

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I²C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	7KB (4K x 14)
Program Memory Type	ROM
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16cr73-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-3: PIC16CR74 AND PIC16CR77 PINOUT DESCRIPTION

PDIP Pin#	PLCC Pin#	QFP Pin#	I/O/P Type	Buffer Type	Description
13	14	30	Ι	ST/CMOS ⁽⁴⁾	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode. Otherwise
			Ι		CMOS. External clock source input. Always associated with pin function OSC1 (see OSC1/CLKIN, OSC2/CLKOUT pins).
14	15	31	0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.
			0		In RC mode, OSC2 pin outputs CLKOUT, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
1	2	18	I	ST	Master Clear (Reset) input. This pin is an active low Reset to the device.
					PORTA is a bidirectional I/O port.
2	3	19	I/O I	TTL	Digital I/O. Analog input 0.
3	4	20	I/O I	TTL	Digital I/O. Analog input 1.
4	5	21	I/O I	TTL	Digital I/O. Analog input 2.
5	6	22	I/O I I	TTL	Digital I/O. Analog input 3. A/D reference voltage input.
6	7	23	I/O I	ST	Digital I/O – Open drain when configured as output. Timer0 external clock input.
7	8	24	I/O I I	TTL	Digital I/O. Analog input 4. SPI slave select input.
	Pin# 13 14 1 2 3 4 5 6	Pin# Pin# 13 14 13 14 14 15 14 15 14 15 14 15 15 6 6 7	Pin# Pin# 13 14 30 13 14 30 14 30 14 15 31 14 15 31 14 15 31 1 2 18 2 3 19 3 4 20 4 5 21 5 6 22 6 7 23	Pin# Pin# Type 13 14 30 1 13 14 30 1 14 14 30 1 14 15 31 0 14 15 31 0 14 15 31 0 14 15 31 0 14 15 31 0 14 15 31 0 14 15 31 0 1 2 18 1 2 3 19 1/0 3 4 20 1/0 4 5 21 1/0 5 6 22 1/0 6 7 23 1/0 7 8 24 1/0	Pin# Pin# Type Type 13 14 30 1 ST/CMOS ⁽⁴⁾ 13 14 30 1 1 14 15 31 1 1 14 15 31 O 1 2 18 I ST 1 2 18 I ST 1 1 ST 1 1 TTL I/O 1 5 6 22 I/O 1 1 5 6 22 I/O

— = Not used TTL = TTL input ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Verify mode.

3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

4: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

Pin Name	PDIP Pin#	PLCC Pin#	QFP Pin#	I/O/P Type	Buffer Type	Description
						PORTD is a bidirectional I/O port or parallel slave port
						when interfacing to a microprocessor bus.
RD0/PSP0	19	21	38		ST/TTL ⁽³⁾	
RD0 PSP0				I/O I/O		Digital I/O. Parallel Slave Port data.
	20	00	20		ST/TTL ⁽³⁾	Paraller Slave Port data.
RD1/PSP1 RD1	20	22	39	I I/O	51/1124	Digital I/O.
PSP1				I/O		Parallel Slave Port data.
RD2/PSP2	21	23	40	1	ST/TTL ⁽³⁾	
RD2				I/O	0.,	Digital I/O.
PSP2				I/O		Parallel Slave Port data.
RD3/PSP3	22	24	41		ST/TTL ⁽³⁾	
RD3				I/O		Digital I/O.
PSP3				I/O	(2)	Parallel Slave Port data.
RD4/PSP4	27	30	2		ST/TTL ⁽³⁾	
RD4 PSP4				I/O I/O		Digital I/O. Parallel Slave Port data.
-	20	24	2	1/0	ST/TTL ⁽³⁾	Paraller Slave Port data.
RD5/PSP5 RD5	28	31	3	I/O	51/1124	Digital I/O.
PSP5				I/O		Parallel Slave Port data.
RD6/PSP6	29	32	4		ST/TTL ⁽³⁾	
RD6				I/O		Digital I/O.
PSP6				I/O		Parallel Slave Port data.
RD7/PSP7	30	33	5		ST/TTL ⁽³⁾	
RD7				I/O		Digital I/O.
PSP7	_			I/O		Parallel Slave Port data.
					(2)	PORTE is a bidirectional I/O port.
RE0/AN5/RD/	8	9	25		ST/TTL ⁽³⁾	
RE0 AN5				I/O I		Digital I/O. Analog input 5.
				1		Read control for parallel slave port .
RE1/AN6/WR/	9	10	26	-	ST/TTL ⁽³⁾	
RE1	°,			I/O	0.,	Digital I/O.
AN6				I		Analog input 6.
WR				I		Write control for parallel slave port .
RE2/AN7/CS	10	11	27		ST/TTL ⁽³⁾	
RE2				I/O		Digital I/O.
AN7 CS						Analog input 7. Chip Select control for parallel slave port .
Vss	12,31	13,34	6,29	P		Ground reference for logic and I/O pins.
VSS VDD	12,31	12,35	7,28	 Р		Positive supply for logic and I/O pins.
NC	11,52			Г		
		1,17, 28, 40	12,13, 33, 34			These pins are not internally connected. These pins should be left unconnected.

TABLE 1-3: PIC16CR74 AND PIC16CR77 PINOUT DESCRIPTION (CONTINUED)

— = Not used TTL = TTL input ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Verify mode.

3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

4: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page
Bank 1											
80h ⁽⁴⁾	INDF	Addressin	g this locatio	n uses conte	ents of FSR to	address dat	a memory (r	not a physica	al register)	0000 0000	27, 96
81h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	20, 44, 96
82h ⁽⁴⁾	PCL	Program C	Counter (PC)	Least Signif	icant Byte					0000 0000	26, 96
83h ⁽⁴⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	C ⁽²⁾	0001 1xxx	19, 96
84h ⁽⁴⁾	FSR	Indirect da	ata memory a	ddress poin	ter					xxxx xxxx	27, 96
85h	TRISA		_	PORTA Dat	a Direction Re	egister				11 1111	32, 96
86h	TRISB	PORTB D	ata Direction			•				1111 1111	34, 96
87h	TRISC	PORTC D	ata Direction	Register						1111 1111	35, 96
88h (5)	TRISD	PORTD D	ata Direction	Register						1111 1111	36, 96
89h (5)	TRISE	IBF	OBF	IBOV	PSPMODE	—	PORTE Da	ata Direction	Bits	0000 -111	38, 96
8Ah ^(1,4)	PCLATH	_	—	—	Write Buffer f	or the upper	5 bits of the	Program C	ounter	0 0000	26, 96
8Bh ⁽⁴⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	21, 96
8Ch	PIE1	PSPIE ⁽³⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	22, 97
8Dh	PIE2	_	—	—	_		_	—	CCP2IE	0	24, 97
8Eh	PCON	_	_	_	_	_	_	POR	BOR	dd	22, 97
8Fh	_	Unimplem	ented							_	_
90h	_	Unimplem	ented							_	_
91h	—	Unimplem	ented							_	_
92h	PR2	Timer2 Mo	odule Period	Register						1111 1111	52, 97
93h	SSPADD	Synchrono	ous Serial Po	ort (l ² C™ mo	de) Address F	Register				0000 0000	68, 97
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	60, 97
95h	—	Unimplem	ented							_	—
96h	—	Unimplem	ented							_	_
97h	—	Unimplem	ented							_	_
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	69, 97
99h	SPBRG	Baud Rate	e Generator I	Register						0000 0000	71, 97
9Ah	—	Unimplemented								_	
9Bh	_	Unimplem	ented							_	
9Ch	—	Unimplemented								_	
9Dh	—	Unimplem	ented							_	
9Eh	_	Unimplem	ented							_	
9Fh	ADCON1	_	_	_	_	_	PCFG2	PCFG1	PCFG0	000	84, 97

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY (C	CONTINUED)
---	------------

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter during branches (CALL or GOTO).

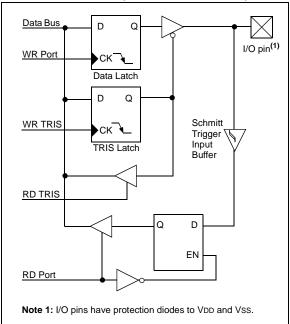
2: Other (non Power-up) Resets include external Reset through MCLR and Watchdog Timer Reset.

3: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.

4: These registers can be addressed from any bank.

5: PORTD, PORTE, TRISD and TRISE are not physically implemented on the 28-pin devices, read as '0'.

6: This bit always reads as a '1'.


4.4 PORTD and TRISD Registers

This section is not applicable to the PIC16CR73 or PIC16CR76.

PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is individually configureable as an input or output.

PORTD can be configured as an 8-bit wide microprocessor port (Parallel Slave Port) by setting control bit PSPMODE (TRISE<4>). In this mode, the input buffers are TTL.

FIGURE 4-6: PORTD BLOCK DIAGRAM (IN I/O PORT MODE)

Name	Name Bit# Buffer Type		Function			
RD0/PSP0	bit 0	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit 0			
RD1/PSP1	bit 1	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit 1			
RD2/PSP2	bit 2	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit 2			
RD3/PSP3	bit 3	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit 3			
RD4/PSP4	bit 4	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit 4			
RD5/PSP5	bit 5	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit 5			
RD6/PSP6	bit 6	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit 6			
RD7/PSP7	bit 7	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit			

TABLE 4-7:PORTD FUNCTIONS

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.

TABLE 4-8:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTD
------------	--

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
08h	PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	uuuu uuuu
88h	TRISD PORTD Data Direction Register									1111 1111	1111 1111
89h	TRISE	IBF	OBF	IBOV	PSPMODE	—	 PORTE Data Direction bits 			0000 -111	0000 -111
Logandu											

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PORTD.

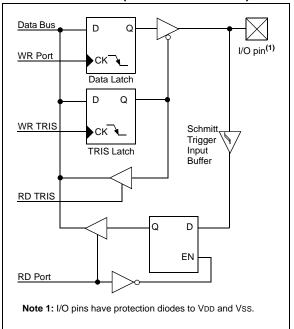
4.5 PORTE and TRISE Register

This section is not applicable to the PIC16CR73 or PIC16CR76.

PORTE has three pins, RE0/RD/AN5, RE1/WR/AN6 and RE2/CS/AN7, which are individually configureable as inputs or outputs. These pins have Schmitt Trigger input buffers.

I/O PORTE becomes control inputs for the microprocessor port when bit PSPMODE (TRISE<4>) is set. In this mode, the user must make sure that the TRISE<2:0> bits are set (pins are configured as digital inputs). Ensure ADCON1 is configured for digital I/O. In this mode, the input buffers are TTL.

Register 4-1 shows the TRISE register, which also controls the Parallel Slave Port operation.


PORTE pins are multiplexed with analog inputs. When selected as an analog input, these pins will read as '0's.

TRISE controls the direction of the RE pins, even when they are being used as analog inputs. The user must make sure to keep the pins configured as inputs when using them as analog inputs.

Note: On a Power-on Reset, these pins are configured as analog inputs and read as '0'.

FIGURE 4-7:

PORTE BLOCK DIAGRAM (IN I/O PORT MODE)

PIC16CR7X

NOTES:

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	—	CCPxX	CCPxY	CCPxM3	CCPxM2	CCPxM1	CCPxM0			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown				
bit 7-6	Unimplemen	ted: Read as '	0'							
bit 5-4	CCPxX:CCPxY: PWM Least Significant bits									
	Capture mode	<u>ə:</u>								

REGISTER 8-1: CCP1CON/CCP2CON: (ADDRESS 17h/1Dh)

bit 5-4	CCPxX:CCPxY: PWM Least Significant bits
	Capture mode:
	Unused
	Compare mode:
	Unused
	PWM mode:
	These bits are the two LSbs of the PWM duty cycle. The eight MSbs are found in CCPRxL.
bit 3-0	CCPxM3:CCPxM0: CCPx Mode Select bits
	0000 = Capture/Compare/PWM disabled (resets CCPx module)
	0100 = Capture mode, every falling edge
	0101 = Capture mode, every rising edge
	0110 = Capture mode, every 4th rising edge
	And a Construction of the second ACthe size in a data

- 0111 = Capture mode, every 16th rising edge
- 1000 = Compare mode, set output on match (CCPxIF bit is set)
- 1001 = Compare mode, clear output on match (CCPxIF bit is set)
- 1010 = Compare mode, generate software interrupt on match (CCPxIF bit is set, CCPx pin is unaffected)
- 1011 = Compare mode, trigger special event (CCPxIF bit is set, CCPx pin is unaffected); CCP1 clears Timer1; CCP2 clears Timer1 and starts an A/D conversion (if A/D module is enabled)
- 11xx = PWM mode

9.3.1.1 Addressing

Once the SSP module has been enabled, it waits for a Start condition to occur. Following the Start condition, the 8-bits are shifted into the SSPSR register. All incoming bits are sampled with the rising edge of the clock (SCL) line. The value of register SSPSR<7:1> is compared to the value of the SSPADD register. The address is compared on the falling edge of the eighth clock (SCL) pulse. If the addresses match, and the BF and SSPOV bits are clear, the following events occur:

- a) The SSPSR register value is loaded into the SSPBUF register.
- b) The Buffer Full bit, BF is set.
- c) An ACK pulse is generated.
- d) SSP Interrupt Flag bit, SSPIF (PIR1<3>) is set (interrupt is generated if enabled) – on the falling edge of the ninth SCL pulse.

In 10-bit Address mode, two address bytes need to be received by the slave (Figure 9-7). The five Most Significant bits (MSbs) of the first address byte specify if this is a 10-bit address. Bit R/W (SSPSTAT<2>) must specify a write so the slave device will receive the second address byte. For a 10-bit address, the first byte would equal '1111 0 A9 A8 0', where A9 and A8 are the two MSbs of the address.

The sequence of events for 10-bit address is as follows, with steps 7-9 for slave-transmitter:

- 1. Receive first (high) byte of address (bits SSPIF, BF, and bit UA (SSPSTAT<1>) are set).
- Update the SSPADD register with second (low) byte of address (clears bit UA and releases the SCL line).
- 3. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 4. Receive second (low) byte of address (bits SSPIF, BF and UA are set).
- 5. Update the SSPADD register with the first (high) byte of address, if match releases SCL line, this will clear bit UA.
- 6. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.
- 7. Receive Repeated Start condition.
- 8. Receive first (high) byte of address (bits SSPIF and BF are set).
- 9. Read the SSPBUF register (clears bit BF) and clear flag bit SSPIF.

TABLE 9-2:	DATA TRANSFER RECEIVED BYTE ACTIONS

Status Bits as Data Transfer is Received		$SSPSR \to SSPBUF$	Generate ACK	Set bit SSPIF (SSP Interrupt occurs		
BF	SSPOV		Pulse	if enabled)		
0	0	Yes	Yes	Yes		
1	0	No	No	Yes		
1	1	No	No	Yes		
0	1	No	No	Yes		

Note: Shaded cells show the conditions where the user software did not properly clear the overflow condition.

9.3.1.2 Reception

When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register.

When the address byte overflow condition exists, then no Acknowledge (\overrightarrow{ACK}) pulse is given. An overflow condition is defined as either bit BF (SSPSTAT<0>) is set, or bit SSPOV (SSPCON<6>) is set. This is an error condition due to the user's firmware.

An SSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR1<3>) must be cleared in software. The SSPSTAT register is used to determine the status of the byte.

		Fosc = 20 M	Hz		Fosc = 16 MHz			Fosc = 10 MHz		
BAUD RATE	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	
1200	1,221	1.73%	255	1,202	0.16%	207	1,202	0.16%	129	
2400	2,404	0.16%	129	2,404	0.16%	103	2,404	0.16%	64	
9600	9,470	-1.36%	32	9,615	0.16%	25	9,766	1.73%	15	
19,200	19,531	1.73%	15	19,231	0.16%	12	19,531	1.73%	7	
38,400	39,063	1.73%	7	35,714	-6.99%	6	39,063	1.73%	3	
57,600	62,500	8.51%	4	62,500	8.51%	3	52,083	-9.58%	2	
76,800	78,125	1.73%	3	83,333	8.51%	2	78,125	1.73%	1	
96,000	104,167	8.51%	2	83,333	-13.19%	2	78,125	-18.62%	1	
115,200	104,167	-9.58%	2	125,000	8.51%	1	78,125	-32.18%	1	
250,000	312,500	25.00%	0	250,000	0.00%	0	156,250	-37.50%	0	

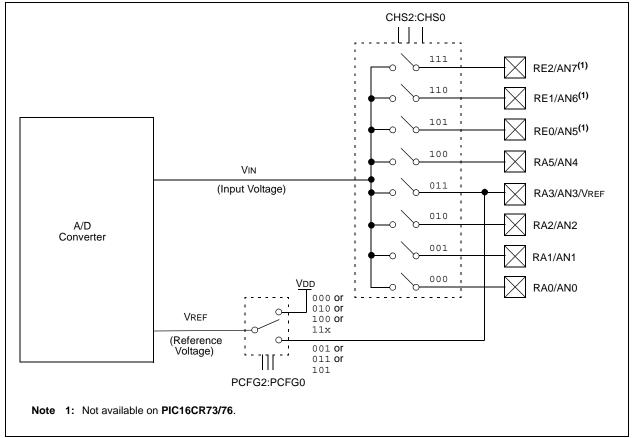
TABLE 10-3:BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 0)

		Fosc = 4 MHz			Fosc = 3.6864 MHz			Fosc = 3.579545 MHz		
BAUD RATE	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	
300	300	0.16%	207	300	0.00%	191	301	0.23%	185	
1200	1,202	0.16%	51	1,200	0.00%	47	1,190	-0.83%	46	
2400	2,404	0.16%	25	2,400	0.00%	23	2,432	1.32%	22	
9600	8,929	-6.99%	6	9,600	0.00%	5	9,322	-2.90%	5	
19,200	20,833	8.51%	2	19,200	0.00%	2	18,643	-2.90%	2	
38,400	31,250	-18.62%	1	28,800	-25.00%	1	27,965	-27.17%	1	
57,600	62,500	8.51%	0	57,600	0.00%	0	55,930	-2.90%	0	
76,800	62,500	-18.62%	0	—	_	_	—	_	_	

TABLE 10-4: BAUD RATES FOR ASYNCHRONOUS MODE (BRGH = 1)

		Fosc = 20 MHz			Fosc = 16 MHz			Fosc = 10 MHz		
BAUD RATE	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	
2400	_	_	_	_	_	_	2,441	1.73%	255	
9600	9,615	0.16%	129	9,615	0.16%	103	9,615	0.16%	64	
19,200	19,231	0.16%	64	19,231	0.16%	51	18,939	-1.36%	32	
38,400	37,879	-1.36%	32	38,462	0.16%	25	39,063	1.73%	15	
57,600	56,818	-1.36%	21	58,824	2.12%	16	56,818	-1.36%	10	
76,800	78,125	1.73%	15	76,923	0.16%	12	78,125	1.73%	7	
96,000	96,154	0.16%	12	100,000	4.17%	9	89,286	-6.99%	6	
115,200	113,636	-1.36%	10	111,111	-3.55%	8	125,000	8.51%	4	
250,000	250,000	0.00%	4	250,000	0.00%	3	208,333	-16.67%	2	
300,000	312,500	4.17%	3	333,333	11.11%	2	312,500	4.17%	1	

DAUD		Fosc = 4 MHz			Fosc = 3.6864 MHz			Fosc = 3.579545 MHz		
BAUD RATE (K)	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	BAUD	% ERROR	SPBRG VALUE (DECIMAL)	
1200	1,202	0.16%	207	1,200	0.00%	191	1,203	0.23%	185	
2400	2,404	0.16%	103	2,400	0.00%	95	2,406	0.23%	92	
9600	9,615	0.16%	25	9,600	0.00%	23	9,727	1.32%	22	
19,200	19,231	0.16%	12	19,200	0.00%	11	18,643	-2.90%	11	
38,400	35,714	-6.99%	6	38,400	0.00%	5	37,287	-2.90%	5	
57,600	62,500	8.51%	3	57,600	0.00%	3	55,930	-2.90%	3	
76,800	83,333	8.51%	2	76,800	0.00%	2	74,574	-2.90%	2	
96,000	83,333	-13.19%	2	115,200	20.00%	1	111,861	16.52%	1	
115,200	125,000	8.51%	1	115,200	0.00%	1	111,861	-2.90%	1	
250,000	250,000	0.00%	0	230,400	-7.84%	0	223,722	-10.51%	0	


The following steps should be followed for doing an A/D conversion:

- 1. Configure the A/D module:
 - Configure analog pins, voltage reference and digital I/O (ADCON1)
 - Select A/D conversion clock (ADCON0)
 - Turn on A/D module (ADCON0)
- 2. Configure the A/D interrupt (if desired):
 - Clear ADIF bit
 - Set ADIE bit
 - Set PEIE bit
 - Set GIE bit
- 3. Select an A/D input channel (ADCON0).

- 4. Wait for at least an appropriate acquisition period.
- 5. Start conversion:• Set GO/DONE bit (ADCON0)
- 6. Wait for the A/D conversion to complete, by either:
 - Polling for the GO/DONE bit to be cleared (interrupts disabled)

OR

- Waiting for the A/D interrupt
- 7. Read A/D Result register (ADRES) and clear bit ADIF if required.
- 8. For next conversion, go to step 3 or step 4, as required.

FIGURE 11-1: A/D BLOCK DIAGRAM

11.1 A/D Acquisition Requirements

For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The analog input model is shown in Figure 11-2. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), see Figure 11-2. The source impedance affects the offset voltage at the analog input (due to pin leakage current). The maximum recommended impedance for analog sources is 10 k Ω . After the analog input channel is selected (changed), the acquisition period must pass before the conversion can be started.

To calculate the minimum acquisition time, TACQ, see the "*PIC*[®] *Mid-Range MCU Family Reference Manual*" (DS33023). In general, however, given a maximum source impedance of 10 k Ω and at a temperature of 100°C, TACQ will be no more than 16 µsec.

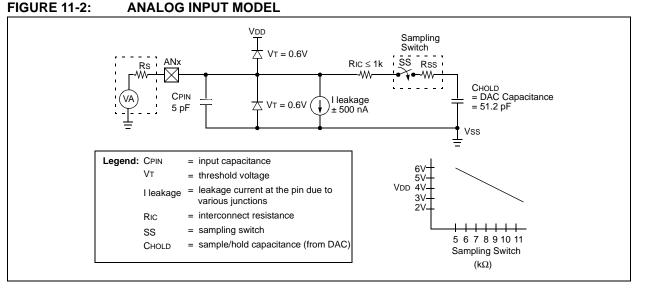


TABLE 11-1: TAD VS. MAXIMUM DEVICE OPERATING FREQUENCIES (STANDARD DEVICES (C))

AD Cloc	Maximum Device Frequency	
Operation	ADCS1:ADCS0	Max.
2Tosc	0.0	1.25 MHz
8Tosc	01	5 MHz
32Tosc	10	20 MHz
RC ^(1, 2, 3)	11	(Note 1)

Note 1: The RC source has a typical TAD time of 4 μ s but can vary between 2-6 μ s.

2: When the device frequencies are greater than 1 MHz, the RC A/D conversion clock source is only recommended for Sleep operation.

3: For extended voltage devices (LC), please refer to the Electrical Specifications section.

11.7 Use of the CCP Trigger

An A/D conversion can be started by the "special event trigger" of the CCP2 module. This requires that the CCP2M3:CCP2M0 bits (CCP2CON<3:0>) be programmed as 1011 and that the A/D module is enabled (ADON bit is set). When the trigger occurs, the GO/DONE bit will be set, starting the A/D conversion, and the Timer1 counter will be reset to zero. Timer1 is reset to automatically repeat the A/D acquisition period with minimal software overhead (moving the ADRES to the desired location). The appropriate analog input channel must be selected and an appropriate acquisition time should pass before the "special event trigger" sets the GO/DONE bit (starts a conversion).

If the A/D module is not enabled (ADON is cleared), then the "special event trigger" will be ignored by the A/D module, but will still reset the Timer1 counter.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	PC	e on DR, DR	all o	e on ther sets
0Bh,8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
0Dh	PIR2	_		—	_	_	—	_	CCP2IF		0		0
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
8Dh	PIE2	_			_				CCP2IE		0		0
1Eh	ADRES	A/D Resu	It Registe	er Byte						xxxx	xxxx	uuuu	uuuu
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/DONE	_	ADON	0000	0 - 0 0	0000	00-0
9Fh	ADCON1	_			_	_	PCFG2	PCFG1	PCFG0		-000		-000
05h	PORTA	—	—	RA5	RA4	RA3	RA2	RA1	RA0	0x	0000	0u	0000
85h	TRISA	—	—	PORTA I	Data Directio	n Regist	er			11	1111	11	1111
09h	PORTE ⁽²⁾	_	_	_	_	_	RE2	RE1	RE0		-xxx		-uuu
89h	TRISE ⁽²⁾	IBF	OBF	IBOV	PSPMODE		PORTE Da	ta Directio	on Bits	0000	-111	0000	-111

TABLE 11-2: SUMMARY OF A/D REGISTERS

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16CR73/76; always maintain these bits clear.

2: These registers are reserved on the PIC16CR73/76.

FIGURE 12-12:	WAKE		I SLEEP THR	OUGH INTER	RUPT		
Q1 OSC1 / CLKOUT ⁽⁴⁾ / INT pin	Q2 Q3 Q4; C /~_/~_// /	0.1 0.2 0.3 0.4 \/_\/			Q1 Q2 Q3 Q4 	Q1 Q2 Q3 Q4; (Q1 Q2 Q3 Q4; \/_\/_\/
INTF Flag (INTCON<1>) GIE bit (INTCON<7>)			Processor in Sleep	1 1 1 1 1 1	Interrupt Latency (Note 2)		י
INSTRUCTION FL	WC			:	i i	1	1 1
РС Х	PC X	PC + 1	<u>χ PC + 2</u>	X PC + 2	X PC + 2	<u>0004h X</u>	0005h
Instruction Fetched Ins	(PC) = Sleep	Inst(PC + 1)		Inst(PC + 2)	, , , , , , , , , , , ,	Inst(0004h)	Inst(0005h)
Instruction Executed	nst(PC - 1)	Sleep	1 1 1	Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)
2: Tost 3: GIE :	,	rawing not to so n this case, afte	ale) This delay will n r wake-up, the proce				

4: CLKOUT is not available in these osc modes, but shown here for timing reference.

12.15 Program Verification/Code Protection

If the code protection bit(s) have not been enabled, the on-chip program memory can be read out for verification purposes.

12.16 ID Locations

Four memory locations (2000h-2002h) are designated as ID locations, where the user can store checksum or other code identification numbers. These locations are not accessible during normal execution, but are readable for program verification. It is recommended that only the 4 Least Significant bits of the ID location are used.

12.17 User Code

PIC16CR7X microcontrollers are ROM-based, thus user programming is not possible. Please contact your Microchip sales representitive for details on how to submit your final code. This information can also be found in Application Note AN1010, "PIC16CR *ROM Code Submission Process*".

13.0 INSTRUCTION SET SUMMARY

The PIC16 instruction set is highly orthogonal and is comprised of three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

Each PIC16 instruction is a 14-bit word divided into an **opcode**, which specifies the instruction type and one or more **operands**, which further specify the operation of the instruction. The formats for each of the categories are presented in Figure 13-1, while the various opcode fields are summarized in Table 13-1.

Table 13-2 lists the instructions recognized by the MPASMTM Assembler. A complete description of each instruction is also available in the " $PIC^{\mbox{\ensuremath{\mathbb{R}}}}$ Mid-Range MCU Family Reference Manual" (DS33023).

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

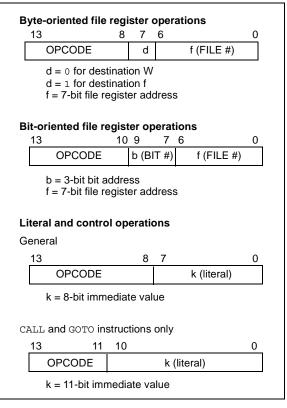
For **bit-oriented** instructions, 'b' represents a bit field designator, which selects the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight- or eleven-bit constant or literal value.

One instruction cycle consists of four oscillator periods; for an oscillator frequency of 4 MHz, this gives a normal instruction execution time of 1 μ s. All instructions are executed within a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of an instruction. When this occurs, the execution takes two instruction cycles, with the second cycle executed as a NOP.

Note:	To maintain upward compatibility with
	future PIC16CR7X products, do not use
	the OPTION and TRIS instructions.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.


13.1 Read-Modify-Write operations

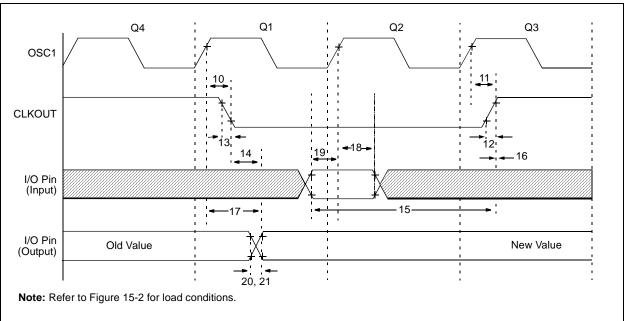
Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register. For example, a "CLRF PORTB" instruction will read PORTB, clear all the data bits, then write the result back to PORTB. This example would have the unintended result that the condition that sets the RBIF flag would be cleared for pins configured as inputs and using the PORTB interrupt-on-change feature.

TABLE 13-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is $d = 1$.
PC	Program Counter
TO	Time-out bit
PD	Power-down bit

FIGURE 13-1: GENERAL FORMAT FOR INSTRUCTIONS

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a 2TCY instruction.


INCFSZ	Increment f, Skip if 0
Syntax:	[label] INCFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruc- tion is executed. If the result is '0', a NOP is executed instead, making it a 2TCY instruction.

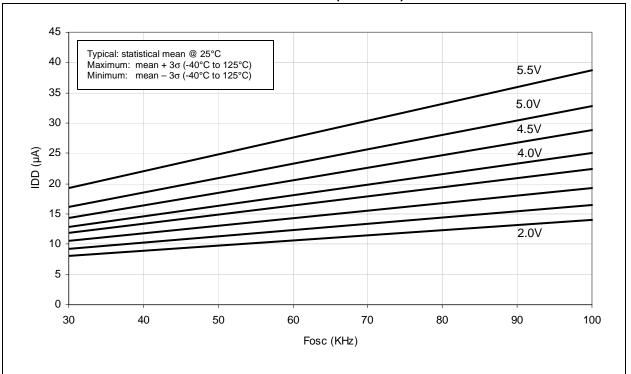
GOTO	Unconditional Branch
Syntax:	[<i>label</i>] GOTO k
Operands:	$0 \le k \le 2047$
Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> \rightarrow PC<12:11>
Status Affected:	None
Description:	GOTO is an unconditional branch. The eleven-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two- cycle instruction.

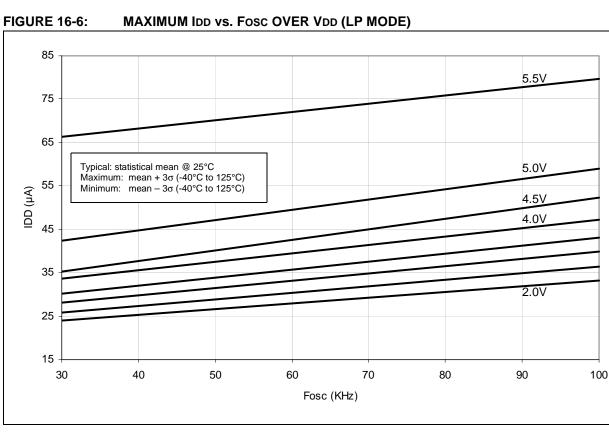
IORLW	Inclusive OR Literal with W
Syntax:	[<i>label</i>] IORLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .OR. $k \rightarrow$ (W)
Status Affected:	Z
Description:	The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is placed in the W register.

INCF	Increment f	IORWF	Inclusive OR W with f
Syntax:	[<i>label</i>] INCF f,d	Syntax:	[<i>label</i>] IORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	(f) + 1 \rightarrow (destination)	Operation:	(W) .OR. (f) \rightarrow (destination)
Status Affected:	Z	Status Affected:	Z
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.	Description:	Inclusive OR the W register with register 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.

TABLE 15-2:	CLKOUT AND I/O TIMING REQUIREMENTS
-------------	------------------------------------

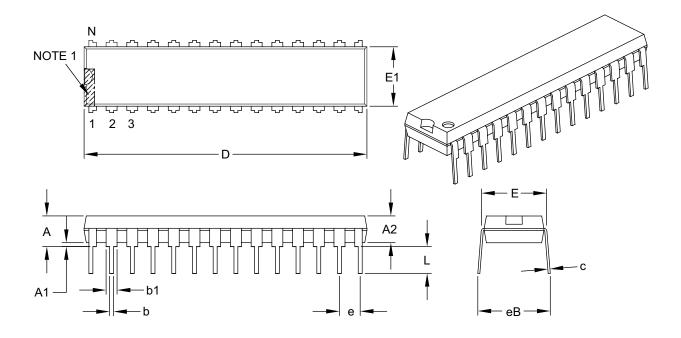
Param No.	Symbol	Charact	eristic	Min	Тур†	Max	Units	Conditions
10*	TosH2ckL	OSC1↑ to CLKOUT↓		_	75	200	ns	(Note 1)
11*	TosH2ckH	OSC1 [↑] to CLKOUT [↑]		—	75	200	ns	(Note 1)
12*	TckR	CLKOUT rise time		_	35	100	ns	(Note 1)
13*	TckF	CLKOUT fall time		_	35	100	ns	(Note 1)
14*	TckL2ioV	CLKOUT↓ to Port out valid		_	-	0.5TCY + 20	ns	(Note 1)
15*	TioV2ckH	Port in valid before CLKOUT↑		Tosc + 200	_	—	ns	(Note 1)
16*	TckH2iol	Port in hold after CLKOUT↑		0	_	—	ns	(Note 1)
17*	TosH2ioV	OSC1↑ (Q1 cycle) to Port out valid		_	100	255	ns	
18*	TosH2iol	OSC1↑ (Q2 cycle) to	Standard (5V)	100	_	—	ns	
		Port input invalid (I/O in hold time)	Extended (3V)	200	-	—	ns	
19*	TioV2osH	Port input valid to OSC11	(I/O in setup time)	0	_	—	ns	
20*	TioR	Port output rise time	Standard (5V)	_	10	40	ns	
			Extended (3V)	_	-	145	ns	
21*	TioF	Port output fall time	Standard (5V)	_	10	40	ns	
			Extended (3V)	_	—	145	ns	
22††*	Tinp	INT pin high or low time		Тсү	—	_	ns	
23††*	Trbp	RB7:RB4 change INT high or low time		Тсү	—	_	ns	


* These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

†† These parameters are asynchronous events, not related to any internal clock edges.

Note 1: Measurements are taken in RC mode, where CLKOUT output is 4 x Tosc.



17.2 Package Details

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	INCHES			
Dimensio	n Limits	MIN NOM MAX		MAX
Number of Pins	Ν	28		
Pitch	е	.100 BSC		
Top to Seating Plane	Α	-	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	Е	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	-	-	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

PIC16CR7X

NOTES:

PIC18FXXXX

Computed GOTO	
Configuration Bits	
Continuous Receive Enable (CREN Bit)	70
Conversion Considerations	
Customer Change Notification Service	167
Customer Notification Service	167
Customer Support	167

D

D/A bit	
Data Memory	
Bank Select (RP1:RP0 Bits)	
General Purpose Registers	
Register File Map, PIC16CR74/73	15
Register File Map, PIC16CR77/76	14
Special Function Registers	
Data/Address bit (D/A)	60
DC and AC Characteristics	
Graphs and Tables	139
DC Characteristics	
Development Support	113
Device Differences	
Device Overview	5
Features	5
Direct Addressing	

Ε

Electrical Characteristics
Errata4
External Clock Input (RA4/T0CKI). See Timer0
External Interrupt Input (RB0/INT). See Interrupt Sources

F

Firmware Instructions	
FSR Register	27
1	
I/O Ports	
I ² C Mode	
Addressing	
Associated Registers	
Master Mode	
Mode Selection	
Multi-Master Mode	68
Operation	65
Reception	66
Slave Mode	
SCL and SDA pins	65
Transmission	67
ID Locations	
INDF Register	27
Indirect Addressing	
FSR Register	
Instruction Format	
Instruction Set	
ADDLW	
ADDWF	
ANDLW	
ANDWF	
BCF	
BSF	
BTFSC	
BTFSS	
CALL	
CLRF	
CLRW	

CLRWDT 10	8
COMF 10	8
DECF	8
DECFSZ 10	9
GOTO 10	
INCF	-
INCFSZ	
IORLW	-
IORUW	
RETURN	
RLF	
RRF 110, 11	
SLEEP 110, 11	
SUBLW 110, 11	
SUBWF 110, 11	1
SWAPF 11	2
XORLW 11	2
XORWF 11	2
Summary Table 10	6
INT Interrupt (RB0/INT). See Interrupt Sources	Č
INTCON Register	1
GIE Bit	
– ·	
INTE Bit	
INTF Bit	
RBIF Bit	
TMR0IE Bit	1
Inter-Integrated Circuit (I ² C). See I ² C Mode	
Internet Address 16	
Interrupt Sources 89, 9	
Interrupt-on-Change (RB7:RB4)	
RB0/INT Pin, External	0
TMR0 Overflow10	0
USART Receive/Transmit Complete 6	9
Interrupts	
Synchronous Serial Port Interrupt	3
Interrupts, Context Saving During	
Interrupts, Enable Bits	Č
Global Interrupt Enable (GIE Bit)	۵
Interrupt-on-Change (RB7:RB4) Enable (RBIE Bit)10	
RB0/INT Enable (INTE Bit)	
TMR0 Overflow Enable (TMR0IE Bit) 2	1
Interrupts, Flag Bits	
Interrupt-on Change (RB7:RB4) Flag (RBIF Bit) 2	1
Interrupt-on-Change (RB7:RB4) Flag	
(RBIF Bit)	
RB0/INT Flag (INTF Bit)2	
TMR0 Overflow Flag (TMR0IF Bit) 10	0
L	

Loading of PC..... 26

Master Clear (MCLR)	
MCLR Reset, Normal Operation	
MCLR Reset, SLEEP	93, 95, 96
Operation and ESD Protection	
MCLR Pin	10
MCLR/VPP Pin	8
Memory Organization	
Data Memory	13
Program Memory	13
Program Memory and Stack Maps	
Microchip Internet Web Site	167
MPLAB ASM30 Assembler, Linker, Librarian	114
MPLAB ICD 2 In-Circuit Debugger	115