
Silicon Labs - C8051F020-GQ Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Not For New Designs

Core Processor 8051

Core Size 8-Bit

Speed 25MHz

Connectivity EBI/EMI, SMBus (2-Wire/I²C), SPI, UART/USART

Peripherals Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT

Number of I/O 64

Program Memory Size 64KB (64K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 4.25K x 8

Voltage - Supply (Vcc/Vdd) 2.7V ~ 3.6V

Data Converters A/D 8x8b, 8x12b; D/A 2x12b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 100-TQFP

Supplier Device Package 100-TQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/silicon-labs/c8051f020-gq

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/c8051f020-gq-4378708
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

C8051F020/1/2/3

6 Rev. 1.4

18.3.SMBus Transfer Modes...187
18.3.1. Master Transmitter Mode ..187
18.3.2. Master Receiver Mode...187
18.3.3. Slave Transmitter Mode...188
18.3.4. Slave Receiver Mode ...188

18.4.SMBus Special Function Registers ...189
18.4.1. Control Register ...189
18.4.2. Clock Rate Register ...192
18.4.3. Data Register..193
18.4.4. Address Register ..193
18.4.5. Status Register ...194

19. SERIAL PERIPHERAL INTERFACE BUS (SPI0) ..197
19.1.Signal Descriptions..198

19.1.1. Master Out, Slave In (MOSI) ..198
19.1.2. Master In, Slave Out (MISO) ..198
19.1.3. Serial Clock (SCK) ..198
19.1.4. Slave Select (NSS)...198

19.2.SPI0 Operation ..199
19.3.Serial Clock Timing ..200
19.4.SPI Special Function Registers ...201

20. UART0 ..205
20.1.UART0 Operational Modes ..206

20.1.1. Mode 0: Synchronous Mode..206
20.1.2. Mode 1: 8-Bit UART, Variable Baud Rate ...207
20.1.3. Mode 2: 9-Bit UART, Fixed Baud Rate ..208
20.1.4. Mode 3: 9-Bit UART, Variable Baud Rate ...209

20.2.Multiprocessor Communications...210
20.3.Frame and Transmission Error Detection..211

21. UART1 ..215
21.1.UART1 Operational Modes ..216

21.1.1. Mode 0: Synchronous Mode..216
21.1.2. Mode 1: 8-Bit UART, Variable Baud Rate ...217
21.1.3. Mode 2: 9-Bit UART, Fixed Baud Rate ..218
21.1.4. Mode 3: 9-Bit UART, Variable Baud Rate ...219

21.2.Multiprocessor Communications...220
21.3.Frame and Transmission Error Detection..221

22. TIMERS..225
22.1.Timer 0 and Timer 1..227

22.1.1. Mode 0: 13-bit Counter/Timer...227
22.1.2. Mode 1: 16-bit Counter/Timer...228
22.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload...229
22.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only) ...230

22.2.Timer 2 ...234
22.2.1. Mode 0: 16-bit Counter/Timer with Capture ...235
22.2.2. Mode 1: 16-bit Counter/Timer with Auto-Reload...236

C8051F020/1/2/3

Rev. 1.4 27

1.5. Programmable Counter Array

The C8051F020 MCU family includes an on-board Programmable Counter/Timer Array (PCA) in addition to the five
16-bit general purpose counter/timers. The PCA consists of a dedicated 16-bit counter/timer time base with 5 pro-
grammable capture/compare modules. The timebase is clocked from one of six sources: the system clock divided by
12, the system clock divided by 4, Timer 0 overflow, an External Clock Input (ECI pin), the system clock, or the
external oscillator source divided by 8.

Each capture/compare module can be configured to operate in one of six modes: Edge-Triggered Capture, Software
Timer, High Speed Output, Frequency Output, 8-Bit Pulse Width Modulator, or 16-Bit Pulse Width Modulator. The
PCA Capture/Compare Module I/O and External Clock Input are routed to the MCU Port I/O via the Digital Cross-
bar.

1.6. Serial Ports

The C8051F020 MCU Family includes two Enhanced Full-Duplex UARTs, SPI Bus, and SMBus/I2C. Each of the
serial buses is fully implemented in hardware and makes extensive use of the CIP-51's interrupts, thus requiring very
little intervention by the CPU. The serial buses do not "share" resources such as timers, interrupts, or Port I/O, so any
or all of the serial buses may be used together with any other.

Capture/Compare
Module 1

Capture/Compare
Module 0

Capture/Compare
Module 2

Capture/Compare
Module 3

Capture/Compare
Module 4

C
E

X
1

E
C

I

Crossbar

C
E

X
2

C
E

X
3

C
E

X
4

C
E

X
0

Port I/O

16-Bit Counter/Timer
PCA

CLOCK
MUX

SYSCLK/12

SYSCLK/4

Timer 0 Overflow

 ECI

SYSCLK

External Clock/8

Figure 1.10. PCA Block Diagram

C8051F020/1/2/3

30 Rev. 1.4

1.9. Comparators and DACs

Each C8051F020/1/2/3 MCU has two 12-bit DACs and two comparators on chip. The MCU data and control inter-
face to each comparator and DAC is via the Special Function Registers. The MCU can place any DAC or comparator
in low power shutdown mode.

The comparators have software programmable hysteresis. Each comparator can generate an interrupt on its rising
edge, falling edge, or both; these interrupts are capable of waking up the MCU from sleep mode. The comparators'
output state can also be polled in software. The comparator outputs can be programmed to appear on the Port I/O pins
via the Crossbar.

The DACs are voltage output mode, and include a flexible output scheduling mechanism. This scheduling mecha-
nism allows DAC output updates to be forced by a software write or a Timer 2, 3, or 4 overflow. The DAC voltage
reference is supplied via the dedicated VREFD input pin on C8051F020/2 devices or via the internal voltage refer-
ence on C8051F021/3 devices. The DACs are especially useful as references for the comparators or offsets for the
differential inputs of the ADC.

+

- CP1

CP1+

CP1-

DAC0

DAC1

REF

REF

CP0

CIP-51
and

Interrupt
Handler

CP1

 DAC0

 DAC1

CP0+

CP0-

CP1

CP0
(Port I/O)

(Port I/O)

+

-
CP0

SFR's

(Data
and

Cntrl)

CROSSBAR

Figure 1.13. Comparator and DAC Diagram

C8051F020/1/2/3

Rev. 1.4 99

Table 11.1. Comparator Electrical Characteristics

VDD = 3.0 V, AV+ = 3.0 V, -40°C to +85°C unless otherwise specified

PARAMETER CONDITIONS MIN TYP MAX UNITS

Response Time 1 CP+ - CP- = 100 mV 4 µs

Response Time 2 CP+ - CP- = 10 mV 12 µs

Common-Mode Rejection Ratio 1.5 4 mV/V

Positive Hysteresis 1 CPnHYP1-0 = 00 0 1 mV

Positive Hysteresis 2 CPnHYP1-0 = 01 2 4.5 7 mV

Positive Hysteresis 3 CPnHYP1-0 = 10 4 9 13 mV

Positive Hysteresis 4 CPnHYP1-0 = 11 10 17 25 mV

Negative Hysteresis 1 CPnHYN1-0 = 00 0 1 mV

Negative Hysteresis 2 CPnHYN1-0 = 01 2 4.5 7 mV

Negative Hysteresis 3 CPnHYN1-0 = 10 4 9 13 mV

Negative Hysteresis 4 CPnHYN1-0 = 11 10 17 25 mV

Inverting or Non-Inverting Input
Voltage Range

-0.25 (AV+)
+ 0.25

V

Input Capacitance 7 pF

Input Bias Current -5 0.001 +5 nA

Input Offset Voltage -10 +10 mV

POWER SUPPLY

Power-up Time CPnEN from 0 to 1 20 µs

Power Supply Rejection 0.1 1 mV/V

Supply Current Operating Mode (each comparator) at DC 1.5 10 µA

C8051F020/1/2/3

106 Rev. 1.4

Notes on Registers, Operands and Addressing Modes:

Rn - Register R0-R7 of the currently selected register bank.

@Ri - Data RAM location addressed indirectly through R0 or R1.

rel - 8-bit, signed (two’s complement) offset relative to the first byte of the following instruction. Used by SJMP
and all conditional jumps.

direct - 8-bit internal data location’s address. This could be a direct-access Data RAM location (0x00-0x7F) or an
SFR (0x80-0xFF).

#data - 8-bit constant

#data16 - 16-bit constant

bit - Direct-accessed bit in Data RAM or SFR

addr11 - 11-bit destination address used by ACALL and AJMP. The destination must be within the same 2K-byte
page of program memory as the first byte of the following instruction.

addr16 - 16-bit destination address used by LCALL and LJMP. The destination may be anywhere within the 64K-
byte program memory space.

There is one unused opcode (0xA5) that performs the same function as NOP.
All mnemonics copyrighted © Intel Corporation 1980.

C8051F020/1/2/3

108 Rev. 1.4

12.2.2. Data Memory

The CIP-51 implements 256 bytes of internal RAM mapped into the data memory space from 0x00 through 0xFF.
The lower 128 bytes of data memory are used for general purpose registers and scratch pad memory. Either direct or
indirect addressing may be used to access the lower 128 bytes of data memory. Locations 0x00 through 0x1F are
addressable as four banks of general purpose registers, each bank consisting of eight byte-wide registers. The next
16 bytes, locations 0x20 through 0x2F, may either be addressed as bytes or as 128 bit locations accessible with the
direct addressing mode.

The upper 128 bytes of data memory are accessible only by indirect addressing. This region occupies the same
address space as the Special Function Registers (SFR) but is physically separate from the SFR space. The addressing
mode used by an instruction when accessing locations above 0x7F determines whether the CPU accesses the upper
128 bytes of data memory space or the SFRs. Instructions that use direct addressing will access the SFR space.
Instructions using indirect addressing above 0x7F access the upper 128 bytes of data memory. Figure 12.2 illustrates
the data memory organization of the CIP-51.

12.2.3. General Purpose Registers

The lower 32 bytes of data memory, locations 0x00 through 0x1F, may be addressed as four banks of general-purpose
registers. Each bank consists of eight byte-wide registers designated R0 through R7. Only one of these banks may be
enabled at a time. Two bits in the program status word, RS0 (PSW.3) and RS1 (PSW.4), select the active register bank
(see description of the PSW in Figure 12.6). This allows fast context switching when entering subroutines and inter-
rupt service routines. Indirect addressing modes use registers R0 and R1 as index registers.

12.2.4. Bit Addressable Locations

In addition to direct access to data memory organized as bytes, the sixteen data memory locations at 0x20 through
0x2F are also accessible as 128 individually addressable bits. Each bit has a bit address from 0x00 to 0x7F. Bit 0 of
the byte at 0x20 has bit address 0x00 while bit 7 of the byte at 0x20 has bit address 0x07. Bit 7 of the byte at 0x2F has
bit address 0x7F. A bit access is distinguished from a full byte access by the type of instruction used (bit source or
destination operands as opposed to a byte source or destination).

The MCS-51™ assembly language allows an alternate notation for bit addressing of the form XX.B where XX is the
byte address and B is the bit position within the byte. For example, the instruction:

MOV C, 22.3h
moves the Boolean value at 0x13 (bit 3 of the byte at location 0x22) into the Carry flag.

12.2.5. Stack

A programmer's stack can be located anywhere in the 256 byte data memory. The stack area is designated using the
Stack Pointer (SP, address 0x81) SFR. The SP will point to the last location used. The next value pushed on the stack
is placed at SP+1 and then SP is incremented. A reset initializes the stack pointer to location 0x07; therefore, the first
value pushed on the stack is placed at location 0x08, which is also the first register (R0) of register bank 1. Thus, if
more than one register bank is to be used, the SP should be initialized to a location in the data memory not being used
for data storage. The stack depth can extend up to 256 bytes.

The MCUs also have built-in hardware for a stack record. The stack record is a 32-bit shift register, where each
PUSH or increment SP pushes one record bit onto the register, and each CALL pushes two record bits onto the regis-
ter. (A POP or decrement SP pops one record bit, and a RET pops two record bits, also.) The stack record circuitry
can also detect an overflow or underflow on the 32-bit shift register, and can notify the debug software even with the
MCU running at speed.

C8051F020/1/2/3

122 Rev. 1.4

Figure 12.12. EIE2: Extended Interrupt Enable 2

Bit7: EXVLD: Enable External Clock Source Valid (XTLVLD) Interrupt.
This bit sets the masking of the XTLVLD interrupt.
0: Disable XTLVLD interrupt.
1: Enable interrupt requests generated by the XTLVLD flag (OSCXCN.7)

Bit6: ES1: Enable UART1 Interrupt.
This bit sets the masking of the UART1 interrupt.
0: Disable UART1 interrupt.
1: Enable UART1 interrupt.

Bit5: EX7: Enable External Interrupt 7.
This bit sets the masking of External Interrupt 7.
0: Disable External Interrupt 7.
1: Enable interrupt requests generated by the External Interrupt 7 input pin.

Bit4: EX6: Enable External Interrupt 6.
This bit sets the masking of External Interrupt 6.
0: Disable External Interrupt 6.
1: Enable interrupt requests generated by the External Interrupt 6 input pin.

Bit3: EADC1: Enable ADC1 End Of Conversion Interrupt.
This bit sets the masking of the ADC1 End of Conversion interrupt.
0: Disable ADC1 End of Conversion interrupt.
1: Enable interrupt requests generated by the ADC1 End of Conversion Interrupt.

Bit2: ET4: Enable Timer 4 Interrupt
This bit sets the masking of the Timer 4 interrupt.
0: Disable Timer 4 interrupt.
1: Enable interrupt requests generated by the TF4 flag (T4CON.7).

Bit1: EADC0: Enable ADC0 End of Conversion Interrupt.
This bit sets the masking of the ADC0 End of Conversion Interrupt.
0: Disable ADC0 Conversion Interrupt.
1: Enable interrupt requests generated by the ADC0 Conversion Interrupt.

Bit0: ET3: Enable Timer 3 Interrupt.
This bit sets the masking of the Timer 3 interrupt.
0: Disable all Timer 3 interrupts.
1: Enable interrupt requests generated by the TF3 flag (TMR3CN.7).

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

EXVLD ES1 EX7 EX6 EADC1 ET4 EADC0 ET3 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:

0xE7

C8051F020/1/2/3

138 Rev. 1.4

14.1. External Crystal Example

If a crystal or ceramic resonator is used as an external oscillator source for the MCU, the circuit should be as shown
in Figure 14.1, Option 1. The External Oscillator Frequency Control value (XFCN) should be chosen from the Crys-
tal column of the table in Figure 14.3 (OSCXCN register). For example, an 11.0592 MHz crystal requires an XFCN
setting of 111b.

The Crystal Oscillator Valid Flag (XTLVLD in register OSCXCN) is set to logic 1 by hardware when the external
crystal oscillator is running and stable. The XTLVLD detection circuit requires a startup time of at least 1 ms between
enabling the oscillator and checking the XTLVLD bit. Switching to the external oscillator before the crystal oscillator
has stabilized can result in unpredictable behavior. The recommended procedure is:

Step 1. Enable the external oscillator.
Step 2. Wait at least 1 ms.
Step 3. Poll for XTLVLD => ‘1’.
Step 4. Switch the system clock to the external oscillator.

Important Note: Crystal oscillator circuits are quite sensitive to PCB layout. The crystal should be placed as close as
possible to the XTAL pins on the device, as should the loading capacitors on the crystal pins. The traces should be as
short as possible and shielded with ground plane from any other traces which could introduce noise or interference.

14.2. External RC Example

If an RC network is used as an external oscillator source for the MCU, the circuit should be as shown in Figure 14.1,
Option 2. The capacitor must be no greater than 100 pF; however for small capacitors (less than ~20 pF), the total
capacitance may be dominated by PWB parasitic capacitance. To determine the required External Oscillator Fre-
quency Control value (XFCN) in the OSCXCN Register, first select the RC network value to produce the desired fre-
quency of oscillation. If the frequency desired is 100 kHz, let R = 246 kΩ and C = 50 pF:

f = 1.23(103) / RC = 1.23 (103) / [246 * 50] = 0.1 MHz = 100 kHz

XFCN ≥ log2 (f / 25 kHz)

XFCN ≥ log2 (100 kHz / 25 kHz) = log2 (4)

XFCN ≥ 2, or code 010b

14.3. External Capacitor Example

If a capacitor is used as an external oscillator for the MCU, the circuit should be as shown in Figure 14.1, Option 3.
The capacitor must be no greater than 100 pF; however for small capacitors (less than ~20 pF), the total capacitance
may be dominated by PWB parasitic capacitance. To determine the required External Oscillator Frequency Control
value (XFCN) in the OSCXCN Register, select the capacitor to be used and find the frequency of oscillation from the
equations below. Assume VDD = 3.0 V and C = 50 pF:

f = KF / (C * VDD) = KF / (50 * 3)
f = KF / 150

If a frequency of roughly 90 kHz is desired, select the K Factor from the table in Figure 14.3 as KF = 13:

f = 13 / 150 = 0.087 MHz, or 87 kHz

Therefore, the XFCN value to use in this example is 011b.

C8051F020/1/2/3

144 Rev. 1.4

Figure 15.4. PSCTL: Program Store Read/Write Control

Bits7-3: UNUSED. Read = 00000b, Write = don't care.
Bit2: SFLE: Scratchpad FLASH Memory Access Enable.

When this bit is set, FLASH reads and writes from user software are directed to the 128-byte Scratch-
pad FLASH sector. When SFLE is set to logic 1, FLASH accesses out of the address range 0x00-
0x7F should not be attempted. Reads/Writes out of this range will yield unpredictable results.
0: FLASH access from user software directed to the 64k byte Program/Data FLASH sector.
1: FLASH access from user software directed to the 128 byte Scratchpad sector.

Bit1: PSEE: Program Store Erase Enable.
Setting this bit allows an entire page of the FLASH program memory to be erased provided the
PSWE bit is also set. After setting this bit, a write to FLASH memory using the MOVX instruction
will erase the entire page that contains the location addressed by the MOVX instruction. The value of
the data byte written does not matter.
0: FLASH program memory erasure disabled.
1: FLASH program memory erasure enabled.

Bit0: PSWE: Program Store Write Enable.
Setting this bit allows writing a byte of data to the FLASH program memory using the MOVX
instruction. The location must be erased before writing data.
0: Write to FLASH program memory disabled.
1: Write to FLASH program memory enabled.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

- - - - - SFLE PSEE PSWE 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:

0x8F

C8051F020/1/2/3

Rev. 1.4 149

16.4.2. Non-multiplexed Configuration

In Non-multiplexed mode, the Data Bus and the Address Bus pins are not shared. An example of a Non-multiplexed
Configuration is shown in Figure 16.4. See Section “16.6.1. Non-multiplexed Mode” on page 153 for more infor-
mation about Non-multiplexed operation.

ADDRESS BUS

E
M
I
F

A[15:0]

64K X 8
SRAM

A[15:0]

DATA BUSD[7:0] I/O[7:0]

VDD

8

/WR
/RD OE

WE
CE

Figure 16.4. Non-multiplexed Configuration Example

C8051F020/1/2/3

156 Rev. 1.4

16.6.2. Multiplexed Mode

16.6.2.1.16-bit MOVX: EMI0CF[4:2] = ‘001’, ‘010’, or ‘011’.

P3/P7

P2/P6

P3/P7

ADDR[15:8]

AD[7:0]

P2/P6

P0.7/P4.7

P0.6/P4.6

P0.5/P4.5

P0.7/P4.7

P0.6/P4.6

P0.5/P4.5

T
ACH

T
WDH

T
ACW

T
ACS

T
WDS

ALE

/WR

/RD

EMIF ADDRESS (8 MSBs) from DPH

EMIF WRITE DATA
EMIF ADDRESS (8 LSBs) from

DPL

T
ALEH

T
ALEL

P3/P7

P2/P6

P3/P7

ADDR[15:8]

AD[7:0]

P2/P6

P0.6/P4.6

P0.7/P4.7

P0.5/P4.5

P0.6/P4.6

P0.7/P4.7

P0.5/P4.5

T
ACH

T
ACW

T
ACS

ALE

/RD

/WR

EMIF ADDRESS (8 MSBs) from DPH

EMIF ADDRESS (8 LSBs) from
DPL

T
ALEH

T
ALEL T

RDH
T

RDS

EMIF READ DATA

Muxed 16-bit WRITE

Muxed 16-bit READ

Figure 16.10. Multiplexed 16-bit MOVX Timing

C8051F020/1/2/3

166 Rev. 1.4

17.1.7. External Memory Interface Pin Assignments

If the External Memory Interface (EMIF) is enabled on the Low ports (Ports 0 through 3), EMIFLE (XBR2.1) should
be set to a logic 1 so that the Crossbar will not assign peripherals to P0.7 (/WR), P0.6 (/RD), and if the External Mem-
ory Interface is in Multiplexed mode, P0.5 (ALE). Figure 17.4 shows an example Crossbar Decode Table with
EMIFLE=1 and the EMIF in Multiplexed mode. Figure 17.5 shows an example Crossbar Decode Table with
EMIFLE=1 and the EMIF in Non-multiplexed mode.

If the External Memory Interface is enabled on the Low ports and an off-chip MOVX operation occurs, the External
Memory Interface will control the output states of the affected Port pins during the execution phase of the MOVX
instruction, regardless of the settings of the Crossbar registers or the Port Data registers. The output configuration of
the Port pins is not affected by the EMIF operation, except that Read operations will explicitly disable the output
drivers on the Data Bus. See Section “16. EXTERNAL DATA MEMORY INTERFACE AND ON-CHIP
XRAM” on page 145 for more information about the External Memory Interface.

PIN I/O 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

TX0 
RX0 
SCK  
MISO  
MOSI  
NSS  
SDA    
SCL    
TX1     
RX1      
CEX0       
CEX1        
CEX2        
CEX3         
CEX4         
ECI                 ECI0E: XBR0.6

CP0                  CP0E: XBR0.7

CP1                   CP1E: XBR1.0

T0                    T0E: XBR1.1

/INT0  INT0E: XBR1.2

T1  T1E: XBR1.3

/INT1  INT1E: XBR1.4

T2  T2E: XBR1.5

T2EX  T2EXE: XBR1.6

T4  T4E: XBR2.3

T4EX  T4EXE: XBR2.4

/SYSCLK  SYSCKE: XBR1.7

CNVSTR  CNVSTE: XBR2.0

A
L

E

/R
D

/W
R

A
IN

1.
0/

A
8

A
IN

1.
1/

A
9

A
IN

1.
2/

A
1

A
IN

1.
3/

A
1

A
IN

1.
4/

A
1

A
IN

1.
5/

A
1

A
IN

1.
6/

A
1

A
IN

1.
7/

A
1

A
8m

/A
0

A
9m

/A
1

A
10

m
/A

2

A
11

m
/A

3

A
12

m
/A

4

A
13

m
/A

5

A
14

m
/A

6

A
15

m
/A

7

A
D

0/
D

0

A
D

1/
D

1

A
D

2/
D

2

A
D

3/
D

3

A
D

4/
D

4

A
D

5/
D

5

A
D

6/
D

6

A
D

7/
D

7

SPI0EN:

UART1EN:

PCA0ME:

Crossbar Register Bits

XBR0.2

XBR0.1

XBR0.0SMB0EN:

XBR2.2

XBR0.[5:3]

UART0EN:

P0 P1 P2 P3

AIN1 Inputs/Non-muxed Addr H Muxed Addr H/Non-muxed Addr L Muxed Data/Non-muxed Data

Figure 17.4. Priority Crossbar Decode Table
EMIFLE = 1; EMIF in Multiplexed Mode; P1MDIN = 0xFF)

C8051F020/1/2/3

Rev. 1.4 171

Figure 17.8. XBR1: Port I/O Crossbar Register 1

Bit7: SYSCKE: /SYSCLK Output Enable Bit.
0: /SYSCLK unavailable at Port pin.
1: /SYSCLK routed to Port pin.

Bit6: T2EXE: T2EX Input Enable Bit.
0: T2EX unavailable at Port pin.
1: T2EX routed to Port pin.

Bit5: T2E: T2 Input Enable Bit.
0: T2 unavailable at Port pin.
1: T2 routed to Port pin.

Bit4: INT1E: /INT1 Input Enable Bit.
0: /INT1 unavailable at Port pin.
1: /INT1 routed to Port pin.

Bit3: T1E: T1 Input Enable Bit.
0: T1 unavailable at Port pin.
1: T1 routed to Port pin.

Bit2: INT0E: /INT0 Input Enable Bit.
0: /INT0 unavailable at Port pin.
1: /INT1 routed to Port pin.

Bit1: T0E: T0 Input Enable Bit.
0: T0 unavailable at Port pin.
1: T0 routed to Port pin.

Bit0: CP1E: CP1 Output Enable Bit.
0: CP1 unavailable at Port pin.
1: CP1 routed to Port pin.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

SYSCKE T2EXE T2E INT1E T1E INT0E T0E CP1E 00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:

0xE2

C8051F020/1/2/3

188 Rev. 1.4

18.3.3. Slave Transmitter Mode

Serial data is transmitted on SDA while the serial clock is received on SCL. The SMBus0 interface receives a START
followed by data byte containing the slave address and direction bit. If the received slave address matches the address
held in register SMB0ADR, the SMBus0 interface generates an ACK. SMBus0 will also ACK if the general call
address (0x00) is received and the General Call Address Enable bit (SMB0ADR.0) is set to logic 1. In this case the
data direction bit (R/W) will be logic 1 to indicate a "READ" operation. The SMBus0 interface receives the clock on
SCL and transmits one or more bytes of serial data, waiting for an ACK from the master after each byte. SMBus0
exits slave mode after receiving a STOP condition from the master.

18.3.4. Slave Receiver Mode

Serial data is received on SDA while the serial clock is received on SCL. The SMBus0 interface receives a START
followed by data byte containing the slave address and direction bit. If the received slave address matches the address
held in register SMB0ADR, the interface generates an ACK. SMBus0 will also ACK if the general call address
(0x00) is received and the General Call Address Enable bit (SMB0ADR.0) is set to logic 1. In this case the data direc-
tion bit (R/W) will be logic 0 to indicate a "WRITE" operation. The SMBus0 interface receives one or more bytes of
serial data; after each byte is received, the interface transmits an ACK or NACK depending on the state of the AA bit
in SMB0CN. SMBus0 exits Slave Receiver Mode after receiving a STOP condition from the master.

PRSLAS Data ByteData Byte A NA

S = START
P = STOP
N = NACK
W = WRITE
SLA = Slave Address

Received by SMBus
Interface

Transmitted by
SMBus Interface

Interrupt Interrupt Interrupt

Interrupt

Figure 18.6. Typical Slave Transmitter Sequence

PWSLAS Data ByteData Byte A AA

S = START
P = STOP
A = ACK
R = READ
SLA = Slave Address

Received by SMBus
Interface

Transmitted by
SMBus Interface

Interrupt Interrupt Interrupt

Interrupt

Figure 18.7. Typical Slave Receiver Sequence

C8051F020/1/2/3

214 Rev. 1.4

Figure 20.9. SBUF0: UART0 Data Buffer Register

Bits7-0: SBUF0.[7:0]: UART0 Buffer Bits 7-0 (MSB-LSB)
This SFR accesses two registers; a transmit shift register and a receive latch register. When data is
written to SBUF0, it goes to the transmit shift register and is held for serial transmission. Writing a
byte to SBUF0 is what initiates the transmission. A read of SBUF0 returns the contents of the receive
latch.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:

0x99

Figure 20.10. SADDR0: UART0 Slave Address Register

Bits7-0: SADDR0.[7:0]: UART0 Slave Address
The contents of this register are used to define the UART0 slave address. Register SADEN0 is a bit
mask to determine which bits of SADDR0 are checked against a received address: corresponding bits
set to logic 1 in SADEN0 are checked; corresponding bits set to logic 0 are “don’t cares”.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:

0xA9

Figure 20.11. SADEN0: UART0 Slave Address Enable Register

Bits7-0: SADEN0.[7:0]: UART0 Slave Address Enable
Bits in this register enable corresponding bits in register SADDR0 to determine the UART0 slave
address.
0: Corresponding bit in SADDR0 is a “don’t care”.
1: Corresponding bit in SADDR0 is checked against a received address.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:

0xB9

C8051F020/1/2/3

Rev. 1.4 253

23.2.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes PCA0 to capture the value of the PCA0 counter/timer and
load it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and PCA0CPHn). The CAPPn
and CAPNn bits in the PCA0CPMn register are used to select the type of transition that triggers the capture: low-to-
high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative edge).
When a capture occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1 and an interrupt request is
generated if CCF interrupts are enabled. The CCFn bit is not automatically cleared by hardware when the CPU vec-
tors to the interrupt service routine, and must be cleared by software.

Note: The CEXn input signal must remain high or low for at least 2 system clock cycles in order to be valid.

Figure 23.4. PCA Capture Mode Diagram

PCA0L

PCA0CPLn

PCA
Timebase

CEXn
CrossbarPort I/O

PCA0H

Capture

PCA0CPHn

0

1

0

1

(t
o

 C
C

F
n)

PCA0CPMn
P
W
M
1
6
n

E
C
O
M
n

E
C
C
F
n

T
O
G
n

P
W
M
n

C
A
P
P
n

C
A
P
N
n

M
A
T
n

PCA0CN
C
F

C
R

C
C
F
0

C
C
F
2

C
C
F
1

C
C
F
4

C
C
F
3

PCA Interrupt

C8051F020/1/2/3

254 Rev. 1.4

23.2.2. Software Timer (Compare) Mode

In Software Timer mode, the PCA0 counter/timer is compared to the module's 16-bit capture/compare register
(PCA0CPHn and PCA0CPLn). When a match occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic
1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not automatically cleared by
hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. Setting the ECOMn
and MATn bits in the PCA0CPMn register enables Software Timer mode.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/Compare
registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to ‘0’; writing to
PCA0CPHn sets ECOMn to ‘1’.

Figure 23.5. PCA Software Timer Mode Diagram

Match16-bit Comparator

PCA0H

PCA0CPHn

Enable

PCA0LPCA
Timebase

PCA0CPLn

0 0 0 0

0

1

x

ENB

ENB

0

1

Write to
PCA0CPLn

Write to
PCA0CPHn

Reset

PCA0CPMn
P
W
M
1
6
n

E
C
O
M
n

E
C
C
F
n

T
O
G
n

P
W
M
n

C
A
P
P
n

C
A
P
N
n

M
A
T
n

x

PCA0CN
C
F

C
R

C
C
F
0

C
C
F
2

C
C
F
1

C
C
F
4

C
C
F
3

PCA Interrupt

C8051F020/1/2/3

258 Rev. 1.4

23.2.6. 16-Bit Pulse Width Modulator Mode

Each PCA0 module may also be operated in 16-Bit PWM mode. In this mode, the 16-bit capture/compare module
defines the number of PCA0 clocks for the low time of the PWM signal. When the PCA0 counter matches the module
contents, the output on CEXn is asserted high; when the counter overflows, CEXn is asserted low. To output a vary-
ing duty cycle, new value writes should be synchronized with PCA0 CCFn match interrupts. 16-Bit PWM Mode is
enabled by setting the ECOMn, PWMn, and PWM16n bits in the PCA0CPMn register. For a varying duty cycle,
CCFn should also be set to logic 1 to enable match interrupts. The duty cycle for 16-Bit PWM Mode is given by
Equation 23.3.

Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/Compare
registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit to ‘0’; writing to
PCA0CPHn sets ECOMn to ‘1’

Using Equation 23.3, the largest duty cycle is 100% (PCA0CPn = 0), and the smallest duty cycle is 0.0015%
(PCA0CPn = 0xFFFF). A 0% duty cycle may be generated by clearing the ECOMn bit to ‘0’.

Equation 23.3. 16-Bit PWM Duty Cycle

DutyCycle
65536 PCA0CPn–()

65536
---=

Figure 23.9. PCA 16-Bit PWM Mode

PCA0CPLnPCA0CPHn

Enable

PCA Timebase

0 0 0 0 0

PCA0CPMn
P
W
M
1
6
n

E
C
O
M
n

E
C
C
F
n

T
O
G
n

P
W
M
n

C
A
P
P
n

C
A
P
N
n

M
A
T
n

1

16-bit Comparator
CEXn

Crossbar Port I/O

Overflow

Q

Q
SET

CLR

S

R

match

PCA0H PCA0L

C8051F020/1/2/3

262 Rev. 1.4

Bits 7-0: PCA0L: PCA0 Counter/Timer Low Byte.
The PCA0L register holds the low byte (LSB) of the 16-bit PCA0 Counter/Timer.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:

0xE9

Figure 23.13. PCA0L: PCA0 Counter/Timer Low Byte

Bits 7-0: PCA0H: PCA0 Counter/Timer High Byte.
The PCA0H register holds the high byte (MSB) of the 16-bit PCA0 Counter/Timer.

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value

00000000
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address:

0xF9

Figure 23.14. PCA0H: PCA0 Counter/Timer High Byte

C8051F020/1/2/3

268 Rev. 1.4

24.2. Flash Programming Commands

The Flash memory can be programmed directly over the JTAG interface using the Flash Control, Flash Data, Flash
Address, and Flash Scale registers. These Indirect Data Registers are accessed via the JTAG Instruction Register.
Read and write operations on indirect data registers are performed by first setting the appropriate DR address in the
IR register. Each read or write is then initiated by writing the appropriate Indirect Operation Code (IndOpCode) to the
selected data register. Incoming commands to this register have the following format:

IndOpCode: These bit set the operation to perform according to the following table:

The Poll operation is used to check the Busy bit as described below. Although a Capture-DR is performed, no
Update-DR is allowed for the Poll operation. Since updates are disabled, polling can be accomplished by shifting in/
out a single bit.

The Read operation initiates a read from the register addressed by the DRAddress. Reads can be initiated by shifting
only 2 bits into the indirect register. After the read operation is initiated, polling of the Busy bit must be performed to
determine when the operation is complete.

The write operation initiates a write of WriteData to the register addressed by DRAddress. Registers of any width up
to 18 bits can be written. If the register to be written contains fewer than 18 bits, the data in WriteData should be left-
justified, i.e. its MSB should occupy bit 17 above. This allows shorter registers to be written in fewer JTAG clock
cycles. For example, an 8-bit register could be written by shifting only 10 bits. After a Write is initiated, the Busy bit
should be polled to determine when the next operation can be initiated. The contents of the Instruction Register
should not be altered while either a read or write operation is busy.

Outgoing data from the indirect Data Register has the following format:

The Busy bit indicates that the current operation is not complete. It goes high when an operation is initiated and
returns low when complete. Read and Write commands are ignored while Busy is high. In fact, if polling for Busy to
be low will be followed by another read or write operation, JTAG writes of the next operation can be made while
checking for Busy to be low. They will be ignored until Busy is read low, at which time the new operation will initi-
ate. This bit is placed ate bit 0 to allow polling by single-bit shifts. When waiting for a Read to complete and Busy is
0, the following 18 bits can be shifted out to obtain the resulting data. ReadData is always right-justified. This allows
registers shorter than 18 bits to be read using a reduced number of shifts. For example, the results from a byte-read
requires 9 bit shifts (Busy + 8 bits).

19:18 17:0

IndOpCode WriteData

IndOpCode Operation
0x Poll
10 Read
11 Write

19 18:1 0

0 ReadData Busy

