs that allows Boolean functions to be performed in signals being routed to the pins of a GPIO port. The Smart I/O can perform logical operations on input pins to the chip and on signals going out as outputs.

Fixed Function Digital

Timer/Counter/PWM (TCPWM) Block

The TCPWM block consists of a 16-bit counter with user-programmable period length. There is a capture register to record the count value at the time of an event (which may be an I/O event), a period register that is used to either stop or auto-reload the counter when its count is equal to the period register, and compare registers to generate compare value signals that are used as PWM duty cycle outputs. The block also provides true and complementary outputs with programmable offset between them to allow use as dead-band programmable complementary PWM outputs. It also has a Kill input to force outputs to a predetermined state; for example, this is used in motor drive systems when an over-current state is indicated and the PWM driving the FETs needs to be shut off immediately with no time for software intervention. There are five TCPWM blocks in the PSoC 4000S.

Serial Communication Block (SCB)

The PSoC 4000S has two serial communication blocks, which can be programmed to have SPI, I2C, or UART functionality.

I²C Mode: The hardware I²C block implements a full multi-master and slave interface (it is capable of multi-master arbitration). This block is capable of operating at speeds of up to 400 kbps (Fast Mode) and has flexible buffering options to reduce interrupt overhead and latency for the CPU. It also supports EZI2C that creates a mailbox address range in the memory of the PSoC 4000S and effectively reduces I²C communication to reading from and writing to an array in memory. In addition, the block supports an 8-deep FIFO for receive and transmit which, by increasing the time given for the CPU to read data, greatly reduces the need for clock stretching caused by the CPU not having read data on time.

The I²C peripheral is compatible with the I²C Standard-mode and Fast-mode devices as defined in the NXP I²C-bus specification and user manual (UM10204). The I²C bus I/O is implemented with GPIO in open-drain modes.

The PSoC 4000S is not completely compliant with the I^2C spec in the following respect:

GPIO cells are not overvoltage tolerant and, therefore, cannot be hot-swapped or powered up independently of the rest of the I²C system.

UART Mode: This is a full-feature UART operating at up to 1 Mbps. It supports automotive single-wire interface (LIN), infrared interface (IrDA), and SmartCard (ISO7816) protocols, all of which are minor variants of the basic UART protocol. In addition, it supports the 9-bit multiprocessor mode that allows addressing of peripherals connected over common RX and TX lines. Common UART functions such as parity error, break detect, and frame error are supported. An 8-deep FIFO allows much greater CPU service latencies to be tolerated.

SPI Mode: The SPI mode supports full Motorola SPI, TI SSP (adds a start pulse used to synchronize SPI Codecs), and National Microwire (half-duplex form of SPI). The SPI block can use the FIFO.

GPIO

The PSoC 4000S has up to 36 GPIOs. The GPIO block implements the following:

- Eight drive modes:
 - □ Analog input mode (input and output buffers disabled)
 - □ Input only
 - □ Weak pull-up with strong pull-down
 - □ Strong pull-up with weak pull-down
 - □ Open drain with strong pull-down
 - Open drain with strong pull-up
 - □ Strong pull-up with strong pull-down
 - Weak pull-up with weak pull-down
- Input threshold select (CMOS or LVTTL).
- Individual control of input and output buffer enabling/disabling in addition to the drive strength modes
- Selectable slew rates for dV/dt related noise control to improve EMI

The pins are organized in logical entities called ports, which are 8-bit in width (less for Ports 2 and 3). During power-on and reset, the blocks are forced to the disable state so as not to crowbar any inputs and/or cause excess turn-on current. A multiplexing network known as a high-speed I/O matrix is used to multiplex between various signals that may connect to an I/O pin.

Data output and pin state registers store, respectively, the values to be driven on the pins and the states of the pins themselves.

Every I/O pin can generate an interrupt if so enabled and each I/O port has an interrupt request (IRQ) and interrupt service routine (ISR) vector associated with it (5 for PSoC 4000S).

Special Function Peripherals

CapSense

CapSense is supported in the PSoC 4000S through a CapSense Sigma-Delta (CSD) block that can be connected to any pins through an analog multiplex bus via analog switches. CapSense function can thus be provided on any available pin or group of pins in a system under software control. A PSoC Creator component is provided for the CapSense block to make it easy for the user. Shield voltage can be driven on another analog multiplex bus to provide water-tolerance capability. Water tolerance is provided by driving the shield electrode in phase with the sense electrode to keep the shield capacitance from attenuating the sensed input. Proximity sensing can also be implemented.

The CapSense block has two IDACs, which can be used for general purposes if CapSense is not being used (both IDACs are available in that case) or if CapSense is used without water tolerance (one IDAC is available).

The CapSense block also provides a 10-bit Slope ADC function, which can be used in conjunction with the CapSense function.

The CapSense block is an advanced, low-noise, programmable block with programmable voltage references and current source ranges for improved sensitivity and flexibility. It can also use an external reference voltage. It has a full-wave CSD mode that alternates sensing to VDDA and Ground to null out power-supply related noise.

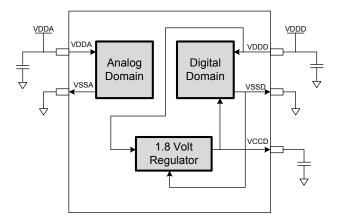
LCD Segment Drive

The PSoC 4000S has an LCD controller, which can drive up to 8 commons and up to 28 segments. It uses full digital methods to drive the LCD segments requiring no generation of internal LCD voltages. The two methods used are referred to as Digital Correlation and PWM. Digital Correlation pertains to modulating the frequency and drive levels of the common and segment signals to generate the highest RMS voltage across a segment to light it up or to keep the RMS signal to zero. This method is good for STN displays but may result in reduced contrast with TN (cheaper) displays. PWM pertains to driving the panel with PWM signals to effectively use the capacitance of the panel to provide the integration of the modulated pulse-width to generate the desired LCD voltage. This method results in higher power consumption but can result in better results when driving TN displays. LCD operation is supported during Deep Sleep refreshing a small display buffer (4 bits; 1 32-bit register per port).

Pinouts

The following table provides the pin list for PSoC 4000S for the 48-pin TQFP, 40-pin QFN, 32-pin QFN, 24-pin QFN, and 25-ball CSP packages. All port pins support GPIO. Pin 11 is a No-Connect in the 48-TQFP.

Table 1.	PSoC	4000S	Pin L	ist
----------	------	-------	-------	-----


48	-TQFP	32	2-QFN	2	4-QFN	2	5-CSP	4	10-QFN
Pin	Name								
28	P0.0	17	P0.0	13	P0.0	D1	P0.0	22	P0.0
29	P0.1	18	P0.1	14	P0.1	C3	P0.1	23	P0.1
30	P0.2	19	P0.2					24	P0.2
31	P0.3	20	P0.3					25	P0.3
32	P0.4	21	P0.4	15	P0.4	C2	P0.4	26	P0.4
33	P0.5	22	P0.5	16	P0.5	C1	P0.5	27	P0.5
34	P0.6	23	P0.6	17	P0.6	B1	P0.6	28	P0.6
35	P0.7					B2	P0.7	29	P0.7
36	XRES	24	XRES	18	XRES	B3	XRES	30	XRES
37	VCCD	25	VCCD	19	VCCD	A1	VCCD	31	VCCD
38	VSSD	26	VSSD	20	VSSD	A2	VSS		
39	VDDD	27	VDD	21	VDD	A3	VDD	32	VDDD
40	VDDA	27	VDD	21	VDD	A3	VDD	33	VDDA
41	VSSA	28	VSSA	22	VSSA	A2	VSS	34	VSSA
42	P1.0	29	P1.0					35	P1.0
43	P1.1	30	P1.1					36	P1.1
44	P1.2	31	P1.2	23	P1.2	A4	P1.2	37	P1.2
45	P1.3	32	P1.3	24	P1.3	B4	P1.3	38	P1.3
46	P1.4							39	P1.4
47	P1.5								
48	P1.6								
1	P1.7	1	P1.7	1	P1.7	A5	P1.7	40	P1.7
2	P2.0	2	P2.0	2	P2.0	B5	P2.0	1	P2.0
3	P2.1	3	P2.1	3	P2.1	C5	P2.1	2	P2.1
4	P2.2	4	P2.2					3	P2.2
5	P2.3	5	P2.3					4	P2.3
6	P2.4							5	P2.4
7	P2.5	6	P2.5					6	P2.5
8	P2.6	7	P2.6	4	P2.6	D5	P2.6	7	P2.6
9	P2.7	8	P2.7	5	P2.7	C4	P2.7	8	P2.7
10	VSSD					A2	VSS	9	VSSD
12	P3.0	9	P3.0	6	P3.0	E5	P3.0	10	P3.0
13	P3.1	10	P3.1			D4	P3.1	11	P3.1
14	P3.2	11	P3.2	7	P3.2	E4	P3.2	12	P3.2
16	P3.3	12	P3.3	8	P3.3	D3	P3.3	13	P3.3

Power

The following power system diagram shows the set of power supply pins as implemented for the PSoC 4000S. The system has one regulator in Active mode for the digital circuitry. There is no analog regulator; the analog circuits run directly from the V_{DD} input.

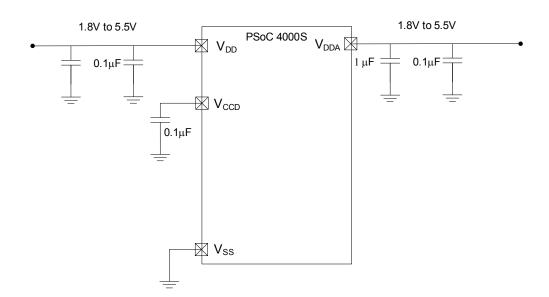
Figure 3. Power Supply Connections

There are two distinct modes of operation. In Mode 1, the supply voltage range is 1.8 V to 5.5 V (unregulated externally; internal regulator operational). In Mode 2, the supply range is $1.8 \text{ V} \pm 5\%$ (externally regulated; 1.71 to 1.89, internal regulator bypassed).

Mode 1: 1.8 V to 5.5 V External Supply

In this mode, the PSoC 4000S is powered by an external power supply that can be anywhere in the range of 1.8 to 5.5 V. This range is also designed for battery-powered operation. For example, the chip can be powered from a battery system that starts at 3.5 V and works down to 1.8 V. In this mode, the internal regulator of the PSoC 4000S supplies the internal logic and its output is connected to the V_{CCD} pin. The VCCD pin must be bypassed to ground via an external capacitor (0.1 μ F; X5R ceramic or better) and must not be connected to anything else.

Mode 2: 1.8 V ±5% External Supply


In this mode, the PSoC 4000S is powered by an external power supply that must be within the range of 1.71 to 1.89 V; note that this range needs to include the power supply ripple too. In this mode, the VDD and VCCD pins are shorted together and bypassed. The internal regulator can be disabled in the firmware.

Bypass capacitors must be used from VDDD to ground. The typical practice for systems in this frequency range is to use a capacitor in the 1- μ F range, in parallel with a smaller capacitor (0.1 μ F, for example). Note that these are simply rules of thumb and that, for critical applications, the PCB layout, lead inductance, and the bypass capacitor parasitic should be simulated to design and obtain optimal bypassing.

An example of a bypass scheme is shown in the following diagram.

Figure 4. External Supply Range from 1.8 V to 5.5 V with Internal Regulator Active

Power supply bypass connections example

Electrical Specifications

Absolute Maximum Ratings

Table 2. Absolute Maximum Ratings^[1]

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID1	V _{DDD_ABS}	Digital supply relative to V _{SS}	-0.5	I	6		-
SID2	V _{CCD_ABS}	Direct digital core voltage input relative to V_{SS}	-0.5	-	1.95	V	_
SID3	V _{GPIO_ABS}	GPIO voltage	-0.5	-	V _{DD} +0.5		-
SID4	I _{GPIO_ABS}	Maximum current per GPIO	-25	-	25		-
SID5	I _{GPIO_injection}	GPIO injection current, Max for V _{IH} > V _{DDD} , and Min for V _{IL} < V _{SS}	-0.5	-	0.5	mA	Current injected per pin
BID44	ESD_HBM	Electrostatic discharge human body model	2200	-	-	V	_
BID45	ESD_CDM	Electrostatic discharge charged device model	500	-	-		_
BID46	LU	Pin current for latch-up	-140	_	140	mA	_

Device Level Specifications

All specifications are valid for –40 °C \leq T_A \leq 85 °C and T_J \leq 100 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

Table 3. DC Specifications

Typical values measured at V_{DD} = 3.3 V and 25 °C.

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID53	V _{DD}	Power supply input voltage	1.8	-	5.5		Internally regulated supply
SID255	V _{DD}	Power supply input voltage (V_{CCD} = V_{DD} = V_{DDA})	1.71	-	1.89	V	Internally unregulated supply
SID54	V _{CCD}	Output voltage (for core logic)	-	1.8	-		-
SID55	C _{EFC}	External regulator voltage bypass	_	0.1	_	υE	X5R ceramic or better
SID56	C _{EXC}	Power supply bypass capacitor	_	1	_	μF	X5R ceramic or better
Active Mode,	V _{DD} = 1.8 V to 5.	5 V. Typical values measured at VDD =	3.3 V and	d 25 °C.			
SID10	I _{DD5}	Execute from flash; CPU at 6 MHz	-	1.2	2.0		-
SID16	I _{DD8}	Execute from flash; CPU at 24 MHz	-	2.4	4.0	mA	-
SID19	I _{DD11}	Execute from flash; CPU at 48 MHz	-	4.6	5.9		-
Sleep Mode, V	Sleep Mode, VDDD = 1.8 V to 5.5 V (Regulator on)						
SID22	I _{DD17}	I ² C wakeup WDT, and Comparators on	-	1.1	1.6	mA	6 MHz
SID25	I _{DD20}	I ² C wakeup, WDT, and Comparators on	_	1.4	1.9		12 MHz

Note

Usage above the absolute maximum conditions listed in Table 2 may cause permanent damage to the device. Exposure to Absolute Maximum conditions for extended periods of time may affect device reliability. The Maximum Storage Temperature is 150 °C in compliance with JEDEC Standard JESD22-A103, High Temperature Storage Life. When used below Absolute Maximum conditions but above normal operating conditions, the device may not operate to specification.

GPIO

Table 5. GPIO DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID57	V _{IH} ^[3]	Input voltage high threshold	$0.7\times V_{DDD}$	-	-		CMOS Input
SID58	V _{IL}	Input voltage low threshold	-	-	$0.3 imes V_{DDD}$		CMOS Input
SID241	V _{IH} ^[3]	LVTTL input, V _{DDD} < 2.7 V	$0.7\times V_{DDD}$	-	_		_
SID242	V _{IL}	LVTTL input, V _{DDD} < 2.7 V	-	-	$0.3 \times V_{DDD}$		-
SID243	V _{IH} ^[3]	LVTTL input, $V_{DDD} \ge 2.7 \text{ V}$	2.0	-	-		-
SID244	V _{IL}	LVTTL input, $V_{DDD} \ge 2.7 \text{ V}$	_	١	0.8	V	-
SID59	V _{OH}	Output voltage high level	V _{DDD} -0.6	١	_		I_{OH} = 4 mA at 3 V V_{DDD}
SID60	V _{OH}	Output voltage high level	V _{DDD} -0.5	-	-		I_{OH} = 1 mA at 3 V V_{DDD}
SID61	V _{OL}	Output voltage low level	-	-	0.6		I _{OL} = 4 mA at 1.8 V V _{DDD}
SID62	V _{OL}	Output voltage low level	-	-	0.6		I_{OL} = 10 mA at 3 V V _{DDD}
SID62A	V _{OL}	Output voltage low level	-	-	0.4		I_{OL} = 3 mA at 3 V V_{DDD}
SID63	R _{PULLUP}	Pull-up resistor	3.5	5.6	8.5	kΩ	-
SID64	R _{PULLDOWN}	Pull-down resistor	3.5	5.6	8.5	K77	-
SID65	IIL	Input leakage current (absolute value)	-	-	2	nA	25 °C, V _{DDD} = 3.0 V
SID66	C _{IN}	Input capacitance	-	-	7	pF	-
SID67 ^[4]	V _{HYSTTL}	Input hysteresis LVTTL	25	40	-		$V_{DDD} \ge 2.7 \text{ V}$
SID68 ^[4]	V _{HYSCMOS}	Input hysteresis CMOS	$0.05 \times V_{DDD}$	-	-	mV	V _{DD} < 4.5 V
SID68A ^[4]	V _{HYSCMOS5V5}	Input hysteresis CMOS	200	I	-		V _{DD} > 4.5 V
SID69 ^[4]	I _{DIODE}	Current through protection diode to V_{DD}/V_{SS}	-	-	100	μA	-
SID69A ^[4]	I _{TOT_GPIO}	Maximum total source or sink chip current	-	_	200	mA	-

Table 6. GPIO AC Specifications

(Guaranteed by Characterization)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID70	T _{RISEF}	Rise time in fast strong mode	2	Ι	12	ns	3.3 V V _{DDD} , Cload = 25 pF
SID71	T _{FALLF}	Fall time in fast strong mode	2	-	12	115	3.3 V V _{DDD} , Cload = 25 pF
SID72	T _{RISES}	Rise time in slow strong mode	10	-	60	_	3.3 V V _{DDD} , Cload = 25 pF
SID73	T _{FALLS}	Fall time in slow strong mode	10	_	60	_	3.3 V V _{DDD} , Cload = 25 pF

Notes

3. V_{IH} must not exceed V_{DDD} + 0.2 V.
 4. Guaranteed by characterization.

Analog Peripherals

Table 9. Comparator DC Specifications

Spec ID#	Parameter	Description	Min	Тур	Мах	Units	Details/ Conditions
SID84	V _{OFFSET1}	Input offset voltage, Factory trim	-	-	±10		-
SID85	V _{OFFSET2}	Input offset voltage, Custom trim	-	-	±4	mV	-
SID86	V _{HYST}	Hysteresis when enabled	-	10	35		-
SID87	V _{ICM1}	Input common mode voltage in normal mode	0	-	V _{DDD} -0.1		Modes 1 and 2
SID247	V _{ICM2}	Input common mode voltage in low power mode	0	-	V _{DDD}	v	-
SID247A	V _{ICM3}	Input common mode voltage in ultra low power mode	0	-	V _{DDD} -1.15		V _{DDD} ≥ 2.2 V at _40 °C
SID88	C _{MRR}	Common mode rejection ratio	50	-	_	dB	V _{DDD} ≥ 2.7V
SID88A	C _{MRR}	Common mode rejection ratio	42	-	-	uБ	$V_{DDD} \le 2.7V$
SID89	I _{CMP1}	Block current, normal mode	-	-	400		-
SID248	I _{CMP2}	Block current, low power mode	-	-	100	μA	-
SID259	I _{CMP3}	Block current in ultra low-power mode	-	6	28	- Fr. (V _{DDD} ≥ 2.2 V at _40 °C
SID90	Z _{CMP}	DC Input impedance of comparator	35	-	-	MΩ	-

Table 10. Comparator AC Specifications

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/ Conditions
SID91	TRESP1	Response time, normal mode, 50 mV overdrive	-	38	110	ns	_
SID258	TRESP2	Response time, low power mode, 50 mV overdrive	-	70	200	115	_
SID92	TRESP3	Response time, ultra-low power mode, 200 mV overdrive	-	2.3	15	μs	V _{DDD} ≥ 2.2 V at _40 °C

CSD

Table 11. CSD and IDAC Specifications

SPEC ID#	Parameter	Description	Min	Тур	Max	Units	Details / Conditions
SYS.PER#3	VDD_RIPPLE	Max allowed ripple on power supply, DC to 10 MHz	-	-	±50	mV	V _{DD} > 2 V (with ripple), 25 °C T _A , Sensitivity = 0.1 pF
SYS.PER#16	VDD_RIPPLE_1.8	Max allowed ripple on power supply, DC to 10 MHz	-	_	±25	mV	V_{DD} > 1.75V (with ripple), 25 °C T _A , Parasitic Capaci- tance (C _P) < 20 pF, Sensitivity ≥ 0.4 pF
SID.CSD.BLK	ICSD	Maximum block current	-	_	4000	μA	Maximum block current for both IDACs in dynamic (switching) mode including comparators, buffer, and reference generator.
SID.CSD#15	V _{REF}	Voltage reference for CSD and Comparator	0.6	1.2	V _{DDA} - 0.6	V	V _{DDA} - 0.06 or 4.4, whichever is lower
SID.CSD#15A	VREF_EXT	External Voltage reference for CSD and Comparator	0.6		V _{DDA} - 0.6	V	V _{DDA} - 0.06 or 4.4, whichever is lower
SID.CSD#16	IDAC1IDD	IDAC1 (7-bits) block current	-	-	1750	μA	
SID.CSD#17	IDAC2IDD	IDAC2 (7-bits) block current	-	-	1750	μA	
SID308	VCSD	Voltage range of operation	1.71	-	5.5	V	1.8 V ±5% or 1.8 V to 5.5 V
SID308A	VCOMPIDAC	Voltage compliance range of IDAC	0.6	-	V _{DDA} –0.6	V	V _{DDA} - 0.06 or 4.4, whichever is lower
SID309	IDAC1DNL	DNL	-1	-	1	LSB	
SID310	IDAC1INL	INL	-2	-	2	LSB	INL is ±5.5 LSB for V _{DDA} < 2 V
SID311	IDAC2DNL	DNL	-1	-	1	LSB	
SID312	IDAC2INL	INL	-2	-	2	LSB	INL is ±5.5 LSB for V _{DDA} < 2 V
SID313	SNR	Ratio of counts of finger to noise. Guaranteed by characterization	5	-	-	Ratio	Capacitance range of 5 to 35 pF, 0.1-pF sensitivity. All use cases. V _{DDA} > 2 V.
SID314	IDAC1CRT1	Output current of IDAC1 (7 bits) in low range	4.2	-	5.4	μA	LSB = 37.5-nA typ.
SID314A	IDAC1CRT2	Output current of IDAC1(7 bits) in medium range	34	-	41	μA	LSB = 300-nA typ.
SID314B	IDAC1CRT3	Output current of IDAC1(7 bits) in high range	275	-	330	μA	LSB = 2.4-µA typ.
SID314C	IDAC1CRT12	Output current of IDAC1 (7 bits) in low range, 2X mode	8	-	10.5	μA	LSB = 75-nA typ.
SID314D	IDAC1CRT22	Output current of IDAC1(7 bits) in medium range, 2X mode	69	-	82	μA	LSB = 600-nA typ.
SID314E	IDAC1CRT32	Output current of IDAC1(7 bits) in high range, 2X mode	540	-	660	μA	LSB = 4.8-µA typ.
SID315	IDAC2CRT1	Output current of IDAC2 (7 bits) in low range	4.2	-	5.4	μA	LSB = 37.5-nA typ.
SID315A	IDAC2CRT2	Output current of IDAC2 (7 bits) in medium range	34	-	41	μA	LSB = 300-nA typ.
SID315B	IDAC2CRT3	Output current of IDAC2 (7 bits) in high range	275	-	330	μA	LSB = 2.4-µA typ.
SID315C	IDAC2CRT12	Output current of IDAC2 (7 bits) in low range, 2X mode	8	-	10.5	μA	LSB = 75-nA typ.
SID315D	IDAC2CRT22	Output current of IDAC2(7 bits) in medium range, 2X mode	69	-	82	μA	LSB = 600-nA typ.
SID315E	IDAC2CRT32	Output current of IDAC2(7 bits) in high range, 2X mode	540	-	660	μA	LSB = 4.8-µA typ.
SID315F	IDAC3CRT13	Output current of IDAC in 8-bit mode in low range	8	-	10.5	μA	LSB = 37.5-nA typ.

Table 12. 10-bit CapSense ADC Specifications (continued)

Spec ID#	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SIDA109	A_SND	Signal-to-noise and Distortion ratio (SINAD)	-	61	_	dB	With 10-Hz input sine wave, external 2.4-V reference, V _{REF} (2.4 V) mode
SIDA110	A_BW	Input bandwidth without aliasing	-	-	22.4	kHz	8-bit resolution
SIDA111	A_INL	Integral Non Linearity. 1 ksps	-	-	2	LSB	V _{REF} = 2.4 V or greater
SIDA112	A_DNL	Differential Non Linearity. 1 ksps	-	_	1	LSB	

Digital Peripherals

Timer Counter Pulse-Width Modulator (TCPWM)

Table 13. TCPWM Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.TCPWM.1	ITCPWM1	Block current consumption at 3 MHz	-	-	45		All modes (TCPWM)
SID.TCPWM.2	ITCPWM2	Block current consumption at 12 MHz	-	-	155	μA	All modes (TCPWM)
SID.TCPWM.2A	ITCPWM3	Block current consumption at 48 MHz	-	-	650		All modes (TCPWM)
SID.TCPWM.3	TCPWM _{FREQ}	Operating frequency	_	_	Fc	MHz	Fc max = CLK_SYS Maximum = 48 MHz
SID.TCPWM.4	TPWM _{ENEXT}	Input trigger pulse width	2/Fc	-	_		For all trigger events ^[6]
SID.TCPWM.5	TPWM _{EXT}	Output trigger pulse widths	2/Fc	_	_		Minimum possible width of Overflow, Underflow, and CC (Counter equals Compare value) outputs
SID.TCPWM.5A	TC _{RES}	Resolution of counter	1/Fc	_	_	ns	Minimum time between successive counts
SID.TCPWM.5B	PWM _{RES}	PWM resolution	1/Fc	_	_		Minimum pulse width of PWM Output
SID.TCPWM.5C	Q _{RES}	Quadrature inputs resolution	1/Fc	_	_		Minimum pulse width between Quadrature phase inputs

ľΖ

Table 14. Fixed I²C DC Specifications^[7]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID149	I _{I2C1}	Block current consumption at 100 kHz	-	-	50		_
SID150	I _{I2C2}	Block current consumption at 400 kHz	-	-	135	μA	-
SID151	I _{I2C3}	Block current consumption at 1 Mbps	-	-	310		-
SID152	I _{I2C4}	I ² C enabled in Deep Sleep mode	-	-	1.4		

Table 15. Fixed I²C AC Specifications^[7]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID153	F _{I2C1}	Bit rate	-	-	1	Msps	-

Table 16. SPI DC Specifications^[7]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID163	ISPI1	Block current consumption at 1 Mbps	-	-	360		_
SID164	ISPI2	Block current consumption at 4 Mbps	-	-	560	μA	-
SID165	ISPI3	Block current consumption at 8 Mbps	-	-	600		_

Table 17. SPI AC Specifications^[7]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions			
SID166	FSPI	SPI operating frequency (Master; 6X Oversampling)	-	-	8	MHz				
Fixed SPI M	ixed SPI Master Mode AC Specifications									
SID167	TDMO	MOSI Valid after SClock driving edge	_	_	15		_			
SID168	TDSI	MISO Valid before SClock capturing edge	20	-	-	ns	Full clock, late MISO sampling			
SID169	тнмо	Previous MOSI data hold time	0	-	-		Referred to Slave capturing edge			
Fixed SPI S	lave Mode AC	Specifications								
SID170	томі	MOSI Valid before Sclock Capturing edge	40	-	-		_			
SID171	TDSO	MISO Valid after Sclock driving edge	-	-	42 + 3*Tcpu	ns	T _{CPU} = 1/F _{CPU}			
SID171A	TDSO_EXT	MISO Valid after Sclock driving edge in Ext. Clk mode	-	-	48		_			
SID172	THSO	Previous MISO data hold time	0	_	-		-			
SID172A	TSSELSSCK	SSEL Valid to first SCK Valid edge	-	-	100	ns	-			

Table 18. UART DC Specifications^[8]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID160	I _{UART1}	Block current consumption at 100 Kbps	-	-	55	μA	_
SID161	I _{UART2}	Block current consumption at 1000 Kbps	_	_	312	μA	-

Table 19. UART AC Specifications^[8]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID162	F _{UART}	Bit rate	-	Ι	1	Mbps	-

Table 20. LCD Direct Drive DC Specifications^[8]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID154	I _{LCDLOW}	Operating current in low power mode	-	5	-	μA	16×4 small segment disp. at 50 Hz
SID155	C _{LCDCAP}	LCD capacitance per segment/common driver	-	500	5000	pF	-
SID156	LCD _{OFFSET}	Long-term segment offset	-	20	-	mV	-
SID157	I _{LCDOP1}	LCD system operating current Vbias = 5 V	-	2	_	mA	32×4 segments. 50 Hz. 25 °C
SID158	I _{LCDOP2}	LCD system operating current Vbias = 3.3 V	_	2	_	ШA	32×4 segments. 50 Hz. 25 °C

Table 21. LCD Direct Drive AC Specifications^[8]

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID159	F _{LCD}	LCD frame rate	10	50	150	Hz	_

Memory

Table 22. Flash DC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID173	V _{PE}	Erase and program voltage	1.71	-	5.5	V	-

Table 23. Flash AC Specifications

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID174	T _{ROWWRITE} ^[9]	Row (block) write time (erase and program)	-	-	20		Row (block) = 128 bytes
SID175	T _{ROWERASE} ^[9]	Row erase time	-	-	16	ms	-
SID176	T _{ROWPROGRAM} ^[9]	Row program time after erase	-	_	4		-
SID178		Bulk erase time (32 KB)	-	_	35		-
SID180 ^[10]	T _{DEVPROG} ^[9]	Total device program time	-	-	7	Seconds	-
SID181 ^[10]	F _{END}	Flash endurance	100 K	-	-	Cycles	-
SID182 ^[10]		Flash retention. $T_A \le 55 \degree$ C, 100 K P/E cycles	20	_	-	Years	-
SID182A ^[10]	-	Flash retention. $T_A \le 85 \text{ °C}$, 10 K P/E cycles	10	_	-	Tears	_
SID256	TWS48	Number of Wait states at 48 MHz	2	_	_		CPU execution from Flash
SID257	TWS24	Number of Wait states at 24 MHz	1	_	_		CPU execution from Flash

System Resources

Power-on Reset (POR)

Table 24. Power On Reset (PRES)

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
SID.CLK#6	SR_POWER_UP	Power supply slew rate	1	-	67	V/ms	At power-up
SID185 ^[10]	V _{RISEIPOR}	Rising trip voltage	0.80	-	1.5	V	-
SID186 ^[10]	V _{FALLIPOR}	Falling trip voltage	0.70	-	1.4		-

Table 25. Brown-out Detect (BOD) for $V_{\mbox{\scriptsize CCD}}$

Spec ID	Parameter	Description	Min	Тур	Max	Units	Details/Conditions
	V _{FALLPPOR}	BOD trip voltage in active and sleep modes	1.48	Ι	1.62	V	_
SID192 ^[10]	V _{FALLDPSLP}	BOD trip voltage in Deep Sleep	1.11		1.5		_

Notes
 9. It can take as much as 20 milliseconds to write to Flash. During this time the device should not be Reset, or Flash operations will be interrupted and cannot be relied on to have completed. Reset sources include the XRES pin, software resets, CPU lockup states and privilege violations, improper power supply levels, and watchdogs. Make certain that these are not inadvertently activated.

Packaging

The PSoC 4000S will be offered in 48-pin TQFP, 40-pin QFN, 32-pin QFN, 24-pin QFN, and 25-ball WLCSP packages. Package dimensions and Cypress drawing numbers are in the following table.

Table 36. Package List

Spec ID#	Package	Description	Package Dwg
BID20	48-pin TQFP	$7 \times 7 \times 1.4$ mm height with 0.5-mm pitch	51-85135
BID27	40-pin QFN	6 × 6 × 0.6 mm height with 0.5-mm pitch	001-80659
BID34A	32-pin QFN	$5 \times 5 \times 0.6$ mm height with 0.5-mm pitch	001-42168
BID34	24-pin QFN	$4 \times 4 \times 0.6$ mm height with 0.5-mm pitch	001-13937
BID34F	25-ball WLCSP	2.02 × 1.93 × 0.48 mm height with 0.35-mm pitch	002-09957

Table 37. Package Thermal Characteristics

Parameter	Description	Package	Min	Тур	Max	Units
Та	Operating ambient temperature		-40	25	85	°C
TJ	Operating junction temperature		-40	-	100	°C
Tja	Package θ _{JA}	48-pin TQFP	-	73.5	-	°C/Watt
TJC	Package θ_{JC}	48-pin TQFP	-	33.5	-	°C/Watt
Tja	Package θ _{JA}	40-pin QFN	-	17.8	-	°C/Watt
TJC	Package θ_{JC}	40-pin QFN	-	2.8	-	°C/Watt
Tja	Package θ _{JA}	32-pin QFN	-	20.8	-	°C/Watt
TJC	Package θ_{JC}	32-pin QFN	-	5.9	-	°C/Watt
Tja	Package θ_{JA}	24-pin QFN	-	21.7	-	°C/Watt
TJC	Package θ_{JC}	24-pin QFN	-	5.6	-	°C/Watt
Tja	Package θ_{JA}	25-ball WLCSP	-	54.6	-	°C/Watt
TJC	Package θ_{JC}	25-ball WLCSP	-	0.5	-	°C/Watt

Table 38. Solder Reflow Peak Temperature

Package	Maximum Peak Temperature	Maximum Time at Peak Temperature		
All	260 °C	30 seconds		

Table 39. Package Moisture Sensitivity Level (MSL), IPC/JEDEC J-STD-020

Package	MSL
All except WLCSP	MSL 3
25-ball WLCSP	MSL 1

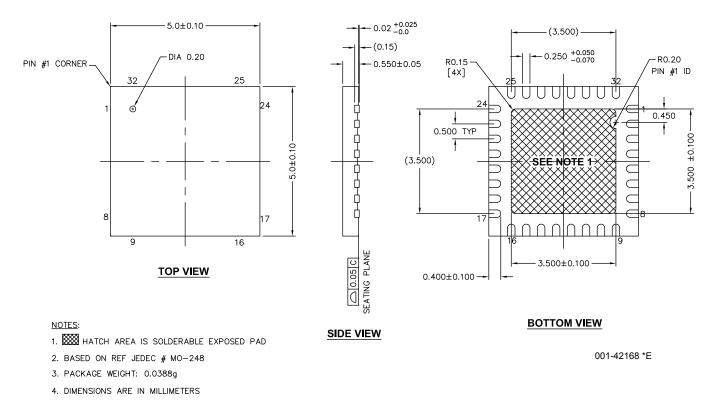
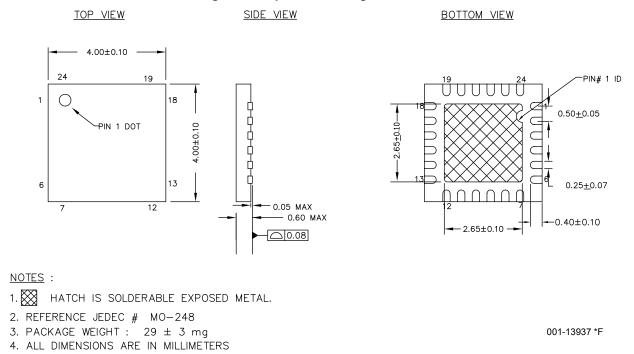
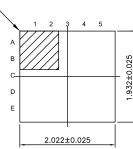



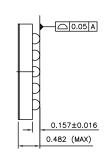
Figure 7. 32-pin QFN Package Outline

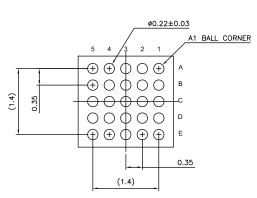
Figure 8. 24-pin QFN Package Outline



The center pad on the QFN package should be connected to ground (VSS) for best mechanical, thermal, and electrical performance. If not connected to ground, it should be electrically floating and not connected to any other signal.

Figure 9. 25-Ball WLCSP





TOP VIEW

<u>SIDE VIEW</u>

BOTTOM VIEW

ALL DIMENSIONS ARE IN MM JEDEC Publication 95; Design Guide 4.18 002-09957 **

Document Conventions

Units of Measure

Table 41. Units of Measure

Symbol	Unit of Measure
°C	degrees Celsius
dB	decibel
fF	femto farad
Hz	hertz
KB	1024 bytes
kbps	kilobits per second
Khr	kilohour
kHz	kilohertz
kΩ	kilo ohm
ksps	kilosamples per second
LSB	least significant bit
Mbps	megabits per second
MHz	megahertz
MΩ	mega-ohm
Msps	megasamples per second
μA	microampere
μF	microfarad
μH	microhenry
μs	microsecond
μV	microvolt
μW	microwatt
mA	milliampere
ms	millisecond
mV	millivolt
nA	nanoampere
ns	nanosecond
nV	nanovolt
Ω	ohm
pF	picofarad
ppm	parts per million
ps	picosecond
S	second
sps	samples per second
sqrtHz	square root of hertz
V	volt

Revision History

Descriptio Document	Description Title: PSoC [®] 4: PSoC 4000S Family Datasheet Programmable System-on-Chip (PSoC) Document Number: 002-00123					
Revision	ECN	Orig. of Change	Submission Date	Description of Change		
**	4883809	WKA	08/28/2015	New datasheet		
*A	4992376	WKA	10/30/2015	Updated Pinouts. Added $V_{DDD} \ge 2.2V$ at -40 °C under Conditions for specs SID247A, SID90, SID92. Updated Table 12. Updated Ordering Information.		
*B	5037826	SLAN	12/08/2015	Changed datasheet status to Preliminary		
*C	5104369	WKA	01/27/2016	Added Errata. Added 25 WLCSP package details. Updated theta J_A and J_C values for all packages.		
*D	5139206	WKA	02/16/2016	Updated copyright information at the end of the document.		
*E	5173961	WKA	03/15/2016	Updated Pinouts. Updated values for SID79, BID194. SID175, and SID176. Updated CSD and IDAC Specifications. Updated 10-bit CapSense ADC Specifications.		
*F	5268662	WKA	05/12/2016	Updated Alternate Pin Functions. Updated the following specs: SID310, SID312, SID313, SID314, SID314C, SID314D, SID314E, SID315, SID315C, SID315D, SID315E, SID322A, SID322B, SIDA109. Removed Errata section. Updated the Cypress logo and copyright information based on the template.		
*G	5330930	WKA	07/27/2016	Updated LCD Segment Drive. Updated SID60 conditions. Updated IDD specs. Corrected package dimensions for WLCSP package and added WLCSP MSL condition. Moved datasheet status to Final.		
*H	5415365	WKA	09/14/2016	Added 40-pin QFN pin and package details. Updated IDD spec values in DC Specifications.		
*	5561833	WKA	01/09/2017	Changed PRGIO references to Smart I/O.		
*J	5704046	GNKK	04/26/2017	Updated the Cypress logo and copyright information.		

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

© Cypress Semiconductor Corporation, 2015-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.