



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                     |
|----------------------------|------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M4                                            |
| Core Size                  | 32-Bit Single-Core                                         |
| Speed                      | 50MHz                                                      |
| Connectivity               | I <sup>2</sup> C, IrDA, SPI, UART/USART, USB, USB OTG      |
| Peripherals                | DMA, I <sup>2</sup> S, LVD, POR, PWM, WDT                  |
| Number of I/O              | 64                                                         |
| Program Memory Size        | 128KB (128K x 8)                                           |
| Program Memory Type        | FLASH                                                      |
| EEPROM Size                | 4K x 8                                                     |
| RAM Size                   | 32K x 8                                                    |
| Voltage - Supply (Vcc/Vdd) | 1.71V ~ 3.6V                                               |
| Data Converters            | A/D 20x16b; D/A 1x12b                                      |
| Oscillator Type            | Internal                                                   |
| Operating Temperature      | -40°C ~ 105°C (TA)                                         |
| Mounting Type              | Surface Mount                                              |
| Package / Case             | 121-LFBGA                                                  |
| Supplier Device Package    | 121-MAPBGA (8x8)                                           |
| Purchase URL               | https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mk21dx128vmc5 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



#### ran identification

| Field | Description                 | Values                                                                                                                                                                                                                                                                                                                                                                                               |
|-------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FFF   | Program flash memory size   | <ul> <li>32 = 32 KB</li> <li>64 = 64 KB</li> <li>128 = 128 KB</li> <li>256 = 256 KB</li> <li>512 = 512 KB</li> <li>1M0 = 1 MB</li> <li>2M0 = 2 MB</li> </ul>                                                                                                                                                                                                                                         |
| R     | Silicon revision            | <ul> <li>Z = Initial</li> <li>(Blank) = Main</li> <li>A = Revision after main</li> </ul>                                                                                                                                                                                                                                                                                                             |
| Т     | Temperature range (°C)      | <ul> <li>V = -40 to 105</li> <li>C = -40 to 85</li> </ul>                                                                                                                                                                                                                                                                                                                                            |
| PP    | Package identifier          | <ul> <li>FM = 32 QFN (5 mm x 5 mm)</li> <li>FT = 48 QFN (7 mm x 7 mm)</li> <li>LF = 48 LQFP (7 mm x 7 mm)</li> <li>LH = 64 LQFP (10 mm x 10 mm)</li> <li>MP = 64 MAPBGA (5 mm x 5 mm)</li> <li>LK = 80 LQFP (12 mm x 12 mm)</li> <li>LL = 100 LQFP (14 mm x 14 mm)</li> <li>MC = 121 MAPBGA (8 mm x 8 mm)</li> <li>LQ = 144 LQFP (20 mm x 20 mm)</li> <li>MD = 144 MAPBGA (13 mm x 13 mm)</li> </ul> |
| СС    | Maximum CPU frequency (MHz) | <ul> <li>5 = 50 MHz</li> <li>7 = 72 MHz</li> <li>10 = 100 MHz</li> <li>12 = 120 MHz</li> <li>15 = 150 MHz</li> <li>18 = 180 MHz</li> </ul>                                                                                                                                                                                                                                                           |
| N     | Packaging type              | <ul> <li>R = Tape and reel</li> <li>(Blank) = Trays</li> </ul>                                                                                                                                                                                                                                                                                                                                       |

# 2.4 Example

This is an example part number:

MK21DN512VMC5

# 2.5 Small package marking

In an effort to save space, small package devices use special marking on the chip. These markings have the following format:

### Q ## C F T PP

This table lists the possible values for each field in the part number for small packages (not all combinations are valid):



#### **Terminology and guidelines**

| Field | Description                | Values                                                                                     |
|-------|----------------------------|--------------------------------------------------------------------------------------------|
| Q     | Qualification status       | <ul> <li>M = Fully qualified, general market flow</li> <li>P = Prequalification</li> </ul> |
| ##    | Kinetis family             | <ul> <li>1# = K11/K12</li> <li>2# = K21/K22</li> </ul>                                     |
| С     | Speed                      | • G = 50 MHz                                                                               |
| F     | Flash memory configuration | <ul> <li>G = 128 KB + Flex</li> <li>H = 256 KB + Flex</li> <li>9 = 512 KB</li> </ul>       |
| Т     | Temperature range (°C)     | • V = -40 to 105                                                                           |
| PP    | Package identifier         | • MC = 121 MAPBGA                                                                          |

This tables lists some examples of small package marking along with the original part numbers:

| Original part number | Alternate part number |  |  |  |
|----------------------|-----------------------|--|--|--|
| MK21DX128VMC5        | M21GGVMC              |  |  |  |
| MK21DX256VMC5        | M21GHVMC              |  |  |  |
| MK21DN512VMC5        | M21G9VMC              |  |  |  |

# 3 Terminology and guidelines

# 3.1 Definition: Operating requirement

An *operating requirement* is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.

# 3.1.1 Example

This is an example of an operating requirement:

| Symbol          | Description                  | Min. | Max. | Unit |
|-----------------|------------------------------|------|------|------|
| V <sub>DD</sub> | 1.0 V core supply<br>voltage | 0.9  | 1.1  | V    |



# 3.7 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

# 3.8 Definition: Typical value

A *typical value* is a specified value for a technical characteristic that:

- Lies within the range of values specified by the operating behavior
- Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions

Typical values are provided as design guidelines and are neither tested nor guaranteed.

# 3.8.1 Example 1

This is an example of an operating behavior that includes a typical value:

| Symbol          | Description                                    | Min. | Тур. | Max. | Unit |
|-----------------|------------------------------------------------|------|------|------|------|
| I <sub>WP</sub> | Digital I/O weak<br>pullup/pulldown<br>current | 10   | 70   | 130  | μΑ   |

# 3.8.2 Example 2

This is an example of a chart that shows typical values for various voltage and temperature conditions:



Notes

1. Rising threshold is the sum of falling threshold and hysteresis voltage

| Symbol                | Description                            | Min. | Тур. | Max. | Unit |  |
|-----------------------|----------------------------------------|------|------|------|------|--|
| V <sub>POR VBAT</sub> | Falling VBAT supply POR detect voltage | 0.8  | 1.1  | 1.5  | V    |  |

Table 3. VBAT power operating requirements

### 5.2.3 Voltage and current operating behaviors Table 4. Voltage and current operating behaviors

| Symbol           | Description                                                                                            | Min.                  | Max. | Unit | Notes |
|------------------|--------------------------------------------------------------------------------------------------------|-----------------------|------|------|-------|
| V <sub>OH</sub>  | Output high voltage — high drive strength                                                              |                       |      |      |       |
|                  | • 2.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V, I <sub>OH</sub> = - 9 mA                                  | V <sub>DD</sub> – 0.5 | —    | V    |       |
|                  | • 1.71 V $\leq$ V <sub>DD</sub> $\leq$ 2.7 V, I <sub>OH</sub> = -3 mA                                  | V <sub>DD</sub> – 0.5 | —    | V    |       |
|                  | Output high voltage — low drive strength                                                               |                       |      |      |       |
|                  | • 2.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V, I <sub>OH</sub> = -2 mA                                   | V <sub>DD</sub> – 0.5 | _    | V    |       |
|                  | • $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -0.6 \text{ mA}$ | V <sub>DD</sub> – 0.5 | —    | V    |       |
| I <sub>OHT</sub> | Output high current total for all ports                                                                | _                     | 100  | mA   |       |
| V <sub>OL</sub>  | Output low voltage — high drive strength                                                               |                       |      |      |       |
|                  | • 2.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V, I <sub>OL</sub> = 9 mA                                    | —                     | 0.5  | V    |       |
|                  | • $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 3 \text{ mA}$    | —                     | 0.5  | V    |       |
|                  | Output low voltage — low drive strength                                                                |                       |      |      |       |
|                  | • 2.7 V $\leq$ V <sub>DD</sub> $\leq$ 3.6 V, I <sub>OL</sub> = 2 mA                                    | —                     | 0.5  | V    |       |
|                  | • $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 0.6 \text{ mA}$  | —                     | 0.5  | V    |       |
| I <sub>OLT</sub> | Output low current total for all ports                                                                 |                       | 100  | mA   |       |
| l <sub>IN</sub>  | Input leakage current (per pin)                                                                        |                       |      |      |       |
|                  | @ full temperature range                                                                               | _                     | 1.0  | μA   | 1     |
|                  | • @ 25 °C                                                                                              | —                     | 0.1  | μΑ   |       |
| I <sub>OZ</sub>  | Hi-Z (off-state) leakage current (per pin)                                                             | _                     | 1    | μA   |       |
| I <sub>OZ</sub>  | Total Hi-Z (off-state) leakage current (all input pins)                                                |                       | 4    | μΑ   |       |
| R <sub>PU</sub>  | Internal pullup resistors                                                                              | 22                    | 50   | kΩ   | 2     |
| R <sub>PD</sub>  | Internal pulldown resistors                                                                            | 22                    | 50   | kΩ   | 3     |

1. Tested by ganged leakage method

- 2. Measured at Vinput =  $V_{SS}$
- 3. Measured at Vinput =  $V_{DD}$



General

### 5.2.4 Power mode transition operating behaviors

All specifications except  $t_{POR}$ , and VLLSx $\rightarrow$ RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 50 MHz
- Bus clock = 50 MHz
- Flash clock = 25 MHz
- MCG mode: FEI

### Table 5. Power mode transition operating behaviors

| Symbol           | Description                                                                                                                                                        | Min. | Max.                                   | Unit | Notes |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------------------------|------|-------|
| t <sub>POR</sub> | After a POR event, amount of time from the point $V_{DD}$ reaches 1.71 V to execution of the first instruction across the operating temperature range of the chip. |      |                                        | μs   | 1     |
|                  | <ul> <li>1.71 V/(V<sub>DD</sub> slew rate) ≤ 300 μs</li> </ul>                                                                                                     | _    | 300                                    |      |       |
|                  | <ul> <li>1.71 V/(V<sub>DD</sub> slew rate) &gt; 300 µs</li> </ul>                                                                                                  |      | 1.7 V / (V <sub>DD</sub><br>slew rate) |      |       |
|                  | VLLS0 → RUN                                                                                                                                                        | —    | 135                                    | μs   |       |
|                  | • VLLS1 → RUN                                                                                                                                                      | _    | 135                                    | μs   |       |
|                  | • VLLS2 $\rightarrow$ RUN                                                                                                                                          | _    | 85                                     | μs   |       |
|                  | • VLLS3 → RUN                                                                                                                                                      |      | 85                                     | μs   |       |
|                  | • LLS → RUN                                                                                                                                                        | _    | 6                                      | μs   |       |
|                  | • VLPS $\rightarrow$ RUN                                                                                                                                           |      | 5.2                                    | μs   |       |
|                  | • STOP → RUN                                                                                                                                                       | _    | 5.2                                    | μs   |       |

1. Normal boot (FTFL\_OPT[LPBOOT]=1)

# 5.2.5 Power consumption operating behaviors

#### Table 6. Power consumption operating behaviors

| Symbol              | Description                                                                  | Min. | Тур.  | Max.     | Unit | Notes |
|---------------------|------------------------------------------------------------------------------|------|-------|----------|------|-------|
| I <sub>DDA</sub>    | Analog supply current                                                        | —    | —     | See note | mA   | 1     |
| I <sub>DD_RUN</sub> | Run mode current — all peripheral clocks disabled, code executing from flash |      |       |          |      | 2     |
|                     | • @ 1.8 V                                                                    | _    | 12.98 | 14       | mA   |       |
|                     | • @ 3.0 V                                                                    | _    | 12.93 | 13.8     | mA   |       |

Table continues on the next page...





Figure 2. Run mode supply current vs. core frequency



| Symbol                   | Description                    | Min. | Max. | Unit | Notes |
|--------------------------|--------------------------------|------|------|------|-------|
| f <sub>LPTMR_ERCLK</sub> | LPTMR external reference clock | —    | 16   | MHz  |       |
| f <sub>I2S_MCLK</sub>    | I2S master clock               | —    | 12.5 | MHz  |       |
| f <sub>I2S_BCLK</sub>    | I2S bit clock                  |      | 4    | MHz  |       |

Table 9. Device clock specifications (continued)

1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

# 5.3.2 General switching specifications

These general purpose specifications apply to all pins configured for:

- GPIO signaling
- Other peripheral module signaling not explicitly stated elsewhere

Table 10. General switching specifications

| Symbol | Description                                                                                                 | Min. | Max. | Unit                | Notes |
|--------|-------------------------------------------------------------------------------------------------------------|------|------|---------------------|-------|
|        | GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path                          | 1.5  | _    | Bus clock<br>cycles | 1, 2  |
|        | GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter enabled) — Asynchronous path  | 100  | _    | ns                  | 3     |
|        | GPIO pin interrupt pulse width (digital glitch filter disabled, analog filter disabled) — Asynchronous path | 50   | _    | ns                  | 3     |
|        | External reset pulse width (digital glitch filter disabled)                                                 | 100  | —    | ns                  | 3     |
|        | Port rise and fall time (high drive strength)                                                               |      |      |                     | 4     |
|        | Slew disabled                                                                                               |      |      |                     |       |
|        | • $1.71 \le V_{DD} \le 2.7V$                                                                                | —    | 13   | ns                  |       |
|        | • $2.7 \le V_{DD} \le 3.6V$                                                                                 | —    | 7    | ns                  |       |
|        | Slew enabled                                                                                                |      |      |                     |       |
|        | • $1.71 \le V_{DD} \le 2.7V$                                                                                | —    | 36   | ns                  |       |
|        | • $2.7 \le V_{DD} \le 3.6V$                                                                                 | —    | 24   | ns                  |       |
|        | Port rise and fall time (low drive strength)                                                                |      |      |                     | 5     |
|        | Slew disabled                                                                                               |      |      |                     |       |
|        | • $1.71 \le V_{DD} \le 2.7V$                                                                                | —    | 12   | ns                  |       |
|        | • $2.7 \le V_{DD} \le 3.6V$                                                                                 | —    | 6    | ns                  |       |
|        | Slew enabled                                                                                                |      |      |                     |       |
|        | • $1.71 \le V_{DD} \le 2.7V$                                                                                | _    | 36   | ns                  |       |
|        | • $2.7 \le V_{DD} \le 3.6V$                                                                                 | —    | 24   | ns                  |       |

<sup>1.</sup> This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be recognized in that case.

2. The greater synchronous and asynchronous timing must be met.

#### K21 Sub-Family Data Sheet, Rev. 4, 08/2013.





Figure 4. Test clock input timing



Figure 5. Boundary scan (JTAG) timing

### 6.3.1 MCG specifications Table 14. MCG specifications

| Symbol                   | Description                                                    |                                                                  | Min.  | Тур.      | Max.              | Unit              | Notes |
|--------------------------|----------------------------------------------------------------|------------------------------------------------------------------|-------|-----------|-------------------|-------------------|-------|
| f <sub>ints_ft</sub>     | Internal reference<br>factory trimmed at                       | frequency (slow clock) —<br>nominal VDD and 25 °C                | _     | 32.768    | —                 | kHz               |       |
| f <sub>ints_t</sub>      | Internal reference<br>trimmed                                  | frequency (slow clock) — user                                    | 31.25 | _         | 39.0625           | kHz               |       |
| $\Delta_{fdco\_res\_t}$  | Resolution of trimr<br>frequency at fixed<br>using SCTRIM and  | ned average DCO output<br>voltage and temperature —<br>d SCFTRIM | _     | ± 0.3     | ± 0.6             | %f <sub>dco</sub> | 1     |
| $\Delta f_{dco\_res\_t}$ | Resolution of trimr<br>frequency at fixed<br>using SCTRIM onl  | _                                                                | ± 0.2 | ± 0.5     | %f <sub>dco</sub> | 1                 |       |
| Δf <sub>dco_t</sub>      | Total deviation of t<br>frequency over vo                      | trimmed average DCO output<br>Itage and temperature              | —     | +0.5/-0.7 | ± 2               | %f <sub>dco</sub> | 1, 2  |
| ∆f <sub>dco_t</sub>      | Total deviation of t<br>frequency over fixe<br>range of 0–70°C | trimmed average DCO output<br>ed voltage and temperature         | _     | ± 0.3     | ±1                | %f <sub>dco</sub> | 1, 2  |
| f <sub>intf_ft</sub>     | Internal reference<br>factory trimmed at                       |                                                                  | 4     | _         | MHz               |                   |       |
| f <sub>intf_t</sub>      | Internal reference<br>trimmed at nomina                        | 3                                                                | _     | 5         | MHz               |                   |       |
| f <sub>loc_low</sub>     | Loss of external cl<br>RANGE = 00                              | (3/5) x<br>f <sub>ints_t</sub>                                   | _     |           | kHz               |                   |       |
| f <sub>loc_high</sub>    | Loss of external cl<br>RANGE = 01, 10,                         | (16/5) x<br>f <sub>ints_t</sub>                                  | _     |           | kHz               |                   |       |
|                          |                                                                | FI                                                               | LL    |           |                   |                   |       |
| f <sub>fll_ref</sub>     | FLL reference free                                             | luency range                                                     | 31.25 | —         | 39.0625           | kHz               |       |
| f <sub>dco</sub>         | DCO output<br>frequency range                                  | Low range (DRS=00)<br>640 × f <sub>fll ref</sub>                 | 20    | 20.97     | 25                | MHz               | 3, 4  |
|                          |                                                                | Mid range (DRS=01)<br>1280 × f <sub>fll_ref</sub>                | 40    | 41.94     | 50                | MHz               |       |
|                          |                                                                | Mid-high range (DRS=10)<br>1920 × f <sub>fll_ref</sub>           | 60    | 62.91     | 75                | MHz               |       |
|                          |                                                                | High range (DRS=11)<br>2560 × f <sub>fll ref</sub>               | 80    | 83.89     | 100               | MHz               |       |
| f <sub>dco_t_DMX32</sub> | $\begin{array}{c c c c c c c c c c c c c c c c c c c $         |                                                                  | _     | 23.99     |                   | MHz               | 5, 6  |
|                          |                                                                |                                                                  |       | 47.97     |                   | MHz               |       |
|                          |                                                                | Mid-high range (DRS=10)<br>2197 × f <sub>fll ref</sub>           | —     | 71.99     | —                 | MHz               |       |
|                          |                                                                | High range (DRS=11)<br>2929 × f <sub>fll_ref</sub>               | _     | 95.98     | —                 | MHz               |       |

Table continues on the next page...

K21 Sub-Family Data Sheet, Rev. 4, 08/2013.



| Symbol                   | Description                                                                                                                    | Min.   | Тур.  | Max.                                                          | Unit | Notes |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------|-------|---------------------------------------------------------------|------|-------|
| J <sub>cyc_fll</sub>     | FLL period jitter                                                                                                              | _      | 180   | _                                                             | ps   |       |
|                          | <ul> <li>f<sub>DCO</sub> = 48 MHz</li> <li>f<sub>DCO</sub> = 98 MHz</li> </ul>                                                 | _      | 150   | _                                                             |      |       |
| t <sub>fll_acquire</sub> | FLL target frequency acquisition time                                                                                          | —      | —     | 1                                                             | ms   | 7     |
|                          | PI                                                                                                                             | L      |       |                                                               |      |       |
| f <sub>vco</sub>         | VCO operating frequency                                                                                                        | 48.0   | —     | 100                                                           | MHz  |       |
| I <sub>pll</sub>         | PLL operating current<br>• PLL @ 96 MHz (f <sub>osc_hi_1</sub> = 8 MHz, f <sub>pll_ref</sub> =<br>2 MHz, VDIV multiplier = 48) | _      | 1060  | _                                                             | μA   | 8     |
| I <sub>pll</sub>         | PLL operating current<br>• PLL @ 48 MHz (f <sub>osc_hi_1</sub> = 8 MHz, f <sub>pll_ref</sub> =<br>2 MHz, VDIV multiplier = 24) | _      | — 600 |                                                               | μA   | 8     |
| f <sub>pll_ref</sub>     | PLL reference frequency range                                                                                                  | 2.0    | —     | 4.0                                                           | MHz  |       |
| J <sub>cyc_pll</sub>     | PLL period jitter (RMS)                                                                                                        |        |       |                                                               |      | 9     |
|                          | • f <sub>vco</sub> = 48 MHz                                                                                                    | _      | 120   | _                                                             | ps   |       |
|                          | • f <sub>vco</sub> = 100 MHz                                                                                                   | _      | 50    | —                                                             | ps   |       |
| J <sub>acc_pll</sub>     | PLL accumulated jitter over 1µs (RMS)                                                                                          |        |       |                                                               |      | 9     |
|                          | • f <sub>vco</sub> = 48 MHz                                                                                                    | _      | 1350  | _                                                             | ps   |       |
|                          | • f <sub>vco</sub> = 100 MHz                                                                                                   | _      | 600   | —                                                             | ps   |       |
| D <sub>lock</sub>        | Lock entry frequency tolerance                                                                                                 | ± 1.49 | —     | ± 2.98                                                        | %    |       |
| D <sub>unl</sub>         | Lock exit frequency tolerance                                                                                                  | ± 4.47 | —     | ± 5.97                                                        | %    |       |
| t <sub>pll_lock</sub>    | Lock detector detection time                                                                                                   | _      | _     | 150 × 10 <sup>-6</sup><br>+ 1075(1/<br>f <sub>pll_ref</sub> ) | S    | 10    |

Table 14. MCG specifications (continued)

- 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).
- 2. 2 V <= VDD <= 3.6 V.
- 3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
- The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δf<sub>dco\_t</sub>) over voltage and temperature should be considered.
- 5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
- 6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 7. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 8. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- 9. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

# 6.3.2 Oscillator electrical specifications



# 6.5.1 Drylce Tamper Electrical Specifications

Information about security-related modules is not included in this document and is available only after a nondisclosure agreement (NDA) has been signed. To request an NDA, please contact your local Freescale sales representative.

# 6.6 Analog

# 6.6.1 ADC electrical specifications

The 16-bit accuracy specifications listed in Table 24 and Table 25 are achievable on the differential pins ADCx\_DP0, ADCx\_DM0.

All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications.

| Symbol            | Description                       | Conditions                                                     | Min.             | Typ. <sup>1</sup> | Max.             | Unit | Notes |
|-------------------|-----------------------------------|----------------------------------------------------------------|------------------|-------------------|------------------|------|-------|
| V <sub>DDA</sub>  | Supply voltage                    | Absolute                                                       | 1.71             | —                 | 3.6              | V    |       |
| $\Delta V_{DDA}$  | Supply voltage                    | Delta to V <sub>DD</sub> (V <sub>DD</sub> – V <sub>DDA</sub> ) | -100             | 0                 | +100             | mV   | 2     |
| $\Delta V_{SSA}$  | Ground voltage                    | Delta to V <sub>SS</sub> (V <sub>SS</sub> – V <sub>SSA</sub> ) | -100             | 0                 | +100             | mV   | 2     |
| V <sub>REFH</sub> | ADC reference voltage high        |                                                                | 1.13             | V <sub>DDA</sub>  | V <sub>DDA</sub> | V    |       |
| V <sub>REFL</sub> | ADC reference<br>voltage low      |                                                                | V <sub>SSA</sub> | V <sub>SSA</sub>  | V <sub>SSA</sub> | V    |       |
| V <sub>ADIN</sub> | Input voltage                     | 16-bit differential mode                                       | VREFL            | —                 | 31/32 *<br>VREFH | V    |       |
|                   |                                   | All other modes                                                | VREFL            | —                 | VREFH            |      |       |
| C <sub>ADIN</sub> | Input capacitance                 | 16-bit mode                                                    | —                | 8                 | 10               | pF   |       |
|                   |                                   | <ul> <li>8-bit / 10-bit / 12-bit<br/>modes</li> </ul>          | _                | 4                 | 5                |      |       |
| R <sub>ADIN</sub> | Input resistance                  |                                                                | _                | 2                 | 5                | kΩ   |       |
| R <sub>AS</sub>   | Analog source<br>resistance       | 13-bit / 12-bit modes<br>f <sub>ADCK</sub> < 4 MHz             | _                | _                 | 5                | kΩ   | 3     |
| f <sub>ADCK</sub> | ADC conversion<br>clock frequency | ≤ 13-bit mode                                                  | 1.0              | —                 | 18.0             | MHz  | 4     |
| f <sub>ADCK</sub> | ADC conversion<br>clock frequency | 16-bit mode                                                    | 2.0              | _                 | 12.0             | MHz  | 4     |

### 6.6.1.1 16-bit ADC operating conditions Table 24. 16-bit ADC operating conditions

Table continues on the next page...



| Symbol            | Description    | Conditions                                                       | Min.   | Typ. <sup>1</sup> | Max.    | Unit | Notes |
|-------------------|----------------|------------------------------------------------------------------|--------|-------------------|---------|------|-------|
| C <sub>rate</sub> | ADC conversion | ≤ 13-bit modes                                                   |        |                   |         |      | 5     |
|                   | rate           | No ADC hardware averaging                                        | 20.000 |                   | 818.330 | Ksps |       |
|                   |                | Continuous conversions<br>enabled, subsequent<br>conversion time |        |                   |         |      |       |
| C <sub>rate</sub> | ADC conversion | 16-bit mode                                                      |        |                   |         |      | 5     |
|                   | rate           | No ADC hardware averaging                                        | 37.037 | —                 | 461.467 | Ksps |       |
|                   |                | Continuous conversions<br>enabled, subsequent<br>conversion time |        |                   |         |      |       |

#### Table 24. 16-bit ADC operating conditions (continued)

- 1. Typical values assume V<sub>DDA</sub> = 3.0 V, Temp = 25 °C, f<sub>ADCK</sub> = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.
- 2. DC potential difference.
- This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R<sub>AS</sub>/C<sub>AS</sub> time constant should be kept to < 1 ns.</li>
- 4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
- 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.



Figure 9. ADC input impedance equivalency diagram



### 6.6.1.2 16-bit ADC electrical characteristics Table 25. 16-bit ADC characteristics (V<sub>REFH</sub> = V<sub>DDA</sub>, V<sub>REFL</sub> = V<sub>SSA</sub>)

| Symbol               | Description                        | Conditions <sup>1</sup> .            | Min. Typ. <sup>2</sup> Max. |            | Unit         | Notes            |                     |
|----------------------|------------------------------------|--------------------------------------|-----------------------------|------------|--------------|------------------|---------------------|
| I <sub>DDA_ADC</sub> | Supply current                     |                                      | 0.215                       | _          | 1.7          | mA               | 3                   |
|                      | ADC                                | • ADLPC = 1, ADHSC = 0               | 1.2                         | 2.4        | 3.9          | MHz              | $t_{ADACK} = 1/$    |
|                      | asynchronous                       | • ADLPC = 1, ADHSC = 1               | 2.4                         | 4.0        | 6.1          | MHz              | f <sub>ADACK</sub>  |
| f <sub>ADACK</sub>   |                                    | • ADLPC = 0, ADHSC = 0               | 3.0                         | 5.2        | 7.3          | MHz              |                     |
|                      |                                    | • ADLPC = 0, ADHSC = 1               | 4.4                         | 6.2        | 9.5          | MHz              |                     |
|                      | Sample Time                        | See Reference Manual chapter         | for sample t                | imes       |              |                  |                     |
| TUE                  | Total unadjusted                   | 12-bit modes                         | _                           | ±4         | ±6.8         | LSB <sup>4</sup> | 5                   |
|                      | error                              | <ul> <li>&lt;12-bit modes</li> </ul> | —                           | ±1.4       | ±2.1         |                  |                     |
| DNL                  | Differential non-                  | 12-bit modes                         | _                           | ±0.7       | -1.1 to +1.9 | LSB <sup>4</sup> | 5                   |
|                      | linearity                          |                                      |                             |            | -0.3 to 0.5  |                  |                     |
|                      |                                    | <ul> <li>&lt;12-bit modes</li> </ul> | —                           | ±0.2       |              |                  |                     |
| INL                  | Integral non-                      | 12-bit modes                         | _                           | ±1.0       | -2.7 to +1.9 | LSB <sup>4</sup> | 5                   |
|                      | linearity                          |                                      |                             |            | -0.7 to +0.5 |                  |                     |
|                      |                                    | <ul> <li>&lt;12-bit modes</li> </ul> | —                           | ±0.5       |              |                  |                     |
| E <sub>FS</sub>      | Full-scale error                   | 12-bit modes                         | —                           | -4         | -5.4         | LSB <sup>4</sup> | V <sub>ADIN</sub> = |
|                      |                                    | <ul> <li>&lt;12-bit modes</li> </ul> | —                           | -1.4       | -1.8         |                  | V <sub>DDA</sub>    |
| Eq                   | Quantization                       | 16-bit modes                         |                             | -1 to 0    |              | LSB <sup>4</sup> |                     |
|                      | error                              | <ul> <li>≤13-bit modes</li> </ul>    | —                           | _          | ±0.5         |                  |                     |
| ENOB                 | Effective number                   | 16-bit differential mode             |                             |            |              |                  | 6                   |
|                      | of bits                            | • Avg = 32                           | 12.8                        | 14.5       | _            | bits             |                     |
|                      |                                    | • Avg = 4                            | 11.9                        | 13.8       | _            | bits             |                     |
|                      |                                    | 16-bit single-ended mode             |                             |            |              |                  |                     |
|                      |                                    | • Avg = 32                           | 10.0                        | 12.0       |              | bito             |                     |
|                      |                                    | • Avg = 4                            | 11.4                        | 13.1       |              | bits             |                     |
| SINAD                | Signal-to-noise<br>plus distortion | See ENOB                             | 6.02                        | 2 × ENOB + | 1.76         | dB               |                     |
| THD                  | Total harmonic                     | 16-bit differential mode             |                             |            |              |                  | 7                   |
|                      | distortion                         | • Avg = 32                           | _                           | -94        | _            | dB               |                     |
|                      |                                    | 16-bit single-ended mode             | _                           | -85        |              | dB               |                     |
|                      |                                    | • Avg = 32                           |                             |            |              | 42               |                     |

Table continues on the next page ...

K21 Sub-Family Data Sheet, Rev. 4, 08/2013.





#### Typical ADC 16-bit Differential ENOB vs ADC Clock 100Hz, 90% FS Sine Input





Typical ADC 16-bit Single-Ended ENOB vs ADC Clock 100Hz, 90% FS Sine Input

Figure 11. Typical ENOB vs. ADC\_CLK for 16-bit single-ended mode

# 6.6.2 CMP and 6-bit DAC electrical specifications Table 26. Comparator and 6-bit DAC electrical specifications

| Symbol             | Description                                                        | Min.                  | Тур. | Max.            | Unit             |
|--------------------|--------------------------------------------------------------------|-----------------------|------|-----------------|------------------|
| V <sub>DD</sub>    | Supply voltage                                                     | 1.71                  | —    | 3.6             | V                |
| I <sub>DDHS</sub>  | Supply current, High-speed mode (EN=1, PMODE=1)                    | _                     | _    | 200             | μA               |
| I <sub>DDLS</sub>  | Supply current, low-speed mode (EN=1, PMODE=0)                     | _                     | —    | 20              | μA               |
| V <sub>AIN</sub>   | Analog input voltage                                               | V <sub>SS</sub> – 0.3 | —    | V <sub>DD</sub> | V                |
| V <sub>AIO</sub>   | Analog input offset voltage                                        | _                     | —    | 20              | mV               |
| V <sub>H</sub>     | Analog comparator hysteresis <sup>1</sup>                          |                       |      |                 |                  |
|                    | • CR0[HYSTCTR] = 00                                                | —                     | 5    | —               | mV               |
|                    | • CR0[HYSTCTR] = 01                                                | _                     | 10   | —               | mV               |
|                    | • CR0[HYSTCTR] = 10                                                | _                     | 20   | —               | mV               |
|                    | <ul> <li>CR0[HYSTCTR] = 11</li> </ul>                              | _                     | 30   | _               | mV               |
| V <sub>CMPOh</sub> | Output high                                                        | V <sub>DD</sub> – 0.5 | _    | —               | V                |
| V <sub>CMPOI</sub> | Output low                                                         | —                     | —    | 0.5             | V                |
| t <sub>DHS</sub>   | Propagation delay, high-speed mode (EN=1, PMODE=1)                 | 20                    | 50   | 200             | ns               |
| t <sub>DLS</sub>   | t <sub>DLS</sub> Propagation delay, low-speed mode (EN=1, PMODE=0) |                       | 250  | 600             | ns               |
|                    | Analog comparator initialization delay <sup>2</sup>                | _                     | —    | 40              | μs               |
| I <sub>DAC6b</sub> | 6-bit DAC current adder (enabled)                                  | —                     | 7    | —               | μA               |
| INL                | 6-bit DAC integral non-linearity                                   | -0.5                  | —    | 0.5             | LSB <sup>3</sup> |
| DNL                | 6-bit DAC differential non-linearity                               | -0.3                  | —    | 0.3             | LSB              |

1. Typical hysteresis is measured with input voltage range limited to 0.6 to  $V_{DD}$ -0.6 V.

 Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP\_DACCR[DACEN], CMP\_DACCR[VRSEL], CMP\_DACCR[VOSEL], CMP\_MUXCR[PSEL], and CMP\_MUXCR[MSEL]) and the comparator output settling to a stable level.

3. 1 LSB =  $V_{reference}/64$ 



Peripheral operating requirements and behaviors



Figure 15. Offset at half scale vs. temperature

# 6.7 Timers

See General switching specifications.

# 6.8 Communication interfaces

# 6.8.1 USB electrical specifications

The USB electricals for the USB On-the-Go module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit **usb.org**.



| Num. | Characteristic                                      | Min. | Max. | Unit |
|------|-----------------------------------------------------|------|------|------|
| S8   | I2S_TX_BCLK to I2S_TXD invalid                      | 0    | —    | ns   |
| S9   | I2S_RXD/I2S_RX_FS input setup before<br>I2S_RX_BCLK | 25   | _    | ns   |
| S10  | I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK      | 0    | —    | ns   |

Table 35. I2S/SAI master mode timing (continued)



#### Figure 20. I2S/SAI timing — master modes

#### Table 36. I2S/SAI slave mode timing

| Num. | Characteristic                                                    | Min. | Max. | Unit        |
|------|-------------------------------------------------------------------|------|------|-------------|
|      | Operating voltage                                                 | 1.71 | 3.6  | V           |
| S11  | I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)                        | 80   | —    | ns          |
| S12  | I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)              | 45%  | 55%  | MCLK period |
| S13  | I2S_TX_FS/I2S_RX_FS input setup before<br>I2S_TX_BCLK/I2S_RX_BCLK | 10   | _    | ns          |
| S14  | I2S_TX_FS/I2S_RX_FS input hold after<br>I2S_TX_BCLK/I2S_RX_BCLK   | 2    | _    | ns          |
| S15  | I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid                     | —    | 29   | ns          |
| S16  | I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid                   | 0    | —    | ns          |
| S17  | I2S_RXD setup before I2S_RX_BCLK                                  | 10   | —    | ns          |
| S18  | I2S_RXD hold after I2S_RX_BCLK                                    | 2    | —    | ns          |
| S19  | I2S_TX_FS input assertion to I2S_TXD output valid <sup>1</sup>    | —    | 21   | ns          |

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear





Figure 21. I2S/SAI timing — slave modes

# 6.8.9 VLPR, VLPW, and VLPS mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in VLPR, VLPW, and VLPS modes.

Table 37. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes(full voltage range)

| Num. | Characteristic                                                    | Min. | Max. | Unit        |
|------|-------------------------------------------------------------------|------|------|-------------|
|      | Operating voltage                                                 | 1.71 | 3.6  | V           |
| S1   | I2S_MCLK cycle time                                               | 62.5 | —    | ns          |
| S2   | I2S_MCLK pulse width high/low                                     | 45%  | 55%  | MCLK period |
| S3   | I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)                       | 250  | —    | ns          |
| S4   | I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low                      | 45%  | 55%  | BCLK period |
| S5   | I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/<br>I2S_RX_FS output valid   | _    | 45   | ns          |
| S6   | I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/<br>I2S_RX_FS output invalid | 0    | -    | ns          |
| S7   | I2S_TX_BCLK to I2S_TXD valid                                      | —    | 45   | ns          |
| S8   | I2S_TX_BCLK to I2S_TXD invalid                                    | 0    | —    | ns          |
| S9   | I2S_RXD/I2S_RX_FS input setup before<br>I2S_RX_BCLK               | 75   | _    | ns          |
| S10  | I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK                    | 0    | —    | ns          |



#### rmout

| 121<br>Map | Default   | ALTO      | ALT1              | ALT2      | ALT3                        | ALT4     | ALT5 | ALT6      | ALT7 | EzPort |
|------------|-----------|-----------|-------------------|-----------|-----------------------------|----------|------|-----------|------|--------|
| BGA        |           |           |                   |           |                             |          |      |           |      |        |
| C4         | DISABLED  |           | PTC17             |           | UART3_TX                    |          |      |           |      |        |
| D4         | DISABLED  |           | PTD0/<br>LLWU_P12 | SPI0_PCS0 | UART2_RTS_b                 |          |      |           |      |        |
| D3         | ADC0_SE5b | ADC0_SE5b | PTD1              | SPI0_SCK  | UART2_CTS_b                 |          |      |           |      |        |
| C3         | DISABLED  |           | PTD2/<br>LLWU_P13 | SPI0_SOUT | UART2_RX                    | I2C0_SCL |      |           |      |        |
| B3         | DISABLED  |           | PTD3              | SPI0_SIN  | UART2_TX                    | I2C0_SDA |      |           |      |        |
| A3         | ADC0_SE21 | ADC0_SE21 | PTD4/<br>LLWU_P14 | SPI0_PCS1 | UART0_RTS_b                 | FTM0_CH4 |      | EWM_IN    |      |        |
| A2         | ADC0_SE6b | ADC0_SE6b | PTD5              | SPI0_PCS2 | UART0_CTS_b/<br>UART0_COL_b | FTM0_CH5 |      | EWM_OUT_b |      |        |
| B2         | ADC0_SE7b | ADC0_SE7b | PTD6/<br>LLWU_P15 | SPI0_PCS3 | UART0_RX                    | FTM0_CH6 |      | FTM0_FLT0 |      |        |
| A1         | ADC0_SE22 | ADC0_SE22 | PTD7              | CMT_IRO   | UARTO_TX                    | FTM0_CH7 |      | FTM0_FLT1 |      |        |
| F3         | NC        | NC        |                   |           |                             |          |      |           |      |        |
| H1         | NC        | NC        |                   |           |                             |          |      |           |      |        |
| H2         | NC        | NC        |                   |           |                             |          |      |           |      |        |
| J1         | NC        | NC        |                   |           |                             |          |      |           |      |        |
| J2         | NC        | NC        |                   |           |                             |          |      |           |      |        |
| J3         | NC        | NC        |                   |           |                             |          |      |           |      |        |
| H3         | NC        | NC        |                   |           |                             |          |      |           |      |        |
| K4         | NC        | NC        |                   |           |                             |          |      |           |      |        |
| H6         | NC        | NC        |                   |           |                             |          |      |           |      |        |
| J9         | NC        | NC        |                   |           |                             |          |      |           |      |        |
| J4         | NC        | NC        |                   |           |                             |          |      |           |      |        |
| H11        | NC        | NC        |                   |           |                             |          |      |           |      |        |
| F11        | NC        | NC        |                   |           |                             |          |      |           |      |        |
| E11        | NC        | NC        |                   |           |                             |          |      |           |      |        |
| D11        | NC        | NC        |                   |           |                             |          |      |           |      |        |
| E10        | NC        | NC        |                   |           |                             |          |      |           |      |        |
| F10        | NC        | NC        |                   |           |                             |          |      |           |      |        |
| F9         | NC        | NC        |                   |           |                             |          |      |           |      |        |
| F8         | NC        | NC        |                   |           |                             |          |      |           |      |        |
| E8         | NC        | NC        |                   |           |                             |          |      |           |      |        |
| E7         | NC        | NC        |                   |           |                             |          |      |           |      |        |
| F7         | NC        | NC        |                   |           |                             |          |      |           |      |        |
| A5         | NC        | NC        |                   |           |                             |          |      |           |      |        |
| B5         | NC        | NC        |                   |           |                             |          |      |           |      |        |
| B4         | NC        | NC        |                   |           |                             |          |      |           |      |        |
| A4         | NC        | NC        |                   |           |                             |          |      |           |      |        |
| A9         | NC        | NC        |                   |           |                             |          |      |           |      |        |
| B1         | NC        | NC        |                   |           |                             |          |      |           |      |        |



| Rev. No. | Date   | Substantial Changes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2        | 7/2012 | <ul> <li>Updated section "Power consumption operating behaviors".</li> <li>Updated section "Flash timing specifications — program and erase".</li> <li>Updated section "Flash timing specifications — commands".</li> <li>Removed the 32K ratio from "Write endurance" in section "Reliability specifications".</li> <li>Updated IDDstby maximum value in section "VREG electrical specifications".</li> <li>Added the charts in section "Diagram: Typical IDD_RUN operating behavior".</li> </ul> |
| 3        | 8/2012 | <ul> <li>Updated section "Power consumption operating behaviors".</li> <li>Updated section "EMC radiated emissions operating behaviors".</li> <li>Updated section "MCG specifications".</li> <li>Added applicable notes in section "Signal Multiplexing and Pin Assignments".</li> </ul>                                                                                                                                                                                                           |
| 4        | 8/2013 | <ul> <li>Updated section "Power consumption operating behaviors"</li> <li>Updated section "MCG specifications"</li> <li>Updated section "16-bit ADC operating conditions"</li> <li>Added section "Small package marking"</li> </ul>                                                                                                                                                                                                                                                                |