
Intel - 10CL010ZU256I8G Datasheet

Welcome to <u>E-XFL.COM</u>

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Details	
Product Status	Active
Number of LABs/CLBs	645
Number of Logic Elements/Cells	10320
Total RAM Bits	423936
Number of I/O	176
Number of Gates	-
Voltage - Supply	1.0V
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 100°C (TJ)
Package / Case	256-LFBGA
Supplier Device Package	256-UBGA (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/intel/10cl010zu256i8g

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Intel[®] Cyclone[®] 10 LP Device Overview

C10LP51001 2017.05.08

Contents

Cyclone [®] 10 LP Device Overview	3
Summary of Cyclone 10 LP Features	4
Cyclone 10 LP Available Options	
Cyclone 10 LP Maximum Resources	
Cyclone 10 LP Package Plan	6
Cyclone 10 LP I/O Vertical Migration	7
Logic Elements and Logic Array Blocks	7
Embedded Multipliers	8
Embedded Memory Blocks	
Clocking and PLL.	9
FPGA General Purpose I/O	9
Configuration	9
Power Management	10
Document Revision History for Cyclone 10 LP Device Overview	10

Cyclone[®] 10 LP Device Overview

The Intel[®] Cyclone[®] 10 LP FPGAs are optimized for low cost and low static power, making them ideal for high-volume and cost-sensitive applications.

Cyclone 10 LP devices provide a high density sea of programmable gates, on-board resources, and general purpose I/Os. These resources satisfies the requirements of I/O expansion and chip-to-chip interfacing. The Cyclone 10 LP architecture suits smart and connected end applications across many market segments:

- Industrial and automotive
- Broadcast, wireline, and wireless
- Compute and storage
- Government, military, and aerospace
- Medical, consumer, and smart energy

The free but powerful Quartus $^{\mbox{\tiny R}}$ Prime Lite Edition software suite of design tools meets the requirements of several classes of users:

- Existing FPGA designers
- Embedded designers using the FPGA with Nios[®] II processor
- Students and hobbyists who are new to FPGA

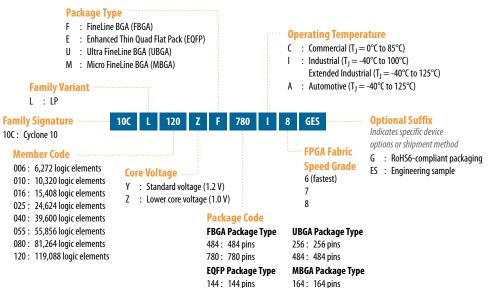
Advanced users who require access to the full IP Base Suite can subscribe to the Quartus Prime Standard Edition or purchase the license separately.

Related Links

- Software Development Tools, Nios II Processor
 Provides more information about the Nios II 32-bit soft IP processor and Embedded Design Suite (EDS).
- Quartus Prime IP Base Suite
- Quartus Prime Editions

Intel Corporation. All rights reserved. Intel, the Intel logo, Altera, Arria, Cyclone, Enpirion, MAX, Nios, Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Intel assumes no responsibility or liability arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

Summary of Cyclone 10 LP Features


Table 1. Summary of Features for Cyclone 10 LP Devices

Feature	Description	
Technology	 Low-cost, low-power FPGA fabric 1.0 V and 1.2 V core voltage options Available in commercial, industrial, and automotive temperature grades 	
Packaging	 Several package types and footprints: FineLine BGA (FBGA) Enhanced Thin Quad Flat Pack (EQFP) Ultra FineLine BGA (UBGA) Micro FineLine BGA (MBGA) Multiple device densities with pin migration capability RoHS6 compliance 	
Core architecture	 Logic elements (LEs)—four-input look-up table (LUT) and register Abundant routing/metal interconnect between all LEs 	
Internal memory blocks	 M9K—9-kilobits (Kb) of embedded SRAM memory blocks, cascadable Configurable as RAM (single-port, simple dual port, or true dual port), FIFO buffers, or ROM 	
Embedded multiplier blocks	 One 18 × 18 or two 9 × 9 multiplier modes, cascadable Complete suite of DSP IPs for algorithmic acceleration 	
Clock networks	Global clocks that drive throughout entire device, feeding all device quadrantsUp to 15 dedicated clock pins that can drive up to 20 global clocks	
Phase-locked loops (PLLs)	Up to four general purpose PLLsProvides robust clock management and synthesis	
General-purpose I/Os (GPIOs)	 Multiple I/O standards support Programmable I/O features True LVDS and emulated LVDS transmitters and receivers On-chip termination (OCT) 	
SEU mitigation	SEU detection during configuration and operation	
Configuration	 Active serial (AS), passive serial (PS), fast passive parallel (FPP) JTAG configuration scheme Configuration data decompression Remote system upgrade 	

Cyclone 10 LP Available Options

Figure 1. Sample Ordering Code and Available Options for Cyclone 10 LP Devices— Preliminary

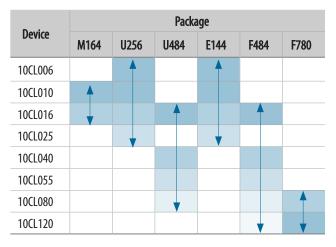
Cyclone 10 LP Maximum Resources

Resource Device 10CL010 10CL016 10CL025 10CL040 10CL006 10CL055 10CL080 10CL120 Logic Elements (LE) 6,272 10,320 15,408 24,624 39,600 55,856 81,264 119,088 M9K Block 30 46 56 66 126 260 305 432 Memory Capacity 270 414 504 594 1,134 2,340 2,745 3,888 (Kb) 18 × 18 Multiplier 15 23 56 66 126 156 244 288 PLL 2 2 4 4 4 4 4 4 Clock 20 20 20 20 20 20 20 20 176 Maximum I/O 176 340 150 325 321 423 525 Maximum LVDS 65 65 137 52 124 132 178 230

Table 2. Maximum Resource Counts for Cyclone 10 LP Devices

Cyclone 10 LP Package Plan

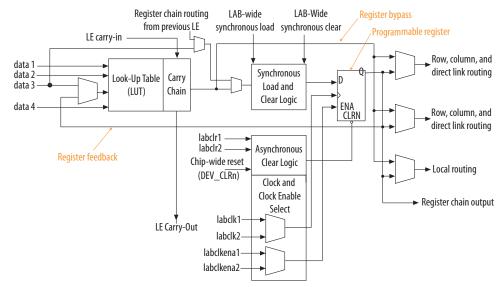
Table 3. Package Plan for Cyclone 10 LP Devices


Device	Package												
	Туре	164	.64 -pin GA	256	256 -pin GA	U4 484 UB	-pin		44 n EQFP		84 n FBGA		80 n FBGA
	Size	ze 8 mm × 8 14 mm × 14 19 mm × 19 22 mm × 22 mm			23 mm × 23 mm		29 mm × 29 mm						
	Ball Pitch	0.5	mm	0.8	mm	0.8	mm	0.5 mm		1.0 mm		1.0 mm	
	I/O Type	GPIO	LVDS	GPIO	LVDS	GPIO	LVDS	GPIO	LVDS	GPIO	LVDS	GPIO	LVDS
10CL	006	-	_	176	65	-	_	88	22	-	-	_	_
10CL	010	101	26	176	65	-	—	88	22	—	-	—	—
10CL	016	87	22	162	53	340	137	78	19	340	137	-	_
10CL	025	-	—	150	52	-	—	76	18	—	-	—	—
10CL	040	-	—	—	-	325	124	—	_	325	124	—	—
10CL	055	—	_	—	—	321	132	—	—	321	132	—	—
10CL	080	_	_	_	—	289	110	_	_	289	110	423	178
10CL	120	-	_	_	_	_	_	_	_	277	103	525	230

Cyclone 10 LP I/O Vertical Migration

Figure 2. Migration Capability Across Cyclone 10 LP Devices

- The arrows indicate the migration paths. The devices included in each vertical migration path are shaded. Devices with lesser I/O resources in the same path have lighter shades.
- To achieve full I/O migration across devices in the same migration path, restrict I/O usage to match the device with the lowest I/O count.


Note: To verify the pin migration compatibility, use the Pin Migration View window in the Quartus Prime software Pin Planner.

Logic Elements and Logic Array Blocks

The LAB consists of 16 logic elements (LE) and a LAB-wide control block. An LE is the smallest unit of logic in the Cyclone 10 LP device architecture. Each LE has four inputs, a four-input look-up table (LUT), a register, and output logic. The four-input LUT is a function generator that can implement any function with four variables.

Figure 3. Cyclone 10 LP Device Family LEs

Embedded Multipliers

Each embedded multiplier block in Cyclone 10 LP devices supports one individual 18×18 -bit multiplier or two individual 9×9 -bit multipliers. You can cascade the multiplier blocks to form wider or deeper logic structures.

You can control the operation of the embedded multiplier blocks using the following options:

- Parameterize the relevant IP cores with the Quartus Prime parameter editor
- Infer the multipliers directly with VHDL or Verilog HDL

Intel and partners offer popular DSP IPs for Cyclone 10 LP devices, including:

- Finite impulse response (FIR)
- Fast Fourier transform (FFT)
- Numerically controlled oscillator (NCO) functions

For a streamlined DSP design flow, the DSP Builder tool integrates the Quartus Prime software with MathWorks Simulink and MATLAB design environments.

Embedded Memory Blocks

The embedded memory structure consists of M9K memory blocks columns. Each M9K memory block of a Cyclone 10 LP device provides 9 Kb of on-chip memory. You can cascade the memory blocks to form wider or deeper logic structures.

You can configure the M9K memory blocks as RAM, FIFO buffers, or ROM.

Operation Modes	Port Widths
Single port	×1, ×2, ×4, ×8, ×9, ×16, ×18, ×32, and ×36
Simple dual port	×1, ×2, ×4, ×8, ×9, ×16, ×18, ×32, and ×36
True dual port	×1, ×2, ×4, ×8, ×9, ×16, and ×18

Table 4. M9K Operation Modes and Port Widths

Clocking and PLL

Cyclone 10 LP devices feature global clock (GCLK) networks, dedicated clock pins, and general purpose PLLs.

- Up to 20 GCLK networks that drive throughout the device
- Up to 15 dedicated clock pins
- Up to four general purpose PLLs with five outputs per PLL

The PLLs provide robust clock management and synthesis for the Cyclone 10 LP device. You can dynamically reconfigure the PLLs in user mode to change the clock phase or frequency.

FPGA General Purpose I/O

Cyclone 10 LP devices offer highly configurable GPIOs with these features:

- Support for over 20 popular single-ended and differential I/O standards.
- Programmable bus hold, pull-up resistors, delay, and drive strength.
- Programmable slew-rate control to optimize signal integrity.
- Calibrated on-chip series termination (R_S OCT) or driver impedance matching (R_S) for single-endd I/O standards.
- True and emulated LVDS buffers with LVDS SERDES implemented using logic elements in the device core.
- Hot socketing support.

Configuration

Cyclone 10 LP devices use SRAM cells to store configuration data. Configuration data is downloaded to the Cyclone 10 LP device each time the device powers up.

You can use EPCS or EPCQ (AS x1) flash configuration devices to store configuration data and configure the Cyclone 10 LP FPGAs.

- Cyclone 10 LP devices support 1.5 V, 1.8 V, 2.5 V, 3.0 V, and 3.3 V programming voltages and several configuration schemes.
- The single-event upset (SEU) mitigation feature detects cyclic redundancy check (CRC) errors automatically during configuration and optionally during user mode¹.

¹ User mode error detection is not supported on 1.0 V core voltage Cyclone 10 LP device variants.

Configuration Scheme	Configuration Method	Decompression	Remote System Upgrade
Active serial (AS)	Serial configuration device	Yes	Yes
Passive serial (PS)	External host with flash memory	Yes	Yes
	Download cable	Yes	-
Fast passive parallel (FPP)	External host with flash memory	-	Yes
JTAG	External host with flash memory	-	-
	Download cable	_	-

Table 5. Configuration Schemes and Features Supported by Cyclone 10 LP Devices

Related Links

Configuration Devices

Provides more information about the EPCS and EPCQ configuration devices.

Power Management

Cyclone 10 LP devices are built on optimized low-power process:

- Available in two core voltage options: 1.2 V and 1.0 V
- Hot socketing compliant without needing external components or special design requirements

To accelerate your design schedule, combine Intel Cyclone 10 LP FPGAs with Enpirion[®] Power Solutions. Intel's ultra-compact and efficient Enpirion PowerSoCs are ideal for meeting Cyclone 10 LP power requirements. Enpirion PowerSoCs integrate most of the required components to provide you fully-validated and straightforward solutions with up to 96% efficiency. These advantages reduce your power supply design time and allow you to focus on your IP and FPGA designs.

Related Links

Enpirion Power Solutions

Provides more information about Enpirion PowerSoC devices.

Document Revision History for Cyclone 10 LP Device Overview

Date	Version	Changes
May 2017	2017.05.08	Initial release.