

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Not For New Designs                                            |
|----------------------------|----------------------------------------------------------------|
| Core Processor             | 8051                                                           |
| Core Size                  | 8-Bit                                                          |
| Speed                      | 25MHz                                                          |
| Connectivity               | EBI/EMI, SMBus (2-Wire/I <sup>2</sup> C), SPI, UART/USART      |
| Peripherals                | Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT             |
| Number of I/O              | 32                                                             |
| Program Memory Size        | 64KB (64K x 8)                                                 |
| Program Memory Type        | FLASH                                                          |
| EEPROM Size                | -                                                              |
| RAM Size                   | 4.25K x 8                                                      |
| Voltage - Supply (Vcc/Vdd) | 2.7V ~ 3.6V                                                    |
| Data Converters            | A/D 8x8b, 8x10b; D/A 2x12b                                     |
| Oscillator Type            | Internal                                                       |
| Operating Temperature      | -40°C ~ 85°C (TA)                                              |
| Mounting Type              | Surface Mount                                                  |
| Package / Case             | 64-TQFP                                                        |
| Supplier Device Package    | 64-TQFP (10x10)                                                |
| Purchase URL               | https://www.e-xfl.com/product-detail/silicon-labs/c8051f023-gq |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### LIST OF FIGURES AND TABLES

| 1. | SYSTEM C        | OVERVIEW                                                                | .17 |
|----|-----------------|-------------------------------------------------------------------------|-----|
|    | Table 1.1.      | Product Selection Guide                                                 | .17 |
|    | Figure 1.1.     | C8051F020 Block Diagram                                                 | .18 |
|    | Figure 1.2.     | C8051F021 Block Diagram                                                 | .19 |
|    | Figure 1.3.     | C8051F022 Block Diagram                                                 | .20 |
|    | Figure 1.4.     | C8051F023 Block Diagram                                                 | .21 |
|    | Figure 1.5.     | Comparison of Peak MCU Execution Speeds                                 | .22 |
|    | Figure 1.6.     | On-Board Clock and Reset                                                | .23 |
|    | Figure 1.7.     | On-Chip Memory Map                                                      | .24 |
|    | Figure 1.8.     | Development/In-System Debug Diagram                                     | .25 |
|    | Figure 1.9.     | Digital Crossbar Diagram                                                | .26 |
|    | Figure 1.10.    | PCA Block Diagram                                                       | .27 |
|    | Figure 1.11.    | 12-Bit ADC Block Diagram                                                | .28 |
|    | Figure 1.12.    | 8-Bit ADC Diagram                                                       | .29 |
|    | Figure 1.13.    | Comparator and DAC Diagram                                              | .30 |
| 2. | ABSOLUT         | E MAXIMUM RATINGS                                                       | .31 |
|    | Table 2.1.      | Absolute Maximum Ratings*                                               | .31 |
| 3. | <b>GLOBAL I</b> | DC ELECTRICAL CHARACTERISTICS                                           | .32 |
|    | Table 3.1.      | Global DC Electrical Characteristics                                    | .32 |
| 4. | PINOUT A        | ND PACKAGE DEFINITIONS                                                  | .33 |
|    | Table 4.1.      | Pin Definitions                                                         | .33 |
|    | Figure 4.1.     | TQFP-100 Pinout Diagram                                                 | .38 |
|    | Figure 4.2.     | TQFP-100 Package Drawing                                                | .39 |
|    | Figure 4.3.     | TQFP-64 Pinout Diagram                                                  | .40 |
|    | Figure 4.4.     | TQFP-64 Package Drawing                                                 | .41 |
| 5. | ADC0 (12-1      | BIT ADC, C8051F020/1 ONLY)                                              | .43 |
|    | Figure 5.1.     | 12-Bit ADC0 Functional Block Diagram                                    | .43 |
|    | Figure 5.2.     | Temperature Sensor Transfer Function                                    | .44 |
|    | Figure 5.3.     | 12-Bit ADC Track and Conversion Example Timing                          | .45 |
|    | Figure 5.4.     | ADC0 Equivalent Input Circuits                                          | .46 |
|    | Figure 5.5.     | AMX0CF: AMUX0 Configuration Register (C8051F020/1)                      | .47 |
|    | Figure 5.6.     | AMX0SL: AMUX0 Channel Select Register (C8051F020/1)                     | .48 |
|    | Figure 5.7.     | ADC0CF: ADC0 Configuration Register (C8051F020/1)                       | .49 |
|    | Figure 5.8.     | ADC0CN: ADC0 Control Register (C8051F020/1)                             | .50 |
|    | Figure 5.9.     | ADC0H: ADC0 Data Word MSB Register (C8051F020/1)                        | .51 |
|    | Figure 5.10.    | ADC0L: ADC0 Data Word LSB Register (C8051F020/1)                        | .51 |
|    | Figure 5.11.    | ADC0 Data Word Example (C8051F020/1)                                    | .52 |
|    | Figure 5.12.    | ADC0GTH: ADC0 Greater-Than Data High Byte Register (C8051F020/1)        | .53 |
|    | Figure 5.13.    | ADC0GTL: ADC0 Greater-Than Data Low Byte Register (C8051F020/1)         | .53 |
|    | Figure 5.14.    | ADC0LTH: ADC0 Less-Than Data High Byte Register (C8051F020/1)           | .53 |
|    | Figure 5.15.    | ADC0LTL: ADC0 Less-Than Data Low Byte Register (C8051F020/1)            | .53 |
|    | Figure 5.16.    | 12-Bit ADC0 Window Interrupt Example: Right Justified Single-Ended Data | .54 |



|     | Figure 21.7. UART Multi-Processor Mode Interconnect Diagram           | 220 |
|-----|-----------------------------------------------------------------------|-----|
|     | Table 21.2. Oscillator Frequencies for Standard Baud Rates            |     |
|     | Figure 21.8. SCON1: UART1 Control Register                            |     |
|     | Figure 21.9. SBUF1: UART1 Data Buffer Register                        | 224 |
|     | Figure 21.10. SADDR1: UART1 Slave Address Register                    | 224 |
|     | Figure 21.11. SADEN1: UART1 Slave Address Enable Register             |     |
| 22. | TIMERS                                                                |     |
|     | Figure 22.1. CKCON: Clock Control Register                            | 226 |
|     | Figure 22.2. T0 Mode 0 Block Diagram                                  |     |
|     | Figure 22.3. T0 Mode 2 (8-bit Auto-Reload) Block Diagram              | 229 |
|     | Figure 22.4. T0 Mode 3 (Two 8-bit Timers) Block Diagram               | 230 |
|     | Figure 22.5. TCON: Timer Control Register                             | 231 |
|     | Figure 22.6. TMOD: Timer Mode Register                                | 232 |
|     | Figure 22.7. TL0: Timer 0 Low Byte                                    | 233 |
|     | Figure 22.8. TL1: Timer 1 Low Byte                                    | 233 |
|     | Figure 22.9. TH0 Timer 0 High Byte                                    | 233 |
|     | Figure 22.10. TH1: Timer 1 High Byte                                  | 233 |
|     | Figure 22.11. T2 Mode 0 Block Diagram                                 | 235 |
|     | Figure 22.12. T2 Mode 1 Block Diagram                                 | 236 |
|     | Figure 22.13. T2 Mode 2 Block Diagram                                 | 237 |
|     | Figure 22.14. T2CON: Timer 2 Control Register                         | 238 |
|     | Figure 22.15. RCAP2L: Timer 2 Capture Register Low Byte               | 239 |
|     | Figure 22.16. RCAP2H: Timer 2 Capture Register High Byte              | 239 |
|     | Figure 22.17. TL2: Timer 2 Low Byte                                   | 239 |
|     | Figure 22.18. TH2 Timer 2 High Byte                                   | 239 |
|     | Figure 22.19. Timer 3 Block Diagram                                   | 240 |
|     | Figure 22.20. TMR3CN: Timer 3 Control Register                        | 241 |
|     | Figure 22.21. TMR3RLL: Timer 3 Reload Register Low Byte               | 241 |
|     | Figure 22.22. TMR3RLH: Timer 3 Reload Register High Byte              | 242 |
|     | Figure 22.23. TMR3L: Timer 3 Low Byte                                 | 242 |
|     | Figure 22.24. TMR3H: Timer 3 High Byte                                | 242 |
|     | Figure 22.25. T4 Mode 0 Block Diagram                                 | 244 |
|     | Figure 22.26. T4 Mode 1 Block Diagram                                 | 245 |
|     | Figure 22.27. T4 Mode 2 Block Diagram                                 | 246 |
|     | Figure 22.28. T4CON: Timer 4 Control Register                         | 247 |
|     | Figure 22.29. RCAP4L: Timer 4 Capture Register Low Byte               | 248 |
|     | Figure 22.30. RCAP4H: Timer 4 Capture Register High Byte              | 248 |
|     | Figure 22.31. TL4: Timer 4 Low Byte                                   | 248 |
|     | Figure 22.32. TH4 Timer 4 High Byte                                   | 248 |
| 23. | PROGRAMMABLE COUNTER ARRAY                                            | 249 |
|     | Figure 23.1. PCA Block Diagram                                        | 249 |
|     | Figure 23.2. PCA Counter/Timer Block Diagram                          | 250 |
|     | Table 23.1. PCA Timebase Input Options                                | 250 |
|     | Figure 23.3. PCA Interrupt Block Diagram                              | 252 |
|     | Table 23.2. PCA0CPM Register Settings for PCA Capture/Compare Modules | 252 |



#### 1.3. JTAG Debug and Boundary Scan

The C8051F020 family has on-chip JTAG boundary scan and debug circuitry that provides *non-intrusive, full speed, in-circuit debugging using the production part installed in the end application*, via the four-pin JTAG interface. The JTAG port is fully compliant to IEEE 1149.1, providing full boundary scan for test and manufacturing purposes.

Silicon Labs' debugging system supports inspection and modification of memory and registers, breakpoints, watchpoints, a stack monitor, and single stepping. No additional target RAM, program memory, timers, or communications channels are required. All the digital and analog peripherals are functional and work correctly while debugging. All the peripherals (except for the ADC and SMBus) are stalled when the MCU is halted, during single stepping, or at a breakpoint in order to keep them synchronized.

The C8051F020DK development kit provides all the hardware and software necessary to develop application code and perform in-circuit debugging with the C8051F020/1/2/3 MCUs. The kit includes software with a developer's studio and debugger, an integrated 8051 assembler, and an RS-232 to JTAG serial adapter. It also has a target application board with the associated MCU installed, plus the RS-232 and JTAG cables, and wall-mount power supply. The Development Kit requires a Windows 95/98/NT/ME/2000 computer with one available RS-232 serial port. As shown in Figure 1.8, the PC is connected via RS-232 to the Serial Adapter. A six-inch ribbon cable connects the Serial Adapter to the user's application board, picking up the four JTAG pins and VDD and GND. The Serial Adapter takes its power from the application board; it requires roughly 20 mA at 2.7-3.6 V. For applications where there is not sufficient power available from the target system, the provided power supply can be connected directly to the Serial Adapter.

Silicon Labs' debug environment is a vastly superior configuration for developing and debugging embedded applications compared to standard MCU emulators, which use on-board "ICE Chips" and target cables and require the MCU in the application board to be socketed. Silicon Labs' debug environment both increases ease of use and preserves the performance of the precision analog peripherals.



#### Figure 1.8. Development/In-System Debug Diagram



#### 5.2.2. **Tracking Modes**

The AD0TM bit in register ADC0CN controls the ADC0 track-and-hold mode. In its default state, the ADC0 input is continuously tracked when a conversion is not in progress. When the AD0TM bit is logic 1, ADC0 operates in lowpower track-and-hold mode. In this mode, each conversion is preceded by a tracking period of 3 SAR clocks (after the start-of-conversion signal). When the CNVSTR signal is used to initiate conversions in low-power tracking mode, ADC0 tracks only when CNVSTR is low; conversion begins on the rising edge of CNVSTR (see Figure 5.3). Tracking can also be disabled (shutdown) when the entire chip is in low power standby or sleep modes. Low-power trackand-hold mode is also useful when AMUX or PGA settings are frequently changed, to ensure that settling time requirements are met (see Section "5.2.3. Settling Time Requirements" on page 46).



Figure 5.3. 12-Bit ADC Track and Conversion Example Timing

#### **B. ADC Timing for Internal Trigger Sources**





### **7. ADC1 (8-BIT ADC)**

The ADC1 subsystem for the C8051F020/1/2/3 consists of an 8-channel, configurable analog multiplexer (AMUX1), a programmable gain amplifier (PGA1), and a 500 ksps, 8-bit successive-approximation-register ADC with integrated track-and-hold (see block diagram in Figure 7.1). The AMUX1, PGA1, and Data Conversion Modes, are all configurable under software control via the Special Function Registers shown in Figure 7.1. The ADC1 subsystem (8-bit ADC, track-and-hold and PGA) is enabled only when the AD1EN bit in the ADC1 Control register (ADC1CN) is set to logic 1. The ADC1 subsystem is in low power shutdown when this bit is logic 0. The voltage reference used by ADC1 is selected as described in Section "9. VOLTAGE REFERENCE (C8051F020/2)" on page 91 for C8051F020/2 devices, or Section "10. VOLTAGE REFERENCE (C8051F021/3)" on page 93 for C8051F021/3 devices.



Figure 7.1. ADC1 Functional Block Diagram

#### 7.1. Analog Multiplexer and PGA

Eight ADC1 channels are available for measurement, as selected by the AMX1SL register (see Figure 7.5). The PGA amplifies the ADC1 output signal by an amount determined by the states of the AMP1GN2-0 bits in the ADC1 Configuration register, ADC1CF (Figure 7.4). The PGA can be software-programmed for gains of 0.5, 1, 2, or 4. Gain defaults to 0.5 on reset.

**Important Note**: AIN1 pins also function as Port 1 I/O pins, and must be configured as analog inputs when used as ADC1 inputs. To configure an AIN1 pin for analog input, set to '0' the corresponding bit in register P1MDIN. Port 1 pins selected as analog inputs are skipped by the Digital I/O Crossbar. See Section "17.1.6. Configuring Port 1 Pins as Analog Inputs (AIN1.[7:0])" on page 165 for more information on configuring the AIN1 pins.





### Figure 8.2. DAC0H: DAC0 High Byte Register

#### Figure 8.3. DAC0L: DAC0 Low Byte Register

| - | R/W      | R/W                                    | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | Reset Value  |  |  |  |  |
|---|----------|----------------------------------------|------|------|------|------|------|------|--------------|--|--|--|--|
|   |          |                                        |      |      |      |      |      |      | 00000000     |  |  |  |  |
|   | Bit7     | Bit6                                   | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 | SFR Address: |  |  |  |  |
|   |          |                                        |      |      |      |      |      |      | 0xD2         |  |  |  |  |
|   |          |                                        |      |      |      |      |      |      |              |  |  |  |  |
| ] | Bits7-0: | DAC0 Data Word Least Significant Byte. |      |      |      |      |      |      |              |  |  |  |  |





Figure 11.2. Comparator Hysteresis Plot

0. Comparator0 can also be programmed as a reset source; for details, see Section "13.6. Comparator0 Reset" on page 129.

The operation of Comparator1 is identical to that of Comparator0, though Comparator1 may not be configured as a reset source. Comparator1 is controlled by the CPT1CN Register (Figure 11.4). The complete electrical specifications for the Comparators are given in Table 11.1.



| <b>Table 11.1.</b> | Comparator | Electrical | Characteristics    |
|--------------------|------------|------------|--------------------|
|                    | Comparator | Liccuitcai | chiai accertiseres |

VDD = 3.0 V, AV+ = 3.0 V,  $-40^{\circ}C$  to  $+85^{\circ}C$  unless otherwise specified

| PARAMETER                                         | CONDITIONS                             | MIN   | ТҮР   | MAX             | UNITS |
|---------------------------------------------------|----------------------------------------|-------|-------|-----------------|-------|
| Response Time 1                                   | CP+ - CP- = 100 mV                     |       | 4     |                 | μs    |
| Response Time 2                                   | CP+ - CP- = 10 mV                      |       | 12    |                 | μs    |
| Common-Mode Rejection Ratio                       |                                        |       | 1.5   | 4               | mV/V  |
| Positive Hysteresis 1                             | CPnHYP1-0 = 00                         |       | 0     | 1               | mV    |
| Positive Hysteresis 2                             | CPnHYP1-0 = 01                         | 2     | 4.5   | 7               | mV    |
| Positive Hysteresis 3                             | CPnHYP1-0 = 10                         | 4     | 9     | 13              | mV    |
| Positive Hysteresis 4                             | CPnHYP1-0 = 11                         | 10    | 17    | 25              | mV    |
| Negative Hysteresis 1                             | CPnHYN1-0 = 00                         |       | 0     | 1               | mV    |
| Negative Hysteresis 2                             | CPnHYN1-0 = 01                         | 2     | 4.5   | 7               | mV    |
| Negative Hysteresis 3                             | CPnHYN1-0 = 10                         | 4     | 9     | 13              | mV    |
| Negative Hysteresis 4                             | CPnHYN1-0 = 11                         | 10    | 17    | 25              | mV    |
| Inverting or Non-Inverting Input<br>Voltage Range |                                        | -0.25 |       | (AV+)<br>+ 0.25 | V     |
| Input Capacitance                                 |                                        |       | 7     |                 | pF    |
| Input Bias Current                                |                                        | -5    | 0.001 | +5              | nA    |
| Input Offset Voltage                              |                                        | -10   |       | +10             | mV    |
| POWER SUPPLY                                      |                                        |       |       |                 |       |
| Power-up Time                                     | CPnEN from 0 to 1                      |       | 20    |                 | μs    |
| Power Supply Rejection                            |                                        |       | 0.1   | 1               | mV/V  |
| Supply Current                                    | Operating Mode (each comparator) at DC |       | 1.5   | 10              | μA    |



#### **12.2.7. Register Descriptions**

Following are descriptions of SFRs related to the operation of the CIP-51 System Controller. Reserved bits should not be set to logic l. Future product versions may use these bits to implement new features in which case the reset value of the bit will be logic 0, selecting the feature's default state. Detailed descriptions of the remaining SFRs are included in the sections of the datasheet associated with their corresponding system function.

#### Figure 12.3. SP: Stack Pointer



#### Figure 12.4. DPL: Data Pointer Low Byte

| R/W      | R/W                                        | R/W                                       | R/W                   | R/W          | R/W          | R/W           | R/W          | Reset Value 00000000 |
|----------|--------------------------------------------|-------------------------------------------|-----------------------|--------------|--------------|---------------|--------------|----------------------|
| Bit7     | Bit6                                       | Bit5                                      | Bit4                  | Bit3         | Bit2         | Bit1          | Bit0         | SFR Address:<br>0x82 |
| Bits7-0: | DPL: Data Po<br>The DPL regi<br>XRAM and F | inter Low.<br>ster is the lo<br>LASH memo | w byte of the<br>ory. | e 16-bit DPT | R. DPTR is u | used to acces | s indirectly | y addressed          |

#### Figure 12.5. DPH: Data Pointer High Byte





| R/W   | R/W                          | R/W            | R/W            | R/W            | R/W           | R/W            | R/W  | Reset Value  |
|-------|------------------------------|----------------|----------------|----------------|---------------|----------------|------|--------------|
| PXVLD | EP1                          | PX7            | PX6            | PADC1          | PT4           | PADC0          | PT3  | 00000000     |
| Bit7  | Bit6                         | Bit5           | Bit4           | Bit3           | Bit2          | Bit1           | Bit0 | SFR Address: |
|       |                              |                |                |                |               |                |      | 0xF7         |
|       |                              |                |                |                |               |                |      |              |
| Bit7: | PXVLD: Exte                  | ernal Clock S  | ource Valid    | (XTLVLD) I     | nterrupt Pri  | ority Control. |      |              |
|       | This bit sets the            | he priority of | the XTLVL      | D interrupt.   |               |                |      |              |
|       | 0: XTLVLD in                 | nterrupt set t | o low priori   | ty level.      |               |                |      |              |
|       | 1: XTLVLD in                 | nterrupt set t | o high priori  | ity level.     |               |                |      |              |
| Bit6: | EP1: UART1                   | Interrupt Pri  | ority Contro   | 1.             |               |                |      |              |
|       | This bit sets the            | he priority of | the UART1      | interrupt.     |               |                |      |              |
|       | 0: UART1 int                 | errupt set to  | low priority.  |                |               |                |      |              |
|       | 1: UART1 int                 | errupt set to  | high priority  |                |               |                |      |              |
| Bit5: | PX7: External                | I Interrupt 7  | Priority Con   | trol.          |               |                |      |              |
|       | This bit sets the            | he priority of | the Externa    | l Interrupt 7. |               |                |      |              |
|       | 0: External In               | terrupt 7 set  | to low prior   | ity level.     |               |                |      |              |
|       | 1: External In               | terrupt 7 set  | to high prior  | rity level.    |               |                |      |              |
| Bit4: | PX6: External                | I Interrupt 6  | Priority Con   | trol.          |               |                |      |              |
|       | This bit sets the            | he priority of | the Externa    | l Interrupt 6. |               |                |      |              |
|       | 0: External In               | terrupt 6 set  | to low prior   | ity level.     |               |                |      |              |
|       | 1: External In               | terrupt 6 set  | to high prior  | rity level.    | _             |                |      |              |
| Bit3: | PADC1: ADC                   | C1 End Of Co   | onversion In   | terrupt Priori | ty Control.   |                |      |              |
|       | This bit sets the            | he priority of | the ADC1       | End of Conve   | ersion interr | upt.           |      |              |
|       | 0: ADC1 End                  | of Conversion  | on interrupt   | set to low pri | ority.        |                |      |              |
| Dia   | 1: ADCI End                  | of Conversi    | on interrupt   | set to low pri | ority.        |                |      |              |
| Bit2: | P14: Timer 4                 | Interrupt Pri  | ority Contro   | l.             |               |                |      |              |
|       | This bit sets the            | he priority of | the Timer 4    | interrupt.     |               |                |      |              |
|       | 0: Timer 4 int               | errupt set to  | low priority.  |                |               |                |      |              |
| D'(1) | 1: Timer 4 int               | errupt set to  | low priority.  |                | C             |                |      |              |
| BIUL  | PADCO: ADC                   | End of Con     | the ADCO       | Frupt Priority | Control.      | t              |      |              |
|       | 1 nis dit sets u             | of Conversion  | the ADCU       | end of Conve   | ersion Interr | upt.           |      |              |
|       | 0: ADC0 End                  | of Conversion  | on interrupt   | set to low pri | ionity level. |                |      |              |
| BitO  | 1. ADC0 Ella<br>DT3: Timor 3 | Interrupt Pri  | ority Contro   | set to mgn pr  | ionty level.  |                |      |              |
| BIIU. | This bit sets the            | ha priority of | the Timer 3    | intorrupts     |               |                |      |              |
|       | 1 ms on sets u               | errunt priorit | v determine    | d by default : | riority orde  | r              |      |              |
|       | 1. Timer 3 int               | errupt set to  | high priority  | u by uctault j | monty of the  |                |      |              |
|       | 1. 1111CI 5 1110             | errupt set to  | ingii priority | 10 / 01.       |               |                |      |              |

Figure 12.14. EIP2: Extended Interrupt Priority 2



| Figure 17.6. Crossbar Example:                        |
|-------------------------------------------------------|
| (EMIFLE = 1; EMIF in Multiplexed Mode; P1MDIN = 0xE3; |
| XBR0 = 0x05; XBR1 = 0x14; XBR2 = 0x46)                |

|         |   |   |   | Р | 0 |     |     |    |       |       |      | I    | P1   |       |       |       |      |      |      | P   | 2    |      |      |      | P3   |      |      |      |      | Crossbar Register B |      |      |                        |
|---------|---|---|---|---|---|-----|-----|----|-------|-------|------|------|------|-------|-------|-------|------|------|------|-----|------|------|------|------|------|------|------|------|------|---------------------|------|------|------------------------|
| PIN I/O | 0 | 1 | 2 | 3 | 4 | 5   | 6   | 7  | 0     | 1     | 2    | 3    | 4    | 5     | 6     | 7     | 0    | 1    | 2    | 3   | 4    | 5    | 6    | 7    | 0    | 1    | 2    | 3    | 4    | 5                   | 6    | 7    | Grosabar Register Dits |
| тхо     | ٠ |   |   |   |   |     |     |    |       |       |      |      |      |       |       |       |      |      |      |     |      |      |      |      |      |      |      |      |      |                     |      |      | UARTOEN: XBR0.2        |
| RX0     |   | ٠ |   |   |   |     |     |    |       |       |      |      |      |       |       |       |      |      |      |     |      |      |      |      |      |      |      |      |      |                     |      |      | CARTOEN. ABROLE        |
| SCK     |   |   |   |   |   |     |     |    |       |       |      |      |      |       |       |       |      |      |      |     |      |      |      |      |      |      |      |      |      |                     |      |      |                        |
| MISO    |   | ٠ |   |   |   |     |     |    |       |       |      |      |      |       |       |       |      |      |      |     |      |      |      |      |      |      |      |      |      |                     |      |      | SPINEN: XBP0 1         |
| MOSI    |   |   |   |   |   |     |     |    |       |       |      |      |      |       |       |       |      |      |      |     |      |      |      |      |      |      |      |      |      |                     |      |      | OF IDEN. ADIO.1        |
| NSS     |   |   |   |   |   |     |     |    | ٠     |       |      |      |      |       |       |       |      |      |      |     |      |      |      |      |      |      |      |      |      |                     |      |      |                        |
| SDA     |   |   | ٠ |   |   |     |     |    |       |       |      |      |      |       |       |       |      |      |      |     |      |      |      |      |      |      |      |      |      |                     |      |      |                        |
| SCL     |   |   |   | • |   |     |     |    | •     |       |      |      |      | •     |       |       |      |      |      |     |      |      |      |      |      |      |      |      |      |                     |      |      | SWIDUEN. ABRU.U        |
| TX1     |   |   |   |   | • |     |     |    |       |       |      |      |      |       |       |       |      |      |      |     |      |      |      |      |      |      |      |      |      |                     |      |      |                        |
| RX1     |   | • |   |   |   |     |     |    | ٠     |       |      |      |      | •     |       |       |      |      |      |     |      |      |      |      |      |      |      |      |      |                     |      |      | UARTIEN: ABR2.2        |
| CEX0    |   |   |   |   | ٠ |     |     |    |       |       |      |      |      |       |       |       | ٠    |      |      |     |      |      |      |      |      |      |      |      |      |                     |      |      |                        |
| CEX1    |   | • |   |   |   |     |     |    | •     |       |      |      |      | •     | •     | •     | •    | •    |      |     |      |      |      |      |      |      |      |      |      |                     |      |      |                        |
| CEX2    |   |   |   |   |   |     |     |    |       | •     |      |      |      |       | •     | •     | •    | •    | •    |     |      |      |      |      |      |      |      |      |      |                     |      |      | PCA0ME: XBR0.[5:3]     |
| CEX3    |   |   |   |   |   |     |     |    | •     |       |      |      |      | •     |       | •     | •    | •    | •    | •   |      |      |      |      |      |      |      |      |      |                     |      |      |                        |
| CEX4    |   |   |   |   |   |     |     |    |       | •     |      |      |      |       | •     | •     | •    | •    | •    | •   | •    |      |      |      |      |      |      |      |      |                     |      |      |                        |
| ECI     | • | • | • | • | • |     |     |    | •     | •     |      |      |      | •     |       | •     | •    | •    | •    | •   | •    | •    |      |      |      |      |      |      |      |                     |      |      | ECI0E: XBR0.6          |
| CP0     | • | • | • | • | • |     |     |    | •     | •     |      |      |      | •     | •     | •     | •    | •    | •    | •   | •    | •    | •    |      |      |      |      |      |      |                     |      |      | CP0E: XBR0.7           |
| CP1     | • | • | • | • | • |     |     |    | •     | •     |      |      |      | •     |       | •     | •    | •    | •    | •   | •    | •    | •    | •    |      |      |      |      |      |                     |      |      | CP1E: XBR1.0           |
| TO      |   | • | • | • | • |     |     |    | •     | •     |      |      |      | •     |       | •     | •    | •    | •    | •   | •    | •    | •    | •    | •    |      |      |      |      |                     |      |      | T0E: XBR1.1            |
| /INT0   | • | • | • | • | • |     |     |    | •     | •     |      |      |      | •     |       | •     | •    | •    | •    | •   | •    | •    | •    | •    | •    | •    |      |      |      |                     |      |      | INT0E: XBR1.2          |
| T1      | • | • | • | • | • |     |     |    | •     | •     |      |      |      | •     | •     | •     | •    | •    | •    | •   | •    | •    | •    | •    | •    | •    | •    |      |      |                     |      |      | T1E: XBR1.3            |
| /INT1   | • | • | • | • | • |     |     |    | •     | •     |      |      |      | ٠     |       | •     | •    | •    | •    | •   | •    | •    | •    | •    | •    | •    | •    | •    |      |                     |      |      | INT1E: XBR1.4          |
| T2      | • | • | • | • | • |     |     |    | •     | •     |      |      |      | •     | •     | •     | •    | •    | •    | •   | •    | •    | •    | •    | •    | •    | •    | •    | •    |                     |      |      | T2E: XBR1.5            |
| T2EX    | • | • | • | • | • |     |     |    | •     | •     |      |      |      | •     | •     | •     | •    | •    | •    | •   | •    | •    | •    | •    | •    | •    | •    | •    | •    | •                   |      |      | T2EXE: XBR1.6          |
| Τ4      | • | • | • | • | • |     |     |    | •     | •     |      |      |      | •     | •     | •     | •    | •    | •    | •   | •    | •    | •    | •    | •    | •    | •    | •    | •    | •                   | •    |      | T4E: XBR2.3            |
| T4EX    | • | • | • | • | • |     |     |    | •     | •     |      |      |      | •     | •     | •     | •    | •    | •    | •   | •    | •    | •    | •    | •    | •    | •    | •    | •    | •                   | •    | •    | T4EXE: XBR2.4          |
| /SYSCLK | • | • | • | • | • |     |     |    | •     | •     |      |      |      | •     | •     | •     |      | •    | •    | •   | •    | •    | •    | •    | •    | •    | •    | •    | •    | •                   | •    | •    | SYSCKE: XBR1.7         |
| CNVSTR  | • | • | • | • | • |     |     |    | •     | •     |      | _    |      | •     | •     | •     | •    | •    | •    | •   | •    | •    | •    | •    | •    | •    | •    | •    | •    | •                   | •    | •    | CNVSTE: XBR2.0         |
|         |   | ÷ |   | - |   |     |     |    | A8    | A9    | Ā    | Ā    | Ā    | A1    | A1    | A1    | -    | _    | 2    | 3   | 4    | 2    | 9    | 5    | -    | -    |      |      |      |                     |      |      |                        |
|         |   |   |   |   |   |     | _   | ~  | 11.0/ | 11.1/ | 1.2/ | 1.3/ | 1.4  | 11.5/ | 11.6/ | 11.7/ | n/A( | n/A  | d/m( | d/m | d/m  | 3m/P | fm/⊅ | Jm/  | 0/D0 | 101  | 2/D2 | 3/D3 | 4/D4 | 5/D5                | 8/D6 | 7/D7 |                        |
|         |   |   |   |   |   | ALE | /RD | WF | AIN   | AIN   | AIN  | AIN  | AIN  | AIN   | AIN   | AIN   | A8r  | A 9r | A 10 | A11 | A 12 | A 13 | A 14 | A 15 | AD   | AD.  | AD:  | AD   | ΡĎ   | ΑŬ                  | ΡĞ   | AD   |                        |
|         |   |   |   |   |   |     |     |    | A     | N1 I  | nput | s/No | n-mi | ixed  | Add   | lr H  | Mu   | xed  | Addr | H/N | on-m | nuxe | hA h | dr L | M    | uxeo | d Da | ta/N | on-m | uxec                | Da   | ita  |                        |



Setting the SMBus0 Free Timer Enable bit (FTE, SMB0CN.1) to logic 1 enables the timer in SMB0CR. When SCL goes high, the timer in SMB0CR counts up. A timer overflow indicates a free bus timeout: if SMBus0 is waiting to generate a START, it will do so after this timeout. The bus free period should be less than 50  $\mu$ s (see Figure 18.9, SMBus0 Clock Rate Register).

When the TOE bit in SMB0CN is set to logic 1, Timer 3 is used to detect SCL low timeouts. If Timer 3 is enabled (see Section "22.2. Timer 3" on page 240), Timer 3 is forced to reload when SCL is high, and forced to count when SCL is low. With Timer 3 enabled and configured to overflow after 25 ms (and TOE set), a Timer 3 overflow indicates a SCL low timeout; the Timer 3 interrupt service routine can then be used to reset SMBus0 communication in the event of an SCL low timeout.



#### 18.4.2. Clock Rate Register

|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                 |                                   |                  |                     | -                |         |                      |  |  |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------|------------------|---------------------|------------------|---------|----------------------|--|--|--|--|
| R/W      | R/W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R/W               | R/W                               | R/W              | R/W                 | R/W              | R/W     | Reset Value          |  |  |  |  |
| Bit7     | Bit6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Bit5              | Bit4                              | Bit3             | Bit2                | Bit1             | Bit0    | SFR Address:<br>0xCF |  |  |  |  |
| Bits7-0: | <ul> <li>SMB0CR.[7:0]: SMBus0 Clock Rate Preset</li> <li>The SMB0CR Clock Rate register controls the frequency of the serial clock SCL in master</li> <li>8-bit word stored in the SMB0CR Register preloads a dedicated 8-bit timer. The timer con-</li> <li>when it rolls over to 0x00, the SCL logic state toggles.</li> <li>The SMB0CR setting should be bounded by the following equation , where <i>SMB0CR</i> is th</li> <li>8-bit value in register SMB0CR, and <i>SYSCLK</i> is the system clock frequency in Hz:</li> </ul> |                   |                                   |                  |                     |                  |         |                      |  |  |  |  |
|          | $SMB0CR < ((288 - 0.85 \cdot SYSCLK) / 1.125)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |                                   |                  |                     |                  |         |                      |  |  |  |  |
|          | The resulting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SCL signal        | high and low                      | times are gi     | ven by the f        | ollowing equa    | ations: |                      |  |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $T_{LO}$          | <sub>W</sub> = (256               | – SMB0C          | CR)/SYSC            | CLK              |         |                      |  |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T <sub>HIGH</sub> | $\cong (258 - S)$                 | MB0CR)/          | SYSCLK              | (+ 625 <i>ns</i> |         |                      |  |  |  |  |
|          | Using the samequation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | is given in       | the following                     |                  |                     |                  |         |                      |  |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T <sub>BFT</sub>  | $a \cong 10 \times \frac{(2)}{2}$ | 56 – SMB<br>SYSC | $\frac{0CR)+1}{LK}$ |                  |         |                      |  |  |  |  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                                   |                  |                     |                  |         |                      |  |  |  |  |

#### Figure 18.9. SMB0CR: SMBus0 Clock Rate Register



#### 18.4.5. Status Register

The SMB0STA Status register holds an 8-bit status code indicating the current state of the SMBus0 interface. There are 28 possible SMBus0 states, each with a corresponding unique status code. The five most significant bits of the status code vary while the three least-significant bits of a valid status code are fixed at zero when SI = '1'. Therefore, all possible status codes are multiples of eight. This facilitates the use of status codes in software as an index used to branch to appropriate service routines (allowing 8 bytes of code to service the state or jump to a more extensive service routine).

For the purposes of user software, the contents of the SMB0STA register is only defined when the SI flag is logic 1. Software should never write to the SMB0STA register; doing so will yield indeterminate results. The 28 SMBus0 states, along with their corresponding status codes, are given in Table 1.1.

| R/W      | R/W                                                                           | R/W                                                                    | R/W                                                                          | R/W                                                            | R/W                                                             | R/W                                                          | R/W                                                | Reset Value                              |
|----------|-------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|------------------------------------------|
| Bit7     | Bit6                                                                          | Bit5                                                                   | Bit4                                                                         | Bit3                                                           | Bit2                                                            | Bit0                                                         | SFR Address:                                       |                                          |
|          |                                                                               |                                                                        |                                                                              |                                                                |                                                                 |                                                              |                                                    | 0xC1                                     |
| Bits7-3: | STA7-STA3:<br>These bits cor<br>responds to a<br>(SMB0CN.3)<br>Writing to the | SMBus0 Sta<br>ntain the SM<br>single SMBu<br>is set to logi<br>SMB0STA | tus Code.<br>Bus0 Status<br>Is state. A va<br>c 1. The con<br>register at ar | Code. There<br>alid status co<br>tent of SMB<br>ny time will y | are 28 possil<br>de is present<br>0STA is not<br>/ield indetern | ble status coo<br>in SMB0ST<br>defined when<br>ninate result | des; each sta<br>A when the<br>n the SI flag<br>s. | atus code cor-<br>SI flag<br>is logic 0. |
| Bits2-0: | STA2-STA0: '<br>is logic 1.                                                   | The three lea                                                          | st significan                                                                | t bits of SME                                                  | 30STA are al                                                    | ways read as                                                 | logic 0 whe                                        | en the SI flag                           |

#### Figure 18.12. SMB0STA: SMBus0 Status Register



#### **19.4.** SPI Special Function Registers

SPI0 is accessed and controlled through four special function registers in the system controller: SPI0CN Control Register, SPI0DAT Data Register, SPI0CFG Configuration Register, and SPI0CKR Clock Rate Register. The four special function registers related to the operation of the SPI0 Bus are described in the following section.

| Figure 19 | 9.5. SPIOC | FG: SPI0 | Configuration | Register |
|-----------|------------|----------|---------------|----------|
|           |            |          |               |          |

| R/W      | R/W                                                                  | R                          | R                          | R                                                           | R/W            | R/W          | R/W           | Reset Valu  |  |  |
|----------|----------------------------------------------------------------------|----------------------------|----------------------------|-------------------------------------------------------------|----------------|--------------|---------------|-------------|--|--|
| СКРНА    | CKPOL                                                                | BC2                        | BC1                        | BC0                                                         | SPIFRS2        | SPIFRS1      | SPIFRS0       | 0000011     |  |  |
| Bit7     | Bit6                                                                 | Bit5                       | Bit4                       | Bit3                                                        | Bit2           | Bit1         | Bit0          | SFR Addre   |  |  |
|          |                                                                      |                            |                            |                                                             |                |              |               | 0x9A        |  |  |
| D        | CUZDU A CD                                                           |                            |                            |                                                             |                |              |               |             |  |  |
| Bit/:    | : CKPHA: SPI0 Clock Phase.<br>This hit controls the SPI0 clock phase |                            |                            |                                                             |                |              |               |             |  |  |
|          | I his bit conti                                                      | ols the SPI                | clock phase                | maniad                                                      |                |              |               |             |  |  |
|          | 1: Data samp                                                         | led on more                | edge of SCK                | Period.                                                     |                |              |               |             |  |  |
| Rit6.    |                                                                      |                            |                            |                                                             |                |              |               |             |  |  |
| Dito.    | This bit cont                                                        | ols the SPI                | anty.<br>) clock polari    | tv                                                          |                |              |               |             |  |  |
|          | 0. SCK line l                                                        | ow in idle s               | tate                       | cy.                                                         |                |              |               |             |  |  |
|          | 1: SCK line h                                                        | nigh in idle s             | state.                     |                                                             |                |              |               |             |  |  |
| Bits5-3: | BC2-BC0: SI                                                          | PI0 Bit Cou                | nt.                        |                                                             |                |              |               |             |  |  |
| 0.       | Indicates whi                                                        | ich of the un              | to 8 bits of t             | he SPI0 word                                                | have been t    | ransmitted.  |               |             |  |  |
|          |                                                                      | I                          |                            |                                                             |                |              |               |             |  |  |
|          |                                                                      | BC2-BC0                    |                            | BIT Transm                                                  | itted          |              |               |             |  |  |
|          | 0                                                                    | 0                          | 0                          | Bit 0 (LSI                                                  | 3)             |              |               |             |  |  |
|          | 0                                                                    | 0                          | 1                          | Bit 1                                                       |                |              |               |             |  |  |
|          | 0                                                                    | 1                          | 0                          | Bit 2                                                       |                |              |               |             |  |  |
|          | 0                                                                    | 1                          | 1                          | Bit 3                                                       |                |              |               |             |  |  |
|          | 1                                                                    | 0                          | 0                          | Bit 4                                                       |                |              |               |             |  |  |
|          | 1                                                                    | 0                          | 1                          | Bit 5                                                       |                |              |               |             |  |  |
|          | 1                                                                    | 1                          | 0                          | Bit 6                                                       |                |              |               |             |  |  |
|          | 1                                                                    | 1                          | 1                          | Bit 7 (MS                                                   | B)             |              |               |             |  |  |
| Rits2-0. | SPIFR S2-SP                                                          | IFRSA: SPI                 | ) Frame Size               |                                                             |                |              |               |             |  |  |
| 2102 01  | These three b                                                        | oits determin              | e the number               | of bits to shi                                              | ft in/out of t | he SPI0 shif | t register du | ring a data |  |  |
|          | transfer in ma                                                       | aster mode.                | They are igno              | ored in slave                                               | node.          |              | 0             | 0           |  |  |
|          |                                                                      |                            |                            |                                                             |                |              |               |             |  |  |
|          |                                                                      | SPIFRS                     |                            | Bits Shifte                                                 | d              |              |               |             |  |  |
|          |                                                                      | 0                          | 0                          | 1                                                           |                |              |               |             |  |  |
|          | 0                                                                    |                            |                            |                                                             |                |              |               |             |  |  |
|          | 0                                                                    | 0                          | 1                          | 2                                                           |                |              |               |             |  |  |
|          | 0<br>0<br>0                                                          | 0                          | 1<br>0                     | $\frac{2}{3}$                                               |                |              |               |             |  |  |
|          | 0<br>0<br>0<br>0                                                     | 0<br>1<br>1                | 1<br>0<br>1                |                                                             |                |              |               |             |  |  |
|          | 0<br>0<br>0<br>1                                                     | 0<br>1<br>1<br>0           | 1<br>0<br>1<br>0           |                                                             |                |              |               |             |  |  |
|          | 0<br>0<br>0<br>1<br>1                                                | 0<br>1<br>1<br>0<br>0      | 1<br>0<br>1<br>0<br>1      | 2<br>3<br>4<br>5<br>6                                       |                |              |               |             |  |  |
|          | 0<br>0<br>0<br>1<br>1<br>1<br>1                                      | 0<br>1<br>1<br>0<br>0<br>1 | 1<br>0<br>1<br>0<br>1<br>0 | $ \begin{array}{r} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array} $ |                |              |               |             |  |  |



#### 21.1.2. Mode 1: 8-Bit UART, Variable Baud Rate

Mode 1 provides standard asynchronous, full duplex communication using a total of 10 bits per data byte: one start bit, eight data bits (LSB first), and one stop bit. Data are transmitted from the TX1 pin and received at the RX1 pin. On receive, the eight data bits are stored in SBUF1 and the stop bit goes into RB81 (SCON1.2).

Data transmission begins when an instruction writes a data byte to the SBUF1 register. The TI1 Transmit Interrupt Flag (SCON1.1) is set at the end of the transmission (the beginning of the stop-bit time). Data reception can begin any time after the REN1 Receive Enable bit (SCON1.4) is set to logic 1. After the stop bit is received, the data byte will be loaded into the SBUF1 receive register if the following conditions are met: RI1 must be logic 0, and if SM21 is logic 1, the stop bit must be logic 1.

If these conditions are met, the eight bits of data are stored in SBUF1, the stop bit is stored in RB81 and the RI1 flag is set. If these conditions are not met, SBUF1 and RB81 will not be loaded and the RI1 flag will not be set. An interrupt will occur if enabled when either TI1 or RI1 is set.



Figure 21.4. UART1 Mode 1 Timing Diagram

The baud rate generated in Mode 1 is a function of timer overflow, shown in Equation 21.1 and Equation 21.2. UART1 can use Timer 1 operating in *8-Bit Auto-Reload Mode*, or Timer 4 operating in *Baud Rate Generator Mode* to generate the baud rate (note that the TX and RX clocks are selected separately). On each timer overflow event (a roll-over from all ones - (0xFF for Timer 1, 0xFFFF for Timer 4) - to zero) a clock is sent to the baud rate logic.

Timer 4 is selected as TX and/or RX baud clock source by setting the TCLK1 (T4CON.4) and/or RCLK1 (T4CON.5) bits, respectively (see Section "22. TIMERS" on page 225 for complete timer configuration details). When either TCLK1 or RCLK1 is set to logic 1, Timer 4 is forced into *Baud Rate Generator Mode*, with SYSCLK / 2 as its clock source. If TCLK1 and/or RCLK1 is logic 0, Timer 1 acts as the baud clock source for the TX and/or RX circuits, respectively.

The Mode 1 baud rate equations are shown below, where T1M is the Timer 1 Clock Select bit (register CKCON), TH1 is the 8-bit reload register for Timer 1, SMOD1 is the UART1 baud rate doubler (register PCON), and [RCAP4H, RCAP4L] is the 16-bit reload register for Timer 4.

#### **Equation 21.1. Mode 1 Baud Rate using Timer 1**

$$BaudRate = \left(\frac{2^{SMOD1}}{32}\right) \times \left(\frac{SYSCLK \times 12^{(T1M-1)}}{(256 - TH1)}\right)$$

Equation 21.2. Mode 1 Baud Rate using Timer 4  $BaudRate = \frac{SYSCLK}{[32 \times (65536 - [RCAP4H, RCAP4L])]}$ 



#### 23.2.4. Frequency Output Mode

Frequency Output Mode produces a programmable-frequency square wave on the module's associated CEXn pin. The capture/compare module high byte holds the number of PCA clocks to count before the output is toggled. The frequency of the square wave is then defined by Equation 23.1.

#### **Equation 23.1. Square Wave Frequency Output**

$$F_{CEXn} = \frac{F_{PCA}}{2 \times PCA0CPHn}$$

Note: A value of 0x00 in the PCA0CPHn register is equal to 256 for this equation.

Where  $F_{PCA}$  is the frequency of the clock selected by the CPS2-0 bits in the PCA mode register, PCA0MD. The lower byte of the capture/compare module is compared to the PCA0 counter low byte; on a match, CEXn is toggled and the offset held in the high byte is added to the matched value in PCA0CPLn. Frequency Output Mode is enabled by setting the ECOMn, TOGn, and PWMn bits in the PCA0CPMn register.



Figure 23.7. PCA Frequency Output Mode



#### 23.3. Register Descriptions for PCA0

Following are detailed descriptions of the special function registers related to the operation of PCA0.

| R/W   | R/W                    | R/W            | R/W            | R/W            | R/W            | R/W            | R/W             | Reset Value      |
|-------|------------------------|----------------|----------------|----------------|----------------|----------------|-----------------|------------------|
| CF    | CR                     | -              | CCF4           | CCF3           | CCF2           | CCF1           | CCF0            | 00000000         |
| Bit7  | Bit6                   | Bit5           | Bit4           | Bit3           | Bit2           | Bit1           | Bit0            | SFR Address:     |
|       |                        |                |                |                |                | (              | bit addressable | e) 0xD8          |
|       |                        |                |                |                |                |                |                 |                  |
| Bit7: | CF: PCA Cou            | nter/Timer (   | Overflow Fla   | ıg.            |                |                |                 |                  |
|       | Set by hardwa          | are when the   | PCA0 Coun      | ter/Timer ov   | erflows from   | n 0xFFFF to    | 0x0000. W       | hen the          |
|       | Counter/Time           | r Overflow (   | CF) interrup   | ot is enabled, | setting this b | oit causes the | CPU to ve       | ctor to the CF   |
|       | interrupt servi        | ice routine. 7 | This bit is no | t automatical  | ly cleared by  | y hardware a   | nd must be      | cleared by       |
| DLA   | software. See          | "Important ]   | Note About     | the PCA0CN     | Register" of   | n page 251.    |                 |                  |
| Bit6: | CR: PCA0 Co            | ounter/Timer   | Run Contro     | l.             |                |                |                 |                  |
|       | I his bit enabl        | es/disables t  | he PCA0 Co     | unter/Timer.   |                |                |                 |                  |
|       | 1: PCA0 Cou            | nter/Timer a   | isabled.       |                |                |                |                 |                  |
| Rit5. | UNUSED Re              | ad = 0b Wr     | ite – don't ca | are            |                |                |                 |                  |
| Bit4: | CCF4: PCA0             | Module 4 C     | apture/Com     | are Flag.      |                |                |                 |                  |
| 2     | This bit is set        | by hardware    | when a mat     | ch or capture  | e occurs. Wh   | en the CCF     | interrupt is    | enabled, set-    |
|       | ting this bit ca       | uses the CP    | U to vector t  | o the CCF in   | terrupt servi  | ce routine. T  | his bit is no   | ot automati-     |
|       | cally cleared l        | by hardware    | and must be    | cleared by s   | oftware.       |                |                 |                  |
| Bit3: | CCF3: PCA0             | Module 3 C     | apture/Comp    | oare Flag.     |                |                |                 |                  |
|       | This bit is set        | by hardware    | when a mat     | ch or capture  | e occurs. Wh   | en the CCF     | interrupt is    | enabled, set-    |
|       | ting this bit ca       | uses the CP    | U to vector t  | o the CCF in   | terrupt servi  | ce routine. T  | his bit is no   | ot automati-     |
|       | cally cleared l        | by hardware    | and must be    | cleared by s   | oftware.       |                |                 |                  |
| Bit2: | CCF2: PCA0             | Module 2 C     | apture/Comp    | bare Flag.     | ****1          |                |                 |                  |
|       | This bit is set        | by hardware    | when a mat     | ch or capture  | e occurs. Wh   | en the CCF     | Interrupt 1s    | enabled, set-    |
|       | and the second large d | uses the CP    | ond must be    | o the CCF in   | terrupt servi  | ce routine. I  | nis dit is no   | ot automati-     |
| Rit1. | $CCF1 \cdot PCA0$      | Module 1 C     | and must be    | Sore Flag      | ontware.       |                |                 |                  |
| DITI. | This bit is set        | by hardware    | when a mat     | ch or capture  | occurs Wh      | en the CCF i   | interrunt is    | enabled set-     |
|       | ting this bit ca       | uses the CP    | U to vector t  | o the CCF in   | terrupt servi  | ce routine. T  | his bit is no   | ot automati-     |
|       | cally cleared l        | by hardware    | and must be    | cleared by s   | oftware.       | ••••••         |                 | <i>i</i> uutomuu |
| Bit0: | CCF0: PCA0             | Module 0 C     | apture/Comp    | oare Flag.     |                |                |                 |                  |
|       | This bit is set        | by hardware    | when a mat     | ch or capture  | e occurs. Wh   | en the CCF i   | interrupt is    | enabled, set-    |
|       | ting this bit ca       | uses the CP    | U to vector t  | o the CCF in   | terrupt servi  | ce routine. T  | his bit is no   | ot automati-     |
|       | cally cleared l        | by hardware    | and must be    | cleared by s   | oftware.       |                |                 |                  |
|       |                        |                |                |                |                |                |                 |                  |

#### Figure 23.10. PCA0CN: PCA Control Register



# Notes



#### Figure 24.4. FLASHADR: JTAG Flash Address Register

|                                                                                                                                                                                                       | 1                                         |  | [ |  | [ | [ | [ | 1 |  |  |  |  | [ | 1    | Reset Value |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|---|--|---|---|---|---|--|--|--|--|---|------|-------------|
| D:415                                                                                                                                                                                                 |                                           |  |   |  |   |   |   |   |  |  |  |  |   | D:40 | 0X0000      |
| ы115                                                                                                                                                                                                  |                                           |  |   |  |   |   |   |   |  |  |  |  |   | ыш   |             |
|                                                                                                                                                                                                       |                                           |  |   |  |   |   |   |   |  |  |  |  |   |      |             |
| This register holds the address for all JTAG Flash read, write, and erase operations. This register autoincrements after each read or write, regardless of whether the operation succeeded or failed. |                                           |  |   |  |   |   |   |   |  |  |  |  |   |      |             |
| Bits15                                                                                                                                                                                                | Bits15-0: Flash Operation 16-bit Address. |  |   |  |   |   |   |   |  |  |  |  |   |      |             |

### Figure 24.5. FLASHDAT: JTAG Flash Data Register

|                       |                           |               |           | •          |            | •           | •          |            | Reset Value |  |  |
|-----------------------|---------------------------|---------------|-----------|------------|------------|-------------|------------|------------|-------------|--|--|
|                       |                           |               |           |            |            |             |            |            | 0000000000  |  |  |
| Bit9                  |                           |               |           |            |            |             |            | Bit0       | _           |  |  |
|                       |                           |               |           |            |            |             |            |            |             |  |  |
|                       |                           |               |           |            |            |             |            |            |             |  |  |
| This regis            | ster is used to read      | d or write da | ta to the | Flash men  | nory acros | ss the JTA  | G interfa  | ce.        |             |  |  |
| <b>D</b> : 0 <b>0</b> |                           |               |           |            |            |             |            |            |             |  |  |
| Bits9-2:              | DATA7-0: Flash Data Byte. |               |           |            |            |             |            |            |             |  |  |
| Bit1:                 | FAIL: Flash Fai           | il Bit.       |           |            |            |             |            |            |             |  |  |
|                       | 0: Previous Flas          | sh memory o   | operation | was succe  | essful.    |             |            |            |             |  |  |
|                       | 1: Previous Flas          | sh memory of  | operation | failed. Us | ually indi | cates the a | associated | 1 memory   | location    |  |  |
|                       | was locked.               | 5             | 1         |            | 5          |             |            | 5          |             |  |  |
| Bit0:                 | BUSY: Flash B             | usv Bit.      |           |            |            |             |            |            |             |  |  |
| Bito.                 | 0. Flash interfac         | ce logic is n | ot husy   |            |            |             |            |            |             |  |  |
|                       | 1: Flash interfac         | ce logic is n | rocessing | a request  | Reads or   | writes w    | aile BUSY  | V = 1 will | l not       |  |  |
|                       |                           | le logic is p | locessing | a request. | Reaus of   | writes wi   | ine bus    | I = I WII  | l liot      |  |  |
|                       | initiate another          | operation     |           |            |            |             |            |            |             |  |  |
|                       |                           |               |           |            |            |             |            |            |             |  |  |
|                       |                           |               |           |            |            |             |            |            |             |  |  |

