

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

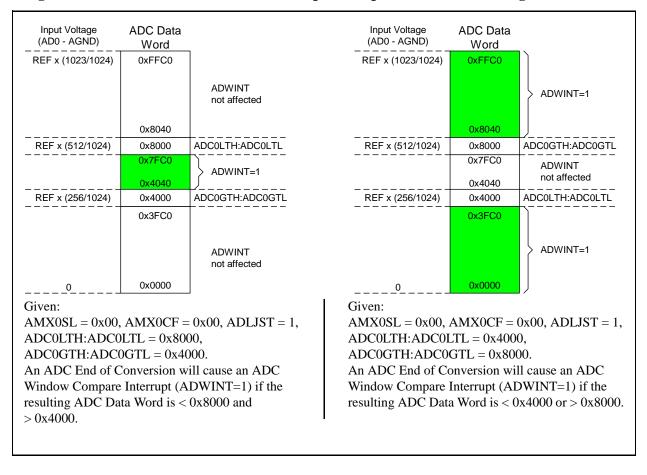
Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	EBI/EMI, SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	32
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4.25K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 8x8b, 8x10b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f023-gqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 23.4. PCA Capture Mode Diagram	
Figure 23.5. PCA Software Timer Mode Diagram	
Figure 23.6. PCA High Speed Output Mode Diagram	
Figure 23.7. PCA Frequency Output Mode	
Figure 23.8. PCA 8-Bit PWM Mode Diagram	
Figure 23.9. PCA 16-Bit PWM Mode	
Figure 23.10. PCA0CN: PCA Control Register	
Figure 23.11. PCA0MD: PCA0 Mode Register	
Figure 23.12. PCA0CPMn: PCA0 Capture/Compare Mode Registers	
Figure 23.13. PCA0L: PCA0 Counter/Timer Low Byte	
Figure 23.14. PCA0H: PCA0 Counter/Timer High Byte	
Figure 23.15. PCA0CPLn: PCA0 Capture Module Low Byte	
Figure 23.16. PCA0CPHn: PCA0 Capture Module High Byte	
24. JTAG (IEEE 1149.1)	
Figure 24.1. IR: JTAG Instruction Register	
Table 24.1. Boundary Data Register Bit Definitions	
Figure 24.2. DEVICEID: JTAG Device ID Register	
Figure 24.3. FLASHCON: JTAG Flash Control Register	
Figure 24.4. FLASHADR: JTAG Flash Address Register	
Figure 24.5. FLASHDAT: JTAG Flash Data Register	

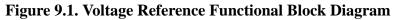
Input Voltage (AD0 - AGND)	ADC Data Word		Input Voltage (AD0 - AGND)	ADC Data Word		
REF x (4095/4096)	0x0FFF	AD0WINT not affected	REF x (4095/4096)	0x0FFF	AD0WINT=1	
	0x0201			0x0201	<u> </u>	
REF x (512/4096)	0x0200	ADC0LTH:ADC0LTL	REF x (512/4096)	0x0200	ADC0GTH:ADC0GTL	
	0x01FF	AD0WINT=1		0x01FF	ADOWINT	
	0x0101	ADOWINT=1		0x0101	not affected	
REF x (256/4096)	0x0100	ADC0GTH:ADC0GTL	REF x (256/4096)	0x0100	ADC0LTH:ADC0LTL	
0	0x0000	AD0WINT not affected	0	0x0000	AD0WINT=1	
Window Compare	DLTL = 0x02 DGTL = 0x0 Conversion Interrupt (A	00,	Given: AMX0SL = 0x00, AMX0CF = 0x00, AD0LJST = '0', ADC0LTH:ADC0LTL = 0x0100, ADC0GTH:ADC0GTL = 0x0200. An ADC0 End of Conversion will cause an ADC Window Compare Interrupt (AD0WINT = '1') if the resulting ADC0 Data Word is > 0x0200 or < 0x0100.			

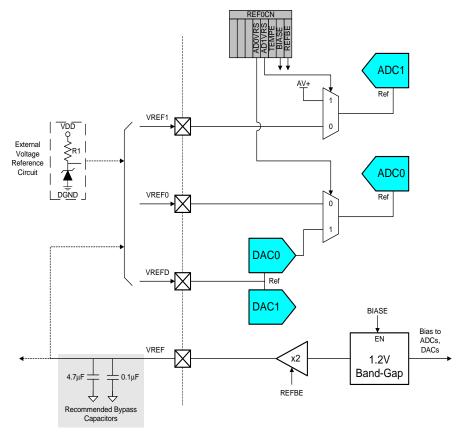

Figure 5.16. 12-Bit ADC0 Window Interrupt Example: Right Justified Single-Ended Data

Input Voltage (AD0 - AD1)	ADC Data Word		Input Voltage (AD0 - AD1)	ADC Data Word		
REF x (2047/2048)	0x7FF0	AD0WINT not affected	REF x (2047/2048)	0x7FF0 0x1010	ADOWINT=1	
REF x (256/2048)	0x1010	ADC0LTH:ADC0LTL	REF x (256/2048)	0x1010	ADC0GTH:ADC0GTI	
	0x0FF0	<u> </u>		0x0FF0	ADOWINT	
	0x0000	AD0WINT=1		0x0000	not affected	
REF x (-1/2048)	0xFFF0	ADC0GTH:ADC0GTL	REF x (-1/2048)	0xFFF0	ADC0LTH:ADC0LTL	
-REF	0x8000	AD0WINT not affected	-REF	0x8000	ADOWINT=1	
Vindow Compare	OLTL = 0x100 OGTL = 0xFl Conversion Interrupt (A 20 Data Word	00, FF0. will cause an ADC0 D0WINT = '1') if 1 is < 0 x 1000 and	Given: AMX0SL = 0x00, AMX0CF = 0x01, AD0LJST = '1', ADC0LTH:ADC0LTL = 0xFFF0, ADC0GTH:ADC0GTL = 0x1000. An ADC0 End of Conversion will cause an AI Window Compare Interrupt (AD0WINT = '1') the resulting ADC0 Data Word is < 0xFFF0 or > 0x1000. (Two's-complement math.)			

Figure 5.19. 12-Bit ADC0 Window Interrupt Example: Left Justified Differential Data

Figure 6.18. 10-Bit ADC0 Window Interrupt Example: Left Justified Single-Ended Data




9. VOLTAGE REFERENCE (C8051F020/2)

The voltage reference circuit offers full flexibility in operating the ADC and DAC modules. Three voltage reference input pins allow each ADC and the two DACs to reference an external voltage reference or the on-chip voltage reference output. ADC0 may also reference the DAC0 output internally, and ADC1 may reference the analog power supply voltage, via the VREF multiplexers shown in Figure 9.1.

The internal voltage reference circuit consists of a 1.2 V, 15 ppm/°C (typical) bandgap voltage reference generator and a gain-of-two output buffer amplifier. The internal reference may be routed via the VREF pin to external system components or to the voltage reference input pins shown in Figure 9.1. Bypass capacitors of 0.1 μ F and 4.7 μ F are recommended from the VREF pin to AGND, as shown in Figure 9.1. See Table 9.1 for voltage reference specifications.

The Reference Control Register, REF0CN (defined in Figure 9.2) enables/disables the internal reference generator and selects the reference inputs for ADC0 and ADC1. The BIASE bit in REF0CN enables the on-board reference generator while the REFBE bit enables the gain-of-two buffer amplifier which drives the VREF pin. When disabled, the supply current drawn by the bandgap and buffer amplifier falls to less than 1 μ A (typical) and the output of the buffer amplifier enters a high impedance state. If the internal bandgap is used as the reference voltage generator, BIASE and REFBE must both be set to logic 1. If the internal reference is not used, REFBE may be set to logic 0. Note that the BIASE bit must be set to logic 1 if either DAC or ADC is used, regardless of whether the voltage reference is derived from the on-chip reference or supplied by an off-chip source. If neither the ADC nor the DAC are being used, both of these bits can be set to logic 0 to conserve power. Bits AD0VRS and AD1VRS select the ADC0 and ADC1 voltage reference sources, respectively. The electrical specifications for the Voltage Reference circuit are given in Table 9.1.

The temperature sensor connects to the highest order input of the ADC0 input multiplexer (see Section "5.1. Analog Multiplexer and PGA" on page 43 for C8051F020/1 devices, or Section "6.1. Analog Multiplexer and PGA" on page 59 for C8051F022/3 devices). The TEMPE bit within REF0CN enables and disables the temperature sensor. While disabled, the temperature sensor defaults to a high impedance state and any A/D measurements performed on the sensor while disabled result in undefined data.

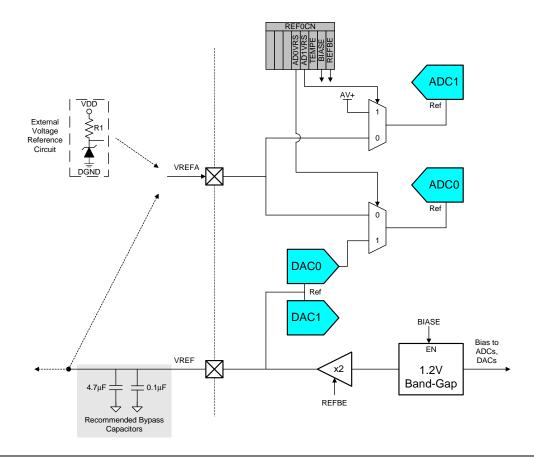
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	-	AD0VRS	AD1VRS	TEMPE	BIASE	REFBE	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address
								0xD1
Bits7-5:	UNUSED. R	ead = 000b;	Write = don'	t care.				
Bit4:	AD0VRS: Al	OC0 Voltage	e Reference S	elect				
	0: ADC0 volt	age referend	ce from VRE	F0 pin.				
	1: ADC0 volt	age referend	ce from DAC	0 output.				
Bit3:	AD1VRS: Al	DC1 Voltage	e Reference S	elect				
	0: ADC1 volt	age referend	ce from VRE	F1 pin.				
	1: ADC1 volt	age referend	ce from AV+.					
Bit2:	TEMPE: Tem	perature Se	nsor Enable H	Bit.				
	0: Internal Te	mperature S	ensor Off.					
	1: Internal Te	mperature S	ensor On.					
Bit1:	BIASE: ADC	/DAC Bias	Generator En	able Bit. (M	ust be '1' if u	using ADC o	or DAC).	
	0: Internal Bi	as Generato	r Off.					
	1: Internal Bi	as Generato	r On.					
Bit0:	REFBE: Inter	nal Referen	ce Buffer Ena	able Bit.				
	0: Internal Re	ference Buf	fer Off.					
	1: Internal Re	C		1 1	c · 1			

Figure 9.2. REF0CN: Reference Control Register

Table 9.1. Voltage Reference Electrical Characteristics

VDD = 3.0 V, AV+ = 3.0 V, -40°C to $+85^{\circ}\text{C}$ unless otherwise specified

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS				
INTERNAL REFERENCE (REFBE = 1)									
Output Voltage	25°C ambient	2.36	2.43	2.48	V				
VREF Short-Circuit Current				30	mA				
VREF Temperature Coefficient			15		ppm/°C				
Load Regulation	Load = 0 to 200 μ A to AGND		0.5		ppm/µA				
VREF Turn-on Time 1	4.7µF tantalum, 0.1µF ceramic bypass		2		ms				
VREF Turn-on Time 2	0.1µF ceramic bypass		20		μs				
VREF Turn-on Time 3	no bypass cap		10		μs				
EXTERNAL REFERENCE (RI	$\mathbf{FBE} = 0$		•						
Input Voltage Range		1.00		(AV+) -	V				
				0.3					
Input Current			0	1	μA				



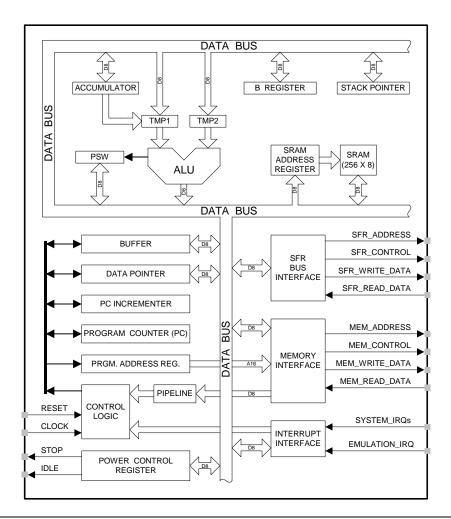
10. VOLTAGE REFERENCE (C8051F021/3)

The internal voltage reference circuit consists of a 1.2 V, 15 ppm/°C (typical) bandgap voltage reference generator and a gain-of-two output buffer amplifier. The internal reference may be routed via the VREF pin to external system components or to the VREFA input pin shown in Figure 10.1. Bypass capacitors of 0.1 μ F and 4.7 μ F are recommended from the VREF pin to AGND, as shown in Figure 10.1. See Table 10.1 for voltage reference specifications.

The VREFA pin provides a voltage reference input for ADC0 and ADC1. ADC0 may also reference the DAC0 output internally, and ADC1 may reference the analog power supply voltage, via the VREF multiplexers shown in Figure 10.1.

The Reference Control Register, REF0CN (defined in Figure 10.2) enables/disables the internal reference generator and selects the reference inputs for ADC0 and ADC1. The BIASE bit in REF0CN enables the on-board reference generator while the REFBE bit enables the gain-of-two buffer amplifier which drives the VREF pin. When disabled, the supply current drawn by the bandgap and buffer amplifier falls to less than 1 μ A (typical) and the output of the buffer amplifier enters a high impedance state. If the internal bandgap is used as the reference voltage generator, BIASE and REFBE must both be set to 1 (this includes any time a DAC is used). If the internal reference is not used, REFBE may be set to logic 0. Note that the BIASE bit must be set to logic 1 if either ADC is used, regardless of whether the voltage reference is derived from the on-chip reference or supplied by an off-chip source. If neither the ADC nor the DAC are being used, both of these bits can be set to logic 0 to conserve power. Bits AD0VRS and AD1VRS select the ADC0 and ADC1 voltage reference sources, respectively. The electrical specifications for the Voltage Reference are given in Table 10.1.

Figure 10.1. Voltage Reference Functional Block Diagram


12. CIP-51 MICROCONTROLLER

The MCU system controller core is the CIP-51 microcontroller. The CIP-51 is fully compatible with the MCS-51TM instruction set; standard 803x/805x assemblers and compilers can be used to develop software. The MCU family has a superset of all the peripherals included with a standard 8051. Included are five 16-bit counter/timers (see description in Section 22), two full-duplex UARTs (see description in Section 20 and Section 21), 256 bytes of internal RAM, 128 byte Special Function Register (SFR) address space (see Section 12.2.6), and 8/4 byte-wide I/O Ports (see description in Section 17). The CIP-51 also includes on-chip debug hardware (see description in Section 24), and interfaces directly with the MCUs' analog and digital subsystems providing a complete data acquisition or control-system solution in a single integrated circuit.

The CIP-51 Microcontroller core implements the standard 8051 organization and peripherals as well as additional custom peripherals and functions to extend its capability (see Figure 12.1 for a block diagram). The CIP-51 includes the following features:

- Fully Compatible with MCS-51 Instruction Set
- 25 MIPS Peak Throughput with 25 MHz Clock
- 0 to 25 MHz Clock Frequency
- 256 Bytes of Internal RAM
- 8/4 Byte-Wide I/O Ports

- Extended Interrupt Handler
- Reset Input
- Power Management Modes
- On-chip Debug Logic
- Program and Data Memory Security

Figure 12.1. CIP-51 Block Diagram

Performance

The CIP-51 employs a pipelined architecture that greatly increases its instruction throughput over the standard 8051 architecture. In a standard 8051, all instructions except for MUL and DIV take 12 or 24 system clock cycles to execute, and usually have a maximum system clock of 12 MHz. By contrast, the CIP-51 core executes 70% of its instructions in one or two system clock cycles, with no instructions taking more than eight system clock cycles.

With the CIP-51's maximum system clock at 25 MHz, it has a peak throughput of 25 MIPS. The CIP-51 has a total of 109 instructions. The table below shows the total number of instructions that require each execution time.

Clocks to Execute	1	2	2/3	3	3/4	4	4/5	5	8
Number of Instructions	26	50	5	14	7	3	1	2	1

Programming and Debugging Support

A JTAG-based serial interface is provided for in-system programming of the FLASH program memory and communication with on-chip debug support logic. The re-programmable FLASH can also be read and changed a single byte at a time by the application software using the MOVC and MOVX instructions. This feature allows program memory to be used for non-volatile data storage as well as updating program code under software control.

The on-chip debug support logic facilitates full speed in-circuit debugging, allowing the setting of hardware breakpoints and watch points, starting, stopping and single stepping through program execution (including interrupt service routines), examination of the program's call stack, and reading/writing the contents of registers and memory. This method of on-chip debug is completely non-intrusive and non-invasive, requiring no RAM, Stack, timers, or other on-chip resources.

The CIP-51 is supported by development tools from Silicon Labs and third party vendors. Silicon Labs provides an integrated development environment (IDE) including editor, macro assembler, debugger and programmer. The IDE's debugger and programmer interface to the CIP-51 via its JTAG interface to provide fast and efficient in-system device programming and debugging. Third party macro assemblers and C compilers are also available.

12.1. Instruction Set

The instruction set of the CIP-51 System Controller is fully compatible with the standard MCS-51TM instruction set; standard 8051 development tools can be used to develop software for the CIP-51. All CIP-51 instructions are the binary and functional equivalent of their MCS-51TM counterparts, including opcodes, addressing modes and effect on PSW flags. However, instruction timing is different than that of the standard 8051.

12.1.1. Instruction and CPU Timing

In many 8051 implementations, a distinction is made between machine cycles and clock cycles, with machine cycles varying from 2 to 12 clock cycles in length. However, the CIP-51 implementation is based solely on clock cycle timing. All instruction timings are specified in terms of clock cycles.

Due to the pipelined architecture of the CIP-51, most instructions execute in the same number of clock cycles as there are program bytes in the instruction. Conditional branch instructions take one less clock cycle to complete when the branch is not taken as opposed to when the branch is taken. Table 12.1 is the CIP-51 Instruction Set Summary, which includes the mnemonic, number of bytes, and number of clock cycles for each instruction.

12.1.2. MOVX Instruction and Program Memory

In the CIP-51, the MOVX instruction serves three purposes: accessing on-chip XRAM, accessing off-chip XRAM, and accessing on-chip program FLASH memory. The FLASH access feature provides a mechanism for user software to update program code and use the program memory space for non-volatile data storage (see Section "15. FLASH

MEMORY" on page 139). The External Memory Interface provides a fast access to off-chip XRAM (or memorymapped peripherals) via the MOVX instruction. Refer to **Section "16. EXTERNAL DATA MEMORY INTER-FACE AND ON-CHIP XRAM" on page 145** for details.

Mnemonic	Description	Bytes	Clock Cycles
	ARITHMETIC OPERATIONS		
ADD A, Rn	Add register to A	1	1
ADD A, direct	Add direct byte to A	2	2
ADD A, @Ri	Add indirect RAM to A	1	2
ADD A, #data	Add immediate to A	2	2
ADDC A, Rn	Add register to A with carry	1	1
ADDC A, direct	Add direct byte to A with carry	2	2
ADDC A, @Ri	Add indirect RAM to A with carry	1	2
ADDC A, #data	Add immediate to A with carry	2	2
SUBB A, Rn	Subtract register from A with borrow	1	1
SUBB A, direct	Subtract direct byte from A with borrow	2	2
SUBB A, @Ri	Subtract indirect RAM from A with borrow	1	2
SUBB A, #data	Subtract immediate from A with borrow	2	2
INC A	Increment A	1	1
INC Rn	Increment register	1	1
INC direct	Increment direct byte	2	2
INC @Ri	Increment indirect RAM	1	2
DEC A	Decrement A	1	1
DEC Rn	Decrement register	1	1
DEC direct	Decrement direct byte	2	2
DEC @Ri	Decrement indirect RAM	1	2
INC DPTR	Increment Data Pointer	1	1
MUL AB	Multiply A and B	1	4
DIV AB	Divide A by B	1	8
DA A	Decimal adjust A	1	1
	LOGICAL OPERATIONS		
ANL A, Rn	AND Register to A	1	1
ANL A, direct	AND direct byte to A	2	2
ANL A, @Ri	AND indirect RAM to A	1	2
ANL A, #data	AND immediate to A	2	2
ANL direct, A	AND A to direct byte	2	2
ANL direct, #data	AND immediate to direct byte	3	3
ORL A, Rn	OR Register to A	1	1
ORL A, direct	OR direct byte to A	2	2
ORL A, @Ri	OR indirect RAM to A	1	2
ORL A, #data	OR immediate to A	2	2
ORL direct, A	OR A to direct byte	2	2
ORL direct, #data	OR immediate to direct byte	3	3
XRL A, Rn	Exclusive-OR Register to A	1	1
XRL A, direct	Exclusive-OR direct byte to A	2	2
XRL A, @Ri	Exclusive-OR indirect RAM to A	1	2

Table 12.1. CIP-51 Instruction Set Summary

Table 12.3. Special Function Registers

SFRs are listed in alphabetical order. All undefined SFR locations are reserved.

Register	Address	Description	Page No.
ADC0LTH	0xC7	ADC0 Less-Than High	page 53*, page 69**
ADC0LTL	0xC6	ADC0 Less-Than Low	page 53*, page 69**
ADC1CF	0xAB	ADC1 Analog Multiplexer Configuration	page 79
ADC1CN	0xAA	ADC1 Control	page 80
ADC1	0x9C	ADC1 Data Word	page 81
AMX0CF	0xBA	ADC0 Multiplexer Configuration	page 47*, page 63**
AMX0SL	0xBB	ADC0 Multiplexer Channel Select	page 48*, page 64**
AMX1SL	0xAC	ADC1 Analog Multiplexer Channel Select	page 79
В	0xF0	B Register	page 115
CKCON	0x8E	Clock Control	page 226
CPT0CN	0x9E	Comparator 0 Control	page 97
CPT1CN	0x9F	Comparator 1 Control	page 98
DACOCN	0xD4	DAC0 Control	page 86
DAC0H	0xD3	DAC0 High	page 85
DACOL	0xD2	DAC0 Low	page 85
DACICN	0xD2 0xD7	DAC1 Control	page 88
DAC1H	0xD6	DAC1 High Byte	page 87
DAC1L	0xD5	DAC1 Low Byte	page 87
DPH	0x83	Data Pointer High	page 113
DPL	0x82	Data Pointer Low	page 113
EIE1	0xE6	Extended Interrupt Enable 1	page 113 page 121
EIE1 EIE2	0xE0	Extended Interrupt Enable 1 Extended Interrupt Enable 2	page 121 page 122
EIE2 EIP1	0xE7	Extended Interrupt Enable 2 External Interrupt Priority 1	page 122 page 123
EIP1 EIP2	0xF7	External Interrupt Priority 2	page 123
EIF2 EMI0CN	0xF7 0xAF	External Memory Interface Control	
EMIOCK	0xAF 0xA3		page 147
EMIOCF		EMIF Configuration	page 147
FLACL	0xA1 0xB7	EMIF Timing Control FLASH Access Limit	page 152
FLACL		FLASH Access Linit FLASH Scale	page 142
	0xB6		page 143
IE	0xA8	Interrupt Enable	page 119
IP	0xB8	Interrupt Priority	page 120
OSCICN	0xB2	Internal Oscillator Control	page 136
OSCXCN	0xB1	External Oscillator Control	page 137
P0	0x80	Port 0 Latch	page 173
POMDOUT	0xA4	Port 0 Output Mode Configuration	page 173
P1	0x90	Port 1 Latch	page 174
P1MDIN	0xBD	Port 1 Input Mode	page 174
P1MDOUT	0xA5	Port 1 Output Mode Configuration	page 175
P2	0xA0	Port 2 Latch	page 175
P2MDOUT	0xA6	Port 2 Output Mode Configuration	page 175
P3	0xB0	Port 3 Latch	page 176
P3IF	0xAD	Port 3 Interrupt Flags	page 177
P3MDOUT	0xA7	Port 3 Output Mode Configuration	page 176
†P4	0x84	Port 4 Latch	page 180†
†P5	0x85	Port 5 Latch	page 180†

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
						(bit addressable)) 0xE0
	ACC: Accum This register i		ulator for arit	hmetic opera	ations.			

Figure 12.7. ACC: Accumulator

Figure 12.8. B: B Register

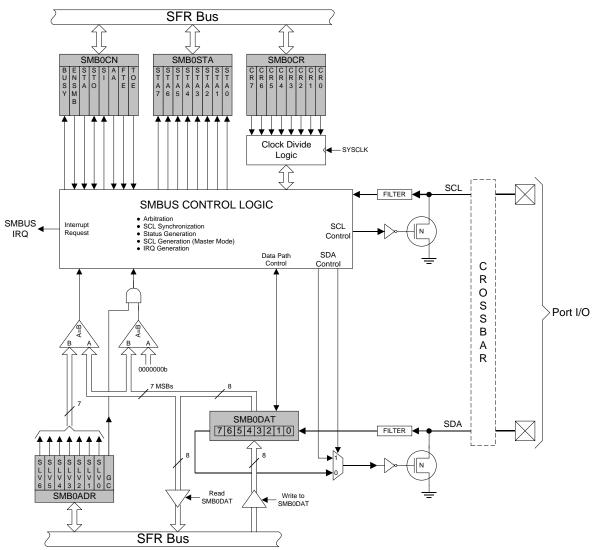
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
B.7	B.6	B.5	B.4	B.3	B.2	B.1	B.0	00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:		
							(bit addressable)) 0xF0		
Bits7-0: B: B Register. This register serves as a second accumulator for certain arithmetic operations.										

Interrupt Source	Interrupt Vector	Priority Order	Pending Flag	Bit addressable?	Cleared by HW?	Enable Flag	Priority Control
Reset	0x0000	Тор	None	N/A	N/A	Always Enabled	Always Highest
External Interrupt 0 (/INT0)	0x0003	0	IE0 (TCON.1)	Y	Y	EX0 (IE.0)	PX0 (IP.0)
Timer 0 Overflow	0x000B	1	TF0 (TCON.5)	Y	Y	ET0 (IE.1)	PT0 (IP.1)
External Interrupt 1 (/INT1)	0x0013	2	IE1 (TCON.3)	Y	Y	EX1 (IE.2)	PX1 (IP.2)
Timer 1 Overflow	0x001B	3	TF1 (TCON.7)	Y	Y	ET1 (IE.3)	PT1 (IP.3)
UART0	0x0023	4	RI0 (SCON0.0) TI0 (SCON0.1)	Y		ES0 (IE.4)	PS0 (IP.4)
Timer 2 Overflow (or EXF2)	0x002B	5	TF2 (T2CON.7)	Y		ET2 (IE.5)	PT2 (IP.5)
Serial Peripheral Interface	0x0033	6	SPIF (SPI0CN.7)	Y		ESPI0 (EIE1.0)	PSPI0 (EIP1.0)
SMBus Interface	0x003B	7	SI (SMB0CN.3)	Y		ESMB0 (EIE1.1)	PSMB0 (EIP1.1)
ADC0 Window Comparator	0x0043	8	AD0WINT (ADC0CN.2)	Y		EWADC0 (EIE1.2)	PWADC0 (EIP1.2)
Programmable Counter Array	0x004B	9	CF (PCA0CN.7) CCFn (PCA0CN.n)	Y		EPCA0 (EIE1.3)	PPCA0 (EIP1.3)
Comparator 0 Falling Edge	0x0053	10	CP0FIF (CPT0CN.4)			ECP0F (EIE1.4)	PCP0F (EIP1.4)
Comparator 0 Rising Edge	0x005B	11	CPORIF (CPT0CN.5)			ECP0R (EIE1.5)	PCP0R (EIP1.5)
Comparator 1 Falling Edge	0x0063	12	CP1FIF (CPT1CN.4)			ECP1F (EIE1.6)	PCP1F (EIP1.6)
Comparator 1 Rising Edge	0x006B	13	CP1RIF (CPT1CN.5)			ECP1R (EIE1.7)	PCP1F (EIP1.7)
Timer 3 Overflow	0x0073	14	TF3 (TMR3CN.7)			ET3 (EIE2.0)	PT3 (EIP2.0)
ADC0 End of Conversion	0x007B	15	AD0INT (ADC0CN.5)	Y		EADC0 (EIE2.1)	PADC0 (EIP2.1)
Timer 4 Overflow	0x0083	16	TF4 (T4CON.7)			ET4 (EIE2.2)	PT4 (EIP2.2)
ADC1 End of Conversion	0x008B	17	AD1INT (ADC1CN.5)			EADC1 (EIE2.3)	PADC1 (EIP2.3)
External Interrupt 6	0x0093	18	IE6 (P3IF.5)			EX6 (EIE2.4)	PX6 (EIP2.4)
External Interrupt 7	0x009B	19	IE7 (P3IF.6)			EX7 (EIE2.5)	PX7 (EIP2.5)
UART1	0x00A3	20	RI1 (SCON1.0) TI1 (SCON1.1)			ES1	PS1
External Crystal OSC Ready	0x00AB	21	XTLVLD (OSCXCN.7)			EXVLD (EIE2.7)	PXVLD (EIP2.7)

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
PXVLD	EP1	PX7	PX6	PADC1	PT4	PADC0	PT3	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xF7
Bit7:	PXVLD: Exte	ernal Clock S	Source Valid	(XTLVLD) I	nterrupt Pri	iority Control.		
	This bit sets the	he priority of	f the XTLVI	D interrupt.	-	-		
	0: XTLVLD i	nterrupt set t	o low priori	ty level.				
	1: XTLVLD i	nterrupt set t	o high prior	ity level.				
Bit6:	EP1: UART1	Interrupt Pri	ority Contro	ol.				
	This bit sets the	he priority of	f the UART	interrupt.				
	0: UART1 int	errupt set to	low priority					
	1: UART1 int	errupt set to	high priority	/.				
Bit5:	PX7: External	l Interrupt 7	Priority Cor	trol.				
	This bit sets the							
	0: External In	terrupt 7 set	to low prior	ity level.				
	1: External In	terrupt 7 set	to high prio	rity level.				
Bit4:	PX6: External	l Interrupt 6	Priority Cor	trol.				
	This bit sets the	he priority of	f the Externa	al Interrupt 6.				
	0: External In	terrupt 6 set	to low prior	ity level.				
	1: External In	terrupt 6 set	to high prio	rity level.				
Bit3:	PADC1: ADC	C1 End Of C	onversion In	terrupt Priori	y Control.			
	This bit sets the	he priority of	f the ADC1	End of Conve	rsion interr	upt.		
	0: ADC1 End	of Conversi	on interrupt	set to low pri	ority.			
	1: ADC1 End	of Conversi	on interrupt	set to low pri	ority.			
Bit2:	PT4: Timer 4	Interrupt Pri	ority Contro	ol.				
	This bit sets the	he priority of	f the Timer 4	l interrupt.				
	0: Timer 4 int	errupt set to	low priority					
	1: Timer 4 int	errupt set to	low priority					
Bit1:	PADC0: ADC	End of Cor	version Inte	rrupt Priority	Control.			
	This bit sets the	he priority of	f the ADC0	End of Conve	rsion Intern	rupt.		
	0: ADC0 End	of Conversi	on interrupt	set to low pri	ority level.			
	1: ADC0 End	of Conversi	on interrupt	set to high pr	iority level.			
Bit0:	PT3: Timer 3		-		-			
	This bit sets the	-	•					
	0: Timer 3 int				oriority orde	er.		
	1: Timer 3 interrupt set to high priority level.							

Figure 12.14. EIP2: Extended Interrupt Priority 2

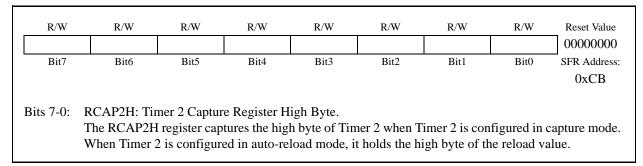
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value		
XTLVLI		XOSCMD1		-	XFCN2	XFCN1	XFCN0	00000000		
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:		
								0xB1		
Bit7:	XTLVLD: Ci	ystal Oscillat	or Valid Flag	z						
	(Valid only when XOSCMD = 11x.)									
	0: Crystal Os	0: Crystal Oscillator is unused or not yet stable								
		cillator is run								
Bits6-4:	XOSCMD2-0									
	00x: Off. XT.			•						
	010: System						•			
	011: System				XTALI pin	divided by	2.			
		scillator Mod		e by 2 stage.						
		Oscillator Mo		do by 2 store						
Bit3:	RESERVED.	Oscillator Mo Read – under			•					
Bits2-0:	XFCN2-0: E				Rits					
D 1132 0.	000-111:	Kiernar Oberna	ator i requen	cy control I	105					
	XFCN	Crystal (XO	SCMD = 112	\mathbf{x}) RC (2	KOSCMD =	10x) C	(XOSCMD =	= 10x)		
	000		12 kHz		f < 25 kHz		K Factor =	= 0.44		
	001	12 kHz	$< f \le 30 \text{ kHz}$	z 25	$kHz < f \le 50$	kHz	K Factor	= 1.4		
	010	30 kHz	< f ≤ 95 kHz	z 50 l	$Hz < f \le 10$) kHz	K Factor	= 4.4		
	011	95 kHz <	< f ≤ 270 kH	z 100	$kHz < f \le 20$	0 kHz	K Factor	= 13		
	100	270 kHz	$< f \le 720 \text{ kH}$	Iz 200	$kHz < f \le 40$	0 kHz	K Factor	= 38		
	101	720 kHz	$< f \le 2.2 MH$	Iz 400	$kHz < f \le 80$	0 kHz	K Factor =	= 100		
	110	2.2 MHz	$< f \le 6.7 MF$	Hz 800	$kHz < f \le 1.0$	5 MHz	K Factor =	= 420		
	111	f >	6.7 MHz	1.6 N	$MHz < f \le 3.2$	2 MHz	K Factor =	: 1400		
CRYSTA	CRYSTAL MODE (Circuit from Figure 14.1, Option 1; XOSCMD = 11x) Choose XFCN value to match the crystal or ceramic resonator frequency.									
RC MOD	E (Circuit from	n Figure 14.1	, Option 2; X	KOSCMD =	10x)					
	Choose oscill	ation frequen	cy range wh	ere:						
	$f = 1.23(10^3)$	/ (R * C), wh	ere							
	f = frequency of oscillation in MHz									
	C = capacitor value in pF									
	$R = Pull-up$ resistor value in k Ω									
C MODE	C (Circuit from Choose K Fa f = KF / (C * f = frequency C = capaciton AV+ = Analo	ctor (KF) for AV+), where of oscillation value on XT.	the oscillation in MHz AL1, XTAL2	on frequency 2 pins in pF						


Figure 14.3. OSCXCN: External Oscillator Control Register

18. SYSTEM MANAGEMENT BUS / I²C BUS (SMBUS0)

The SMBus0 I/O interface is a two-wire, bi-directional serial bus. SMBus0 is compliant with the System Management Bus Specification, version 1.1, and compatible with the I²C serial bus. Reads and writes to the interface by the system controller are byte oriented with the SMBus0 interface autonomously controlling the serial transfer of the data. Data can be transferred at up to 1/8th of the system clock if desired (this can be faster than allowed by the SMBus specification, depending on the system clock used). A method of extending the clock-low duration is available to accommodate devices with different speed capabilities on the same bus.

SMBus0 may operate as a master and/or slave, and may function on a bus with multiple masters. SMBus0 provides control of SDA (serial data), SCL (serial clock) generation and synchronization, arbitration logic, and START/STOP control and generation. SMBus0 is controlled by SFRs as described in Section 18.4 on page 189.


Figure 18.1. SMBus0 Block Diagram

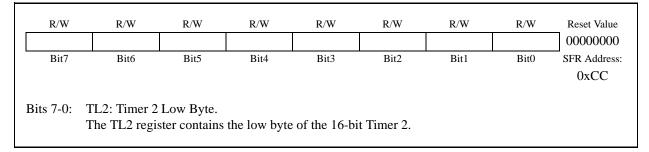

	rigur	e 22.15. K	CAP2L:	limer 2 Ca	apture Re	gister Lov	v Byte	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value 00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xCA
Bits 7-0:	Bits 7-0: RCAP2L: Timer 2 Capture Register Low Byte. The RCAP2L register captures the low byte of Timer 2 when Timer 2 is configured in capture mode. When Timer 2 is configured in auto-reload mode, it holds the low byte of the reload value.							

Figure 22.15. RCAP2L: Timer 2 Capture Register Low Byte

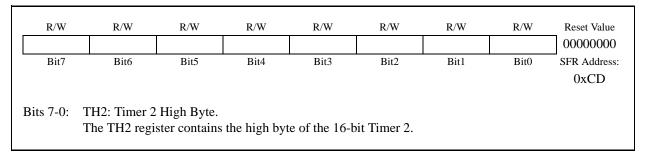

Figure 22.16. RCAP2H: Timer 2 Capture Register High Byte

Figure 22.17. TL2: Timer 2 Low Byte

Figure 22.18. TH2 Timer 2 High Byte

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
PWM16	n ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xDA-0xDE
PCA0CPN	In Address:	PCA0C	PM0 = 0xDA	A(n = 0)				
			PM1 = 0xDE	· /				
		PCA0C	PM2 = 0xDC	C(n = 2)				
			PM3 = 0xDI	. ,				
		PCA0C	PM4 = 0xDB	E(n = 4)				
Bit7:	PWM16n: 16	hit Dulso W	idth Modula	tion Enable				
DII/.	This bit select				fulation mod	le is enabled	(PWMn - 1))
	0: 8-bit PWM		ie when i uis			ie is chabled	(1 ** 1*111 = 1	.).
	1: 16-bit PWN							
Bit6:	ECOMn: Con		ction Enable					
Dito.	This bit enabl	-			or PCA0 mo	dule n.		
	0: Disabled.							
	1: Enabled.							
Bit5:	CAPPn: Capt	ure Positive	Function En	able.				
	This bit enabl				for PCA0 mo	odule n.		
	0: Disabled.		1	0 1				
	1: Enabled.							
Bit4:	CAPNn: Capt	ure Negative	e Function E	nable.				
	This bit enabl	es/disables t	he negative e	edge capture	for PCA0 m	odule n.		
	0: Disabled.							
	1: Enabled.							
Bit3:	MATn: Match							
	This bit enabl							
	PCA0 counter		ule's capture	/compare reg	gister cause t	he CCFn bit	in PCA0MI	O register to
	be set to logic	: 1.						
	0: Disabled.							
	1: Enabled.							
Bit2:	TOGn: Toggl					****		0.1
	This bit enabl		00					
	PCA0 counter		-			-		
	gle. If the PW	Mn bit is als	so set to logi	c 1, the modi	ile operates i	in Frequency	Output Mo	de.
	0: Disabled.							
Bit1:	1: Enabled. PWMn: Pulse	Width Mod	ulation Mod	a Enabla				
DILI.	This bit enabl				10 modulo r	Whon onch	lad a pulsa	width modu
	lated signal is						· 1	
	if PWM16n lo	-	-			-		
	0: Disabled.	5510 1. 11 UIC	10011 UIL IS	uiso set, uit	module oper	allos in riequ	iency Outpu	
	1: Enabled.							
Bit0:	ECCFn: Capt	ure/Compare	e Flag Intern	ipt Enable				
5110.	This bit sets the	-	-	-	ag (CCFn)	interrupt		
	0: Disable CC	-	-	e, computer				
	1: Enable a C			errupt reques	t when CCF	n is set.		
		-r tare, comp		reques				

Figure 23.12. PCA0CPMn: PCA0 Capture/Compare Mode Registers

24.1. Boundary Scan

The DR in the Boundary Scan path is an 134-bit shift register. The Boundary DR provides control and observability of all the device pins as well as the SFR bus and Weak Pullup feature via the EXTEST and SAMPLE commands.

Bit	Action	Target
0	Capture	Reset Enable from MCU (C8051F021/3 devices)
	Update	Reset Enable to /RST pin (C8051F021/3 devices)
1	Capture	Reset input from /RST pin (C8051F021/3 devices)
	Update	Reset output to /RST pin (C8051F021/3 devices)
2	Capture	Reset Enable from MCU (C8051F020/2 devices)
	Update	Reset Enable to /RST pin (C8051F020/2 devices)
3	Capture	Reset input from /RST pin (C8051F020/2 devices)
	Update	Reset output to /RST pin (C8051F020/2 devices)
4	Capture	External Clock from XTAL1 pin
	Update	Not used
5	Capture	Weak pullup enable from MCU
	Update	Weak pullup enable to Port Pins
6, 8, 10, 12, 14, 16,	Capture	P0.n output enable from MCU (e.g. Bit6=P0.0, Bit8=P0.1, etc.)
18, 20	Update	P0.n output enable to pin (e.g. Bit6=P0.00e, Bit8=P0.10e, etc.)
7, 9, 11, 13, 15, 17,	Capture	P0.n input from pin (e.g. Bit7=P0.0, Bit9=P0.1, etc.)
19, 21	Update	P0.n output to pin (e.g. Bit7=P0.0, Bit9=P0.1, etc.)
22, 24, 26, 28, 30,	Capture	P1.n output enable from MCU
32, 34, 36	Update	P1.n output enable to pin
23, 25, 27, 29, 31,	Capture	P1.n input from pin
33, 35, 37	Update	P1.n output to pin
38, 40, 42, 44, 46,	Capture	P2.n output enable from MCU
48, 50, 52	Update	P2.n output enable to pin
39, 41, 43, 45, 47,	Capture	P2.n input from pin
49, 51, 53	Update	P2.n output to pin
54, 56, 58, 60, 62,	Capture	P3.n output enable from MCU
64, 66, 68	Update	P3.n output enable to pin
55, 57, 59, 61, 63,	Capture	P3.n input from pin
65, 67, 69	Update	P3.n output to pin
70, 72, 74, 76, 78,	Capture	P4.n output enable from MCU
80, 82, 84	Update	P4.n output enable to pin
71, 73, 75, 77, 79,	Capture	P4.n input from pin
81, 83, 85	Update	P4.n output to pin
86, 88, 90, 92, 94,	Capture	P5.n output enable from MCU
96, 98, 100	Update	P5.n output enable to pin
87, 89, 91, 93, 95,	Capture	P5.n input from pin
97, 99, 101	Update	P5.n output to pin
102, 104, 106, 108,	Capture	P6.n output enable from MCU
110, 112, 114, 116	Update	P6.n output enable to pin
103, 105, 107, 109,	Capture	P6.n input from pin
111, 113, 115, 117	Update	P6.n output to pin

Table 24.1. Boundary Data Register Bit Definitions

EXTEST provides access to both capture and update actions, while Sample only performs a capture.

24.3. Debug Support

Each MCU has on-chip JTAG and debug logic that provides non-intrusive, full speed, in-circuit debug support using the production part installed in the end application, via the four pin JTAG I/F. Silicon Labs' debug system supports inspection and modification of memory and registers, breakpoints, and single stepping. No additional target RAM, program memory, or communications channels are required. All the digital and analog peripherals are functional and work correctly (remain synchronized) while debugging. The Watchdog Timer (WDT) is disabled when the MCU is halted during single stepping or at a breakpoint.

The C8051F020DK is a development kit with all the hardware and software necessary to develop application code and perform in-circuit debug with each MCU in the C8051F020 family. Each kit includes an Integrated Development Environment (IDE) which has a debugger and integrated 8051 assembler. The kit also includes an RS-232 to JTAG interface module referred to as the Serial Adapter, a target application board with a C8051F020 installed, RS-232 and JTAG cables, and wall-mount power supply.

