

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Last Time Buy
Core Processor	C166SV2
Core Size	16-Bit
Speed	40MHz
Connectivity	CANbus, EBI/EMI, SPI, UART/USART
Peripherals	PWM, WDT
Number of I/O	79
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.35V ~ 2.7V
Data Converters	A/D 14x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	-
Package / Case	
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc164cs16f40fbbkxqma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

Table of Contents

1	Summary of Features	. 4
2 2.1 2.2	General Device Information	. 7
3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18	-, , ,	18 20 21 23 29 32 33 37 39 40 41 42 44 45 45 47
4 4.1 4.2 4.3 4.4 4.4.1 4.4.2 4.4.3 4.4.3 4.4.4 4.4.5	Definition of Internal Timing On-chip Flash Operation External Clock Drive XTAL1 Testing Waveforms	51 54
5 5.1 5.2	Package and Reliability Packaging Flash Memory Parameters	

16-Bit Single-Chip Microcontroller with C166SV2 Core XC166 Family

1 Summary of Features

- High Performance 16-bit CPU with 5-Stage Pipeline
 - 25 ns Instruction Cycle Time at 40 MHz CPU Clock (Single-Cycle Execution)
 - 1-Cycle Multiplication (16 \times 16 bit), Background Division (32 / 16 bit) in 21 Cycles
 - 1-Cycle Multiply-and-Accumulate (MAC) Instructions
 - Enhanced Boolean Bit Manipulation Facilities
 - Zero-Cycle Jump Execution
 - Additional Instructions to Support HLL and Operating Systems
 - Register-Based Design with Multiple Variable Register Banks
 - Fast Context Switching Support with Two Additional Local Register Banks
 - 16 Mbytes Total Linear Address Space for Code and Data
 - 1024 Bytes On-Chip Special Function Register Area (C166 Family Compatible)
- 16-Priority-Level Interrupt System with up to 75 Sources, Sample-Rate down to 50 ns
- 8-Channel Interrupt-Driven Single-Cycle Data Transfer Facilities via Peripheral Event Controller (PEC), 24-Bit Pointers Cover Total Address Space
- Clock Generation via on-chip PLL (factors 1:0.15 ... 1:10), or via Prescaler (factors 1:1 ... 60:1)
- On-Chip Memory Modules
 - 2 Kbytes On-Chip Dual-Port RAM (DPRAM)
 - 2/4 Kbytes On-Chip Data SRAM (DSRAM)¹⁾
 - 2 Kbytes On-Chip Program/Data SRAM (PSRAM)
 - 64/128 Kbytes On-Chip Program Memory (Flash Memory or Mask ROM)¹⁾
- On-Chip Peripheral Modules
 - 14-Channel A/D Converter with Programmable Resolution (10-bit or 8-bit) and Conversion Time (down to 2.55 μ s or 2.15 μ s)
 - Two 16-Channel General Purpose Capture/Compare Units (12 Input/Output Pins)
 - Capture/Compare Unit for flexible PWM Signal Generation (CAPCOM6) (3/6 Capture/Compare Channels and 1 Compare Channel)
 - Multi-Functional General Purpose Timer Unit with 5 Timers
 - Two Synchronous/Asynchronous Serial Channels (USARTs)
 - Two High-Speed-Synchronous Serial Channels
 - On-Chip TwinCAN Interface (Rev. 2.0B active) with 32 Message Objects (Full CAN/Basic CAN) on Two CAN Nodes, and Gateway Functionality
 - On-Chip Real Time Clock
- Idle, Sleep, and Power Down Modes with Flexible Power Management

¹⁾ Depends on the respective derivative. The derivatives are listed in Table 1.

General Device Information

Table 2	Pi	n Definit	tions and Functions (cont'd)					
Symbol	Pin Num.	Input Outp.	Function					
P9		IO	Port 9 is a 6-bit bidirectional I/O port. Each pin can be programmed for input (output driver in high-impedance state) or output (configurable as push/pull or open drain driver). The input threshold of Port 9 is selectable (standard or special).					
P9.0	10	I/O I	The following Port 9 pins also serve for alternate functions:1)CC16IOCAPCOM2: CC16 Capture Inp./Compare Outp.,CAN1_RxD CAN Node B Receive Data Input,EX7INFast External Interrupt 7 Input (alternate pin B)					
P9.1	11	I/O O I	EX7INFast External Interrupt 7 Input (alternate pin B)CC17IOCAPCOM2: CC17 Capture Inp./Compare Outp.,CAN1_TxDCAN Node B Transmit Data Output,EX6INFast External Interrupt 6 Input (alternate pin B)					
P9.2	12	I/O I	CC18IOCAPCOM2: CC18 Capture Inp./Compare Outp.CAN0_RxD CAN Node A Receive Data Input,EX7INFast External Interrupt 7 Input (alternate pin A)					
P9.3	13	I/O O I	CC19IOCAPCOM2: CC19 Capture Inp./Compare Outp.,CAN0_TxDCAN Node A Transmit Data Output,EX6INFast External Interrupt 6 Input (alternate pin A)					
P9.4 P9.5	14 15	I/O I/O	CC20IO CAPCOM2: CC20 Capture Inp./Compare Outp. CC21IO CAPCOM2: CC21 Capture Inp./Compare Outp.					
P5		I	Port 5 is a 14-bit input-only port. The pins of Port 5 also serve as analog input channels for the A/D converter, or they serve as timer inputs:					
P5.0	18	1	ANO					
P5.1	19	1	AN1					
P5.2	20	1	AN2					
P5.3	21	1	AN3					
P5.4	22	I	AN4					
P5.5	23	1	AN5					
P5.10	24	I	AN10, T6EUD GPT2 Timer T6 Ext. Up/Down Ctrl. Inp.					
P5.11	25		AN11, T5EUD GPT2 Timer T5 Ext. Up/Down Ctrl. Inp.					
P5.6	26		ANG					
P5.7	27							
P5.12	30		AN12, T6IN GPT2 Timer T6 Count/Gate Input					
P5.13	31		AN13, T5IN GPT2 Timer T5 Count/Gate Input					
P5.14	32		AN14, T4EUD GPT1 Timer T4 Ext. Up/Down Ctrl. Inp.					
P5.15	33		AN15, T2EUD GPT1 Timer T2 Ext. Up/Down Ctrl. Inp.					

General Device Information

Table 2	Pi	n Definit	tions and Functions (cont'd)					
Symbol	Pin Num.	Input Outp.	Function					
P4		IO	Port 4 is an 8-bit bidirectional I/O port. Each pin can be programmed for input (output driver in high-impedance state) or output (configurable as push/pull or open drain driver). The input threshold of Port 4 is selectable (standard or special). Port 4 can be used to output the segment address lines, the optional chip select lines, and for serial interface lines: ¹⁾					
P4.0	53	0	<u>A16</u> Least Significant Segment Address Line, CS3 Chip Select 3 Output					
P4.1	54	0	A17 Segment Address Line, CS2 Chip Select 2 Output					
P4.2	55	0 0	A18Segment Address Line,CS1Chip Select 1 Output					
P4.3	56	0 0	A19Segment Address Line,CS0Chip Select 0 Output					
P4.4	57	0 	A20 Segment Address Line, CAN1_RxD CAN Node B Receive Data Input, EX5IN Fast External Interrupt 5 Input (alternate pin B)					
P4.5	58	O I I	A21 Segment Address Line, CAN0_RxD CAN Node A Receive Data Input, EX4IN Fast External Interrupt 4 Input (alternate pin B)					
P4.6	59	0 0 I	A22 Segment Address Line, CAN0_TxD CAN Node A Transmit Data Output, EX5IN Fast External Interrupt 5 Input (alternate pin A)					
P4.7	60	0 0 	A23 Most Significant Segment Address Line, CAN0_RxD CAN Node A Receive Data Input, CAN1_TxD CAN Node B Transmit Data Output, EX4IN Fast External Interrupt 4 Input (alternate pin A)					

3.1 Memory Subsystem and Organization

The memory space of the XC164CS is configured in a Von Neumann architecture, which means that all internal and external resources, such as code memory, data memory, registers and I/O ports, are organized within the same linear address space. This common memory space includes 16 Mbytes and is arranged as 256 segments of 64 Kbytes each, where each segment consists of four data pages of 16 Kbytes each. The entire memory space can be accessed bytewise or wordwise. Portions of the on-chip DPRAM and the register spaces (E/SFR) have additionally been made directly bitaddressable.

The internal data memory areas and the Special Function Register areas (SFR and ESFR) are mapped into segment 0, the system segment.

The Program Management Unit (PMU) handles all code fetches and, therefore, controls accesses to the program memories, such as Flash memory, ROM, and PSRAM.

The Data Management Unit (DMU) handles all data transfers and, therefore, controls accesses to the DSRAM and the on-chip peripherals.

Both units (PMU and DMU) are connected via the high-speed system bus to exchange data. This is required if operands are read from program memory, code or data is written to the PSRAM, code is fetched from external memory, or data is read from or written to external resources, including peripherals on the LXBus (such as TwinCAN). The system bus allows concurrent two-way communication for maximum transfer performance.

64/128 Kbytes¹⁾ **of on-chip Flash memory or mask-programmable ROM** store code or constant data. The on-chip Flash memory is organized as four 8-Kbyte sectors, one 32-Kbyte sector, and one 64-Kbyte sector. Each sector can be separately write protected²⁾, erased and programmed (in blocks of 128 Bytes). The complete Flash or ROM area can be read-protected. A password sequence temporarily unlocks protected areas. The Flash module combines very fast 64-bit one-cycle read accesses with protected and efficient writing algorithms for programming and erasing. Thus, program execution out of the internal Flash results in maximum performance. Dynamic error correction provides extremely high read data security for all read accesses. For timing characteristics, please refer to Section 4.4.2.

2 Kbytes of on-chip Program SRAM (PSRAM) are provided to store user code or data.

The PSRAM is accessed via the PMU and is therefore optimized for code fetches.

2/4 Kbytes¹⁾ **of on-chip Data SRAM (DSRAM)** are provided as a storage for general user data. The DSRAM is accessed via the DMU and is therefore optimized for data accesses.

2 Kbytes of on-chip Dual-Port RAM (DPRAM) are provided as a storage for user defined variables, for the system stack, and general purpose register banks. A register

¹⁾ Depends on the respective derivative. The derivatives are listed in Table 1.

²⁾ Each two 8-Kbyte sectors are combined for write-protection purposes.

3.2 External Bus Controller

All of the external memory accesses are performed by a particular on-chip External Bus Controller (EBC). It can be programmed either to Single Chip Mode when no external memory is required, or to one of four different external memory access modes¹), which are as follows:

- 16 ... 24-bit Addresses, 16-bit Data, Demultiplexed
- 16 ... 24-bit Addresses, 16-bit Data, Multiplexed
- 16 ... 24-bit Addresses, 8-bit Data, Multiplexed
- 16 ... 24-bit Addresses, 8-bit Data, Demultiplexed

In the demultiplexed bus modes, addresses are output on PORT1 and data is input/output on PORT0 or P0L, respectively. In the multiplexed bus modes both addresses and data use PORT0 for input/output. The high order address (segment) lines use Port 4. The number of active segment address lines is selectable, restricting the external address space to 8 Mbytes ... 64 Kbytes. This is required when interface lines are assigned to Port 4.

Up to 4 external \overline{CS} signals (3 windows plus default) can be generated in order to save external glue logic. External modules can directly be connected to the common address/data bus and their individual select lines.

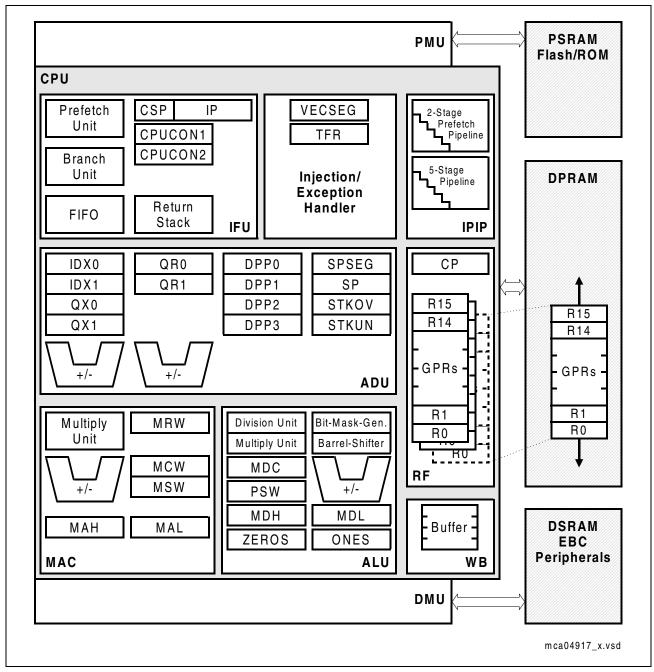
Important timing characteristics of the external bus interface have been made programmable (via registers TCONCSx/FCONCSx) to allow the user the adaption of a wide range of different types of memories and external peripherals.

In addition, up to 4 independent address windows may be defined (via registers ADDRSELx) which control the access to different resources with different bus characteristics. These address windows are arranged hierarchically where window 4 overrides window 3, and window 2 overrides window 1. All accesses to locations not covered by these 4 address windows are controlled by TCONCS0/FCONCS0. The currently active window can generate a chip select signal.

Note: The chip select signal of address window 4 is not available on a pin.

The external bus timing is related to the rising edge of the reference clock output CLKOUT. The external bus protocol is compatible with that of the standard C166 Family.

The EBC also controls accesses to resources connected to the on-chip LXBus. The LXBus is an internal representation of the external bus and allows accessing integrated peripherals and modules in the same way as external components.


The TwinCAN module is connected and accessed via the LXBus.

¹⁾ Bus modes are switched dynamically if several address windows with different mode settings are used.

3.3 Central Processing Unit (CPU)

The main core of the CPU consists of a 5-stage execution pipeline with a 2-stage instruction-fetch pipeline, a 16-bit arithmetic and logic unit (ALU), a 32-bit/40-bit multiply and accumulate unit (MAC), a register-file providing three register banks, and dedicated SFRs. The ALU features a multiply and divide unit, a bit-mask generator, and a barrel shifter.

Figure 4 CPU Block Diagram

Based on these hardware provisions, most of the XC164CS's instructions can be executed in just one machine cycle which requires 25 ns at 40 MHz CPU clock. For

example, shift and rotate instructions are always processed during one machine cycle independent of the number of bits to be shifted. Also multiplication and most MAC instructions execute in one single cycle. All multiple-cycle instructions have been optimized so that they can be executed very fast as well: for example, a division algorithm is performed in 18 to 21 CPU cycles, depending on the data and division type. Four cycles are always visible, the rest runs in the background. Another pipeline optimization, the branch target prediction, allows eliminating the execution time of branch instructions if the prediction was correct.

The CPU has a register context consisting of up to three register banks with 16 wordwide GPRs each at its disposal. The global register bank is physically allocated within the on-chip DPRAM area. A Context Pointer (CP) register determines the base address of the active global register bank to be accessed by the CPU at any time. The number of register banks is only restricted by the available internal RAM space. For easy parameter passing, a register bank may overlap others.

A system stack of up to 32 Kwords is provided as a storage for temporary data. The system stack can be allocated to any location within the address space (preferably in the on-chip RAM area), and it is accessed by the CPU via the stack pointer (SP) register. Two separate SFRs, STKOV and STKUN, are implicitly compared against the stack pointer value upon each stack access for the detection of a stack overflow or underflow.

The high performance offered by the hardware implementation of the CPU can efficiently be utilized by a programmer via the highly efficient XC164CS instruction set which includes the following instruction classes:

- Standard Arithmetic Instructions
- DSP-Oriented Arithmetic Instructions
- Logical Instructions
- Boolean Bit Manipulation Instructions
- Compare and Loop Control Instructions
- Shift and Rotate Instructions
- Prioritize Instruction
- Data Movement Instructions
- System Stack Instructions
- Jump and Call Instructions
- Return Instructions
- System Control Instructions
- Miscellaneous Instructions

The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes and words. A variety of direct, indirect or immediate addressing modes are provided to specify the required operands.

3.4 Interrupt System

With an interrupt response time of typically 8 CPU clocks (in case of internal program execution), the XC164CS is capable of reacting very fast to the occurrence of non-deterministic events.

The architecture of the XC164CS supports several mechanisms for fast and flexible response to service requests that can be generated from various sources internal or external to the microcontroller. Any of these interrupt requests can be programmed to being serviced by the Interrupt Controller or by the Peripheral Event Controller (PEC).

In contrast to a standard interrupt service where the current program execution is suspended and a branch to the interrupt vector table is performed, just one cycle is 'stolen' from the current CPU activity to perform a PEC service. A PEC service implies a single byte or word data transfer between any two memory locations with an additional increment of either the PEC source, or the destination pointer, or both. An individual PEC transfer counter is implicitly decremented for each PEC service except when performing in the continuous transfer mode. When this counter reaches zero, a standard interrupt is performed to the corresponding source related vector location. PEC services are very well suited, for example, for supporting the transmission or reception of blocks of data. The XC164CS has 8 PEC channels each of which offers such fast interrupt-driven data transfer capabilities.

A separate control register which contains an interrupt request flag, an interrupt enable flag and an interrupt priority bitfield exists for each of the possible interrupt nodes. Via its related register, each node can be programmed to one of sixteen interrupt priority levels. Once having been accepted by the CPU, an interrupt service can only be interrupted by a higher prioritized service request. For the standard interrupt processing, each of the possible interrupt nodes has a dedicated vector location.

Fast external interrupt inputs are provided to service external interrupts with high precision requirements. These fast interrupt inputs feature programmable edge detection (rising edge, falling edge, or both edges).

Software interrupts are supported by means of the 'TRAP' instruction in combination with an individual trap (interrupt) number.

 Table 4 shows all of the possible XC164CS interrupt sources and the corresponding hardware-related interrupt flags, vectors, vector locations and trap (interrupt) numbers.

Note: Interrupt nodes which are not assigned to peripherals (unassigned nodes), may be used to generate software controlled interrupt requests by setting the respective interrupt request bit (xIR).

3.5 On-Chip Debug Support (OCDS)

The On-Chip Debug Support system provides a broad range of debug and emulation features built into the XC164CS. The user software running on the XC164CS can thus be debugged within the target system environment.

The OCDS is controlled by an external debugging device via the debug interface, consisting of the IEEE-1149-conforming JTAG port and a break interface. The debugger controls the OCDS via a set of dedicated registers accessible via the JTAG interface. Additionally, the OCDS system can be controlled by the CPU, e.g. by a monitor program. An injection interface allows the execution of OCDS-generated instructions by the CPU.

Multiple breakpoints can be triggered by on-chip hardware, by software, or by an external trigger input. Single stepping is supported as well as the injection of arbitrary instructions and read/write access to the complete internal address space. A breakpoint trigger can be answered with a CPU-halt, a monitor call, a data transfer, or/and the activation of an external signal.

Tracing data can be obtained via the JTAG interface or via the external bus interface for increased performance.

The debug interface uses a set of 6 interface signals (4 JTAG lines, 2 break lines) to communicate with external circuitry. These interface signals are realized as alternate functions on Port 3 pins.

Complete system emulation is supported by the New Emulation Technology (NET) interface.

3.6 Capture/Compare Units (CAPCOM1/2)

The CAPCOM units support generation and control of timing sequences on up to 32 channels with a maximum resolution of 1 system clock cycle (8 cycles in staggered mode). The CAPCOM units are typically used to handle high speed I/O tasks such as pulse and waveform generation, pulse width modulation (PMW), Digital to Analog (D/A) conversion, software timing, or time recording relative to external events.

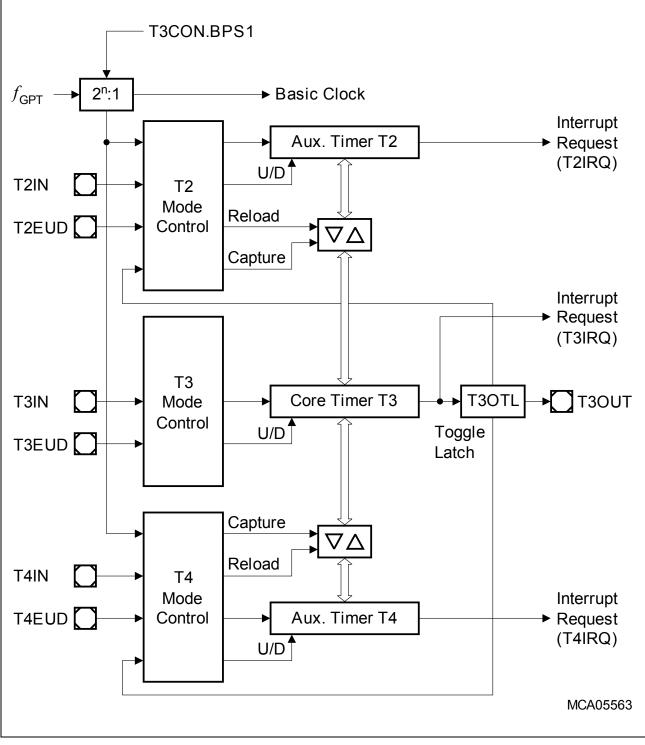
Four 16-bit timers (T0/T1, T7/T8) with reload registers provide two independent time bases for each capture/compare register array.

The input clock for the timers is programmable to several prescaled values of the internal system clock, or may be derived from an overflow/underflow of timer T6 in module GPT2. This provides a wide range of variation for the timer period and resolution and allows precise adjustments to the application specific requirements. In addition, external count inputs for CAPCOM timers T0 and T7 allow event scheduling for the capture/compare registers relative to external events.

Both of the two capture/compare register arrays contain 16 dual purpose capture/compare registers, each of which may be individually allocated to either CAPCOM timer T0 or T1 (T7 or T8, respectively), and programmed for capture or compare function.

12 registers of the CAPCOM2 module have each one port pin associated with it which serves as an input pin for triggering the capture function, or as an output pin to indicate the occurrence of a compare event.

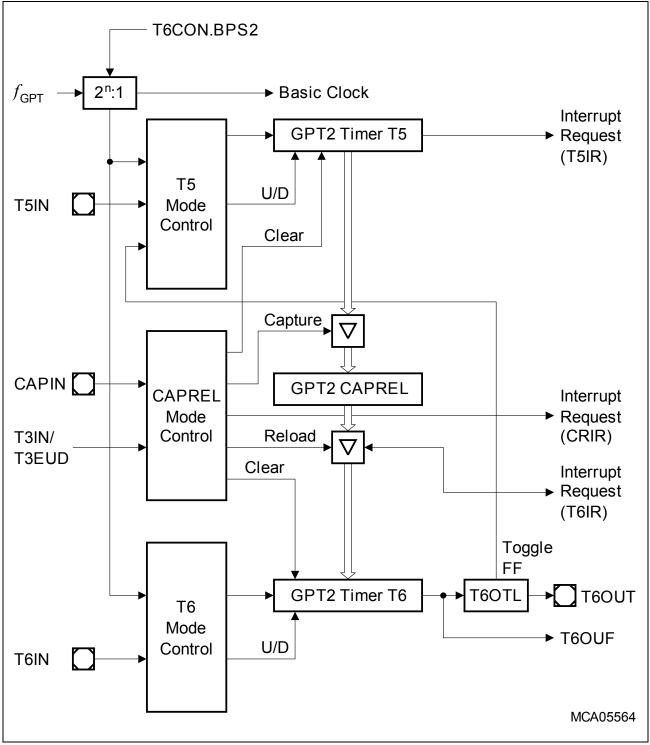
Compare Modes	Function
Mode 0	Interrupt-only compare mode; several compare interrupts per timer period are possible
Mode 1	Pin toggles on each compare match; several compare events per timer period are possible
Mode 2	Interrupt-only compare mode; only one compare interrupt per timer period is generated
Mode 3	Pin set '1' on match; pin reset '0' on compare timer overflow; only one compare event per timer period is generated
Double Register Mode	Two registers operate on one pin; pin toggles on each compare match; several compare events per timer period are possible
Single Event Mode	Generates single edges or pulses; can be used with any compare mode



When a capture/compare register has been selected for capture mode, the current contents of the allocated timer will be latched ('captured') into the capture/compare register in response to an external event at the port pin which is associated with this register. In addition, a specific interrupt request for this capture/compare register is generated. Either a positive, a negative, or both a positive and a negative external signal transition at the pin can be selected as the triggering event.

The contents of all registers which have been selected for one of the five compare modes are continuously compared with the contents of the allocated timers.

When a match occurs between the timer value and the value in a capture/compare register, specific actions will be taken based on the selected compare mode.



With its maximum resolution of 2 system clock cycles, the **GPT2 module** provides precise event control and time measurement. It includes two timers (T5, T6) and a capture/reload register (CAPREL). Both timers can be clocked with an input clock which is derived from the CPU clock via a programmable prescaler or with external signals. The

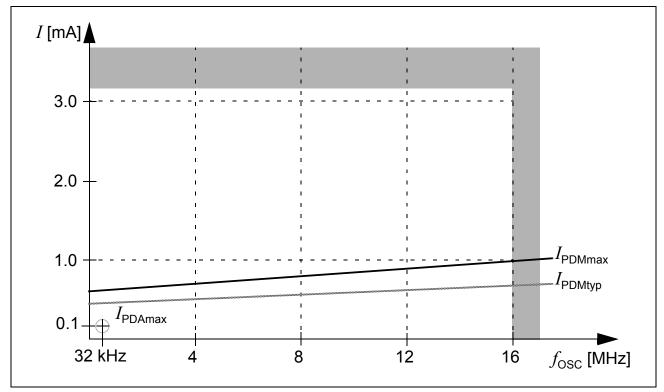


Figure 12 Sleep and Power Down Supply Current due to RTC and Oscillator Running, as a Function of Oscillator Frequency

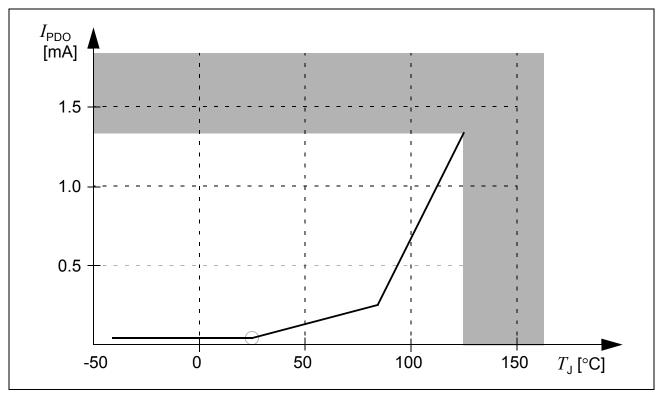


Figure 13 Sleep and Power Down Leakage Supply Current as a Function of Temperature

Sample time and conversion time of the XC164CS's A/D Converter are programmable. In compatibility mode, the above timing can be calculated using **Table 15**. The limit values for f_{BC} must not be exceeded when selecting ADCTC.

ADCON.15 14 (ADCTC)	A/D Converter Basic Clock $f_{\rm BC}$	ADCON.13 12 (ADSTC)	Sample Time t _S
00	<i>f</i> _{SYS} / 4	00	$t_{\rm BC} \times 8$
01	<i>f</i> _{SYS} / 2	01	$t_{\rm BC} imes 16$
10	<i>f</i> _{SYS} / 16	10	$t_{\rm BC} imes 32$
11	f _{SYS} / 8	11	$t_{\rm BC} imes 64$

 Table 15
 A/D Converter Computation Table¹⁾

1) These selections are available in compatibility mode. An improved mechanism to control the ADC input clock can be selected.

Converter Timing Example:

Assumptions:	$f_{\rm SYS}$	= 40 MHz (i.e. <i>t</i> _{SYS} = 25 ns), ADCTC = '01', ADSTC = '00'
Basic clock	$f_{\rm BC}$	= f _{SYS} / 2 = 20 MHz, i.e. t _{BC} = 50 ns
Sample time	t _S	$= t_{\rm BC} \times 8 = 400 \rm ns$
Conversion 10-bi	t:	
With post-calibr.	t _{C10P}	= $52 \times t_{BC}$ + t_{S} + $6 \times t_{SYS}$ = (2600 + 400 + 150) ns = 3.15 µs
Post-calibr. off	<i>t</i> _{C10}	= $40 \times t_{BC}$ + t_{S} + $6 \times t_{SYS}$ = (2000 + 400 + 150) ns = 2.55 µs
Conversion 8-bit:		
With post-calibr.	t _{C8P}	= $44 \times t_{BC} + t_{S} + 6 \times t_{SYS}$ = (2200 + 400 + 150) ns = 2.75 µs
Post-calibr. off	t _{C8}	= $32 \times t_{BC} + t_{S} + 6 \times t_{SYS}$ = (1600 + 400 + 150) ns = 2.15 µs

CPU and EBC are clocked with the CPU clock signal f_{CPU} . The CPU clock can have the same frequency as the master clock ($f_{CPU} = f_{MC}$) or can be the master clock divided by two: $f_{CPU} = f_{MC}$ / 2. This factor is selected by bit CPSYS in register SYSCON1.

The specification of the external timing (AC Characteristics) depends on the period of the CPU clock, called "TCP".

The other peripherals are supplied with the system clock signal f_{SYS} which has the same frequency as the CPU clock signal f_{CPU} .

Bypass Operation

When bypass operation is configured (PLLCTRL = $0x_B$) the master clock is derived from the internal oscillator (input clock signal XTAL1) through the input- and output-prescalers:

 $f_{MC} = f_{OSC} / ((PLLIDIV+1) \times (PLLODIV+1)).$

If both divider factors are selected as '1' (PLLIDIV = PLLODIV = '0') the frequency of f_{MC} directly follows the frequency of f_{OSC} so the high and low time of f_{MC} is defined by the duty cycle of the input clock f_{OSC} .

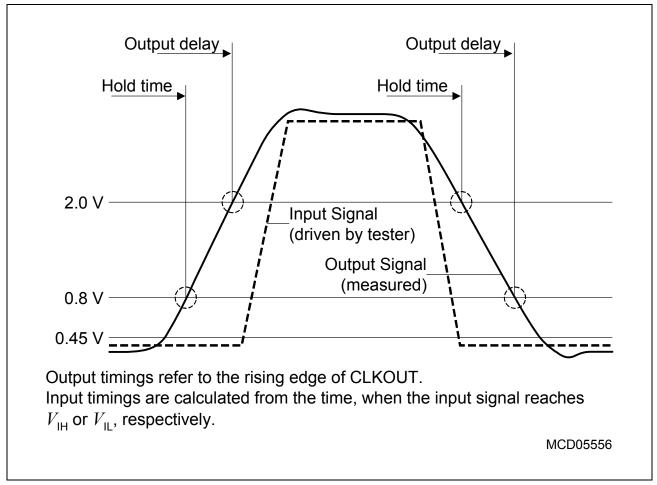
The lowest master clock frequency is achieved by selecting the maximum values for both divider factors:

 $f_{\rm MC} = f_{\rm OSC} / ((3 + 1) \times (14 + 1)) = f_{\rm OSC} / 60.$

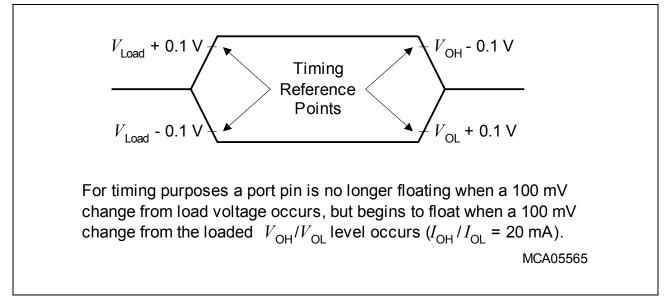
Phase Locked Loop (PLL)

When PLL operation is configured (PLLCTRL = 11_B) the on-chip phase locked loop is enabled and provides the master clock. The PLL multiplies the input frequency by the factor **F** ($f_{MC} = f_{OSC} \times F$) which results from the input divider, the multiplication factor, and the output divider (**F** = PLLMUL+1 / (PLLIDIV+1 × PLLODIV+1)). The PLL circuit synchronizes the master clock to the input clock. This synchronization is done smoothly, i.e. the master clock frequency does not change abruptly.

Due to this adaptation to the input clock the frequency of $f_{\rm MC}$ is constantly adjusted so it is locked to $f_{\rm OSC}$. The slight variation causes a jitter of $f_{\rm MC}$ which also affects the duration of individual TCMs.


The timing listed in the AC Characteristics refers to TCPs. Because $f_{\rm CPU}$ is derived from $f_{\rm MC}$, the timing must be calculated using the minimum TCP possible under the respective circumstances.

The actual minimum value for TCP depends on the jitter of the PLL. As the PLL is constantly adjusting its output frequency so it corresponds to the applied input frequency (crystal or oscillator) the relative deviation for periods of more than one TCP is lower than for one single TCP (see formula and **Figure 16**).


This is especially important for bus cycles using waitstates and e.g. for the operation of timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train

4.4.4 Testing Waveforms

Figure 18 Input Output Waveforms

Figure 19 Float Waveforms

4.4.5 External Bus Timing

Table 20CLKOUT Reference Signal

Parameter	Symbol		Limit Values		Unit
			Min.	Max.	
CLKOUT cycle time	<i>tc</i> ₅	CC	40	0/30/25 ¹⁾	ns
CLKOUT high time	tc ₆	CC	8	-	ns
CLKOUT low time	<i>tc</i> ₇	CC	6	-	ns
CLKOUT rise time	tc ₈	CC	_	4	ns
CLKOUT fall time	tc ₉	CC	_	4	ns

1) The CLKOUT cycle time is influenced by the PLL jitter (given values apply to f_{CPU} = 25/33/40 MHz). For longer periods the relative deviation decreases (see PLL deviation formula).

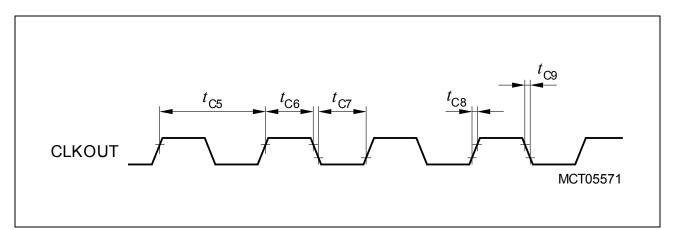


Figure 20 CLKOUT Signal Timing

www.infineon.com