

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	7KB (4K x 14)
Program Memory Type	ROM
EEPROM Size	-
RAM Size	192 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16cr73-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 2-1. The Special Function Registers can be classified into two sets: core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in the peripheral feature section.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page
Bank 0											
00h ⁽⁴⁾	INDF	Addressing	g this locatio	n uses conte	ents of FSR to	address dat	a memory (r	not a physica	al register)	0000 0000	27, 96
01h	TMR0	Timer0 Mc	dule Registe	er						XXXX XXXX	45, 96
02h ⁽⁴⁾	PCL	Program C	Counter (PC)	Least Signif	icant Byte					0000 0000	26, 96
03h ⁽⁴⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	C ⁽²⁾	0001 1xxx	19, 96
04h ⁽⁴⁾	FSR	Indirect Da	ata Memory	Address Poir	nter					xxxx xxxx	27, 96
05h	PORTA		_	PORTA Dat	a Latch when	written: POF	RTA pins wh	en read		0x 0000	32, 96
06h	PORTB	PORTB D	ata Latch wh	en written: P	ORTB pins w	/hen read				xxxx xxxx	34, 96
07h	PORTC	PORTC D	ata Latch wh	en written: P	ORTC pins v	vhen read				XXXX XXXX	35, 96
08h (5)	PORTD	PORTD D	ata Latch wh	en written: F	ORTD pins v	vhen read				xxxx xxxx	36, 96
09h (5)	PORTE	_	_	_		_	RE2	RE1	RE0	xxx	39, 96
0Ah ^(1,4)	PCLATH	_		_	Write Buffer	for the upper	5 bits of the	Program C	ounter	0 0000	26, 96
0Bh ⁽⁴⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	21, 96
0Ch	PIR1	PSPIF ⁽³⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	23, 96
0Dh	PIR2	_		_	_	_	_	_	CCP2IF	0	24, 96
0Eh	TMR1L	Holding Re	egister for th	e Least Sign	ificant Byte of	f the 16-bit TM	MR1 Registe	er		xxxx xxxx	50, 96
0Fh	TMR1H	Holding Re	egister for the	e Most Signi	ficant Byte of	the 16-bit TN	IR1 Registe	r		XXXX XXXX	50, 96
10h	T1CON	_		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	47, 96
11h	TMR2	Timer2 Mc	dule Registe	er						0000 0000	52, 96
12h	T2CON		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	52, 96
13h	SSPBUF	Synchrono	ous Serial Po	ort Receive B	uffer/Transmi	it Register				xxxx xxxx	64, 68, 96
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	61, 96
15h	CCPR1L	Capture/C	ompare/PWI	M Register 1	(LSB)					xxxx xxxx	56, 96
16h	CCPR1H	Capture/C	ompare/PWI	M Register 1	(MSB)	T	1	r		xxxx xxxx	56, 96
17h	CCP1CON		_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	54, 96
18h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	70, 96
19h	TXREG	USART Tr	USART Transmit Data Register								75, 96
1Ah	RCREG	USART Receive Data Register								0000 0000	77, 96
1Bh	CCPR2L	Capture/Compare/PWM Register 2 (LSB)								xxxx xxxx	58, 96
1Ch	CCPR2H	Capture/Compare/PWM Register 2 (MSB)								xxxx xxxx	58, 96
1Dh	CCP2CON	—	_	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	54, 96
1Eh	ADRES	A/D Resul	t Register By	/te	T	1	1		1	xxxx xxxx	88, 96
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/ DONE	—	ADON	0000 00-0	83, 96

TABLE 2-1:SPECIAL FUNCTION REGISTER SUMMARY

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter during branches (CALL or GOTO).

2: Other (non Power-up) Resets include external Reset through MCLR and Watchdog Timer Reset.

3: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.

4: These registers can be addressed from any bank.

5: PORTD, PORTE, TRISD and TRISE are not physically implemented on the 28-pin devices, read as '0'.

6: This bit always reads as a '1'.

2.2.2.8 PCON Register

The Power Control (PCON) register contains flag bits to allow differentiation between a Power-on Reset (POR), a Brown-out Reset (BOR), a Watchdog Reset (WDT) and an external MCLR Reset.

Note:	BOR is unknown on POR. It must be set by
	the user and checked on subsequent
	Resets to see if BOR is clear, indicating a
	brown-out has occurred. The BOR Status
	bit is not predictable if the brown-out circuit
	is disabled (by clearing the BOREN bit in
	the Configuration Word).

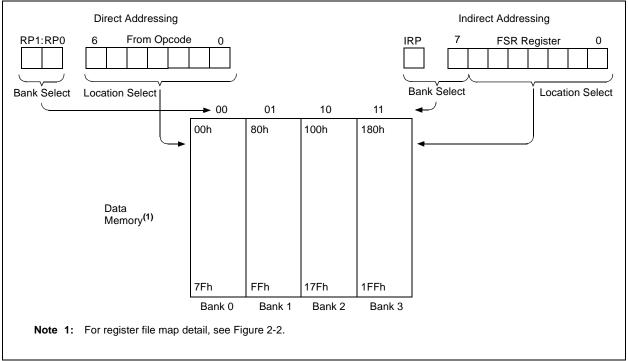
REGISTER 2-8: PCON: (ADDRESS 8Eh)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-1
—	—	—	—	—	_	POR	BOR
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-2	Unimplemented: Read as '0'
bit 1	POR: Power-on Reset Status bit
	1 = No Power-on Reset occurred
	0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0	BOR: Brown-out Reset Status bit
	1 = No Brown-out Reset occurred
	0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

2.5 Indirect Addressing, INDF and FSR Registers

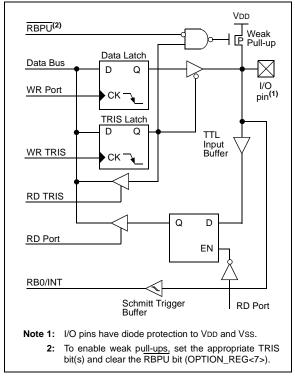

The INDF register is not a physical register. Addressing the INDF register will cause indirect addressing.

Indirect addressing is possible by using the INDF register. Any instruction using the INDF register actually accesses the register pointed to by the File Select Register (FSR). Reading the INDF register itself indirectly (FSR = 0) will read 00h. Writing to the INDF register indirectly results in a no operation (although Status bits may be affected). An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 2-2.

A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 2-2.

EXAM	PLE 2-2:	INC	INDIRECT ADDRESSING				
	MOVLW	0x20	;initialize pointer				
	MOVWF	FSR	;to RAM				
NEXT	CLRF	INDF	clear INDF register;				
	INCF	FSR,F	;inc pointer				
	BTFSS	FSR,4	;all done?				
	GOTO	NEXT	;no clear next				
CONTIN	IUE						
:			;yes continue				

FIGURE 2-5: DIRECT/INDIRECT ADDRESSING



4.2 PORTB and the TRISB Register

PORTB is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a High-Impendance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

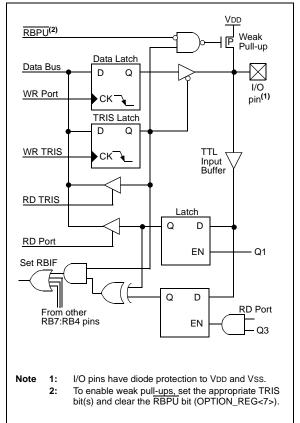
Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU (OPTION_REG<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Four of the PORTB pins (RB7:RB4) have an interrupton-change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupton-change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are ORed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>). This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

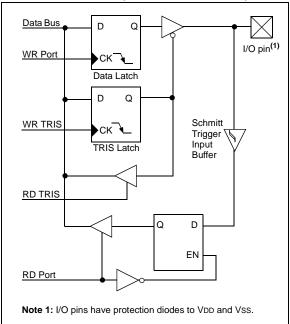
The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.


This interrupt on mismatch feature, together with software configureable pull-ups on these four pins, allow easy interface to a keypad and make it possible for wake-up on key depression. Refer to the Embedded Control Handbook, "*Implementing Wake-up on Key Stroke*" (AN552).

RB0/INT is an external interrupt input pin and is configured using the INTEDG bit (OPTION_REG<6>).

RB0/INT is discussed in detail in **Section 12.11.1 "INT Interrupt"**.

BLOCK DIAGRAM OF RB7:RB4 PINS


4.4 PORTD and TRISD Registers

This section is not applicable to the PIC16CR73 or PIC16CR76.

PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is individually configureable as an input or output.

PORTD can be configured as an 8-bit wide microprocessor port (Parallel Slave Port) by setting control bit PSPMODE (TRISE<4>). In this mode, the input buffers are TTL.

FIGURE 4-6: PORTD BLOCK DIAGRAM (IN I/O PORT MODE)

Name	Bit#	Buffer Type	Function	
RD0/PSP0	bit 0	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit 0	
RD1/PSP1	bit 1	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit 1	
RD2/PSP2	bit 2	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit 2	
RD3/PSP3	bit 3	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit 3	
RD4/PSP4	bit 4	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit 4	
RD5/PSP5	bit 5	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit 5	
RD6/PSP6	bit 6	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit 6	
RD7/PSP7	bit 7	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit	

TABLE 4-7:PORTD FUNCTIONS

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.

TABLE 4-8:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTD
------------	--

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
08h	PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	uuuu uuuu
88h	TRISD	PORTD Data Direction Register 1111 1111 1111 1111									
89h	TRISE	IBF	OBF	IBOV	PSPMODE	—	PORTE Da	ata Directio	on bits	0000 -111	0000 -111
Logondu	x = up (pown, y = up (pop q d)) = up (pop q d) = d (pop q d) (po										

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PORTD.

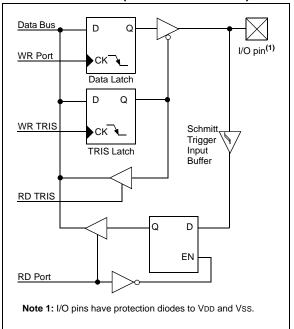
4.5 PORTE and TRISE Register

This section is not applicable to the PIC16CR73 or PIC16CR76.

PORTE has three pins, RE0/RD/AN5, RE1/WR/AN6 and RE2/CS/AN7, which are individually configureable as inputs or outputs. These pins have Schmitt Trigger input buffers.

I/O PORTE becomes control inputs for the microprocessor port when bit PSPMODE (TRISE<4>) is set. In this mode, the user must make sure that the TRISE<2:0> bits are set (pins are configured as digital inputs). Ensure ADCON1 is configured for digital I/O. In this mode, the input buffers are TTL.

Register 4-1 shows the TRISE register, which also controls the Parallel Slave Port operation.


PORTE pins are multiplexed with analog inputs. When selected as an analog input, these pins will read as '0's.

TRISE controls the direction of the RE pins, even when they are being used as analog inputs. The user must make sure to keep the pins configured as inputs when using them as analog inputs.

Note: On a Power-on Reset, these pins are configured as analog inputs and read as '0'.

FIGURE 4-7:

PORTE BLOCK DIAGRAM (IN I/O PORT MODE)

R-0	R-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1
IBF	OBF	IBOV	PSPMODE	—	Bit 2	Bit 1	Bit 0
bit 7							bit
Legend:							
R = Readal	ble bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value	at POR	'1' = Bit is se	t	'0' = Bit is cle		x = Bit is unkr	nown
bit 7	Parallel SI	<u>ave Port Status</u>	Control bits:				
	IBF: Input I	Buffer Full Status	s bit				
		has been receiv		ng to be read l	by the CPU		
		d has been rece					
bit 6	•	ut Buffer Full Sta					
		tput buffer still he tput buffer has b	•	ly written word			
bit 5		t Buffer Overflov		Microprocesso	r mode)		
	•	occurred when	•	•	,		
	,	e cleared in soft	ware)				
		rflow occurred					
bit 4		Parallel Slave		ect bit			
		I Slave Port moo al Purpose I/O m					
bit 3		ented: Read as					
bit 2	-	ta Direction bit					
		ction Control bit f		AN7			
	1 = Input						
	0 = Output						
bit 1	Bit 1: Direc	ction Control bit f	or pin RE1/WR	AN6			
	1 = Input						
L:4 0	0 = Output			/ A N I 🗖			
bit 0		ction Control bit f	or pin REU/RD/	ANS			
	1 = Input						

REGISTER 4-1: TRISE: (ADDRESS 89h)

5.2 Using Timer0 with an External Clock

When no prescaler is used, the external clock input is the same as the prescaler output. The synchronization of TOCKI, with the internal phase clocks, is accomplished by sampling the prescaler output on the Q2 and

REGISTER 5-1: OPTION REG:

bit 7

bit 7

bit 6

bit 5

bit 4

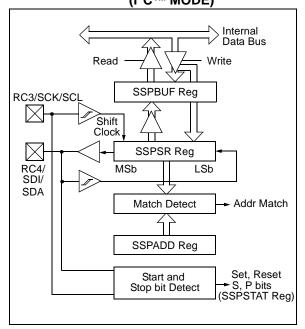
R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 RBPU TOCS T0SE PS2 INTEDG PSA PS1 PS0 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown RBPU: PORTB Pull-up Enable bit (see Section 2.2.2.2 "OPTION_REG Register") INTEDG: Interrupt Edge Select bit (see Section 2.2.2. "OPTION_REG Register") TOCS: TMR0 Clock Source Select bit 1 = Transition on TOCKI pin 0 = Internal instruction cycle clock (CLKOUT) TOSE: TMR0 Source Edge Select bit 1 = Increment on high-to-low transition on T0CKI pin 0 = Increment on low-to-high transition on T0CKI pin

- bit 3 PSA: Prescaler Assignment bit
 - 1 = Prescaler is assigned to the WDT
 - 0 = Prescaler is assigned to the Timer0 module
- bit 2-0 PS2:PS0: Prescaler Rate Select bits

Bit Value	TMR0 Rate	WDT Rate
000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1 : 128	1:64
111	1 : 256	1 : 128

Note: To avoid an unintended device Reset, the instruction sequences shown in Example 5-1 and Example 5-2 must be executed when changing the prescaler assignment between Timer0 and the WDT. This sequence must be followed even if the WDT is disabled.

Q4 cycles of the internal phase clocks. Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.


9.3 SSP I²C[™] Operation

The SSP module in l^2C mode fully implements all slave functions except general call support, and provides interrupts on Start and Stop bits in hardware to facilitate firmware implementations of the master functions. The SSP module implements the standard mode specifications as well as 7-bit and 10-bit addressing.

Two pins are used for data transfer. These are the RC3/ SCK/SCL pin, which is the clock (SCL), and the RC4/ SDI/SDA pin, which is the data (SDA). The user must configure these pins as inputs or outputs through the TRISC<4:3> bits.

The SSP module functions are enabled by setting SSP enable bit SSPEN (SSPCON<5>).

FIGURE 9-5: SSP BLOCK DIAGRAM (I²C™ MODE)

The SSP module has five registers for $\mathsf{I}^2\mathsf{C}$ operation. These are the:

- SSP Control Register (SSPCON)
- SSP Status Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- SSP Shift Register (SSPSR) Not directly accessible
- SSP Address Register (SSPADD)

The SSPCON register allows control of the I^2C operation. Four mode selection bits (SSPCON<3:0>) allow one of the following I^2C modes to be selected:

- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Slave mode (7-bit address), with Start and Stop bit interrupts enabled to support Firmware Master mode
- I²C Slave mode (10-bit address), with Start and Stop bit interrupts enabled to support Firmware Master mode
- I²C Start and Stop bit interrupts enabled to support Firmware Master mode, Slave is Idle

Selection of any I^2C mode with the SSPEN bit set, forces the SCL and SDA pins to be open drain, provided these pins are programmed to inputs by setting the appropriate TRISC bits. Pull-up resistors must be provided externally to the SCL and SDA pins for proper operation of the I^2C module.

Additional information on SSP I²C operation can be found in the "*PIC*[®] *Mid-Range MCU Family Reference Manual*" (DS33023).

9.3.1 SLAVE MODE

In Slave mode, the SCL and SDA pins must be configured as inputs (TRISC<4:3> set). The SSP module will override the input state with the output data when required (slave-transmitter).

When an address is matched, or the data transfer after an address match is received, the hardware automatically will generate the Acknowledge (\overline{ACK}) pulse, and then load the SSPBUF register with the received value currently in the SSPSR register.

There are certain conditions that will cause the SSP module not to give this ACK pulse. They include (either or both):

- a) The Buffer Full bit BF (SSPSTAT<0>) was set before the transfer was received.
- b) The overflow bit SSPOV (SSPCON<6>) was set before the transfer was received.

In this case, the SSPSR register value is not loaded into the SSPBUF, but bit SSPIF (PIR1<3>) is set. Table 9-2 shows what happens when a data transfer byte is received, given the status of bits BF and SSPOV. The shaded cells show the condition where user software did not properly clear the overflow condition. Flag bit BF is cleared by reading the SSPBUF register, while bit SSPOV is cleared through software.

The SCL clock input must have a minimum high and low for proper operation. The high and low times of the I^2C specification, as well as the requirements of the SSP module, are shown in timing parameter #100 and parameter #101.

U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	—	_	—	_	
bit 13		·	·			bit
R/P-1	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
BOREN	—	CP0	PWRTEN	WDTEN	FOSC1	FOSC0
bit 6						bit
Legend:						
R = Readable	bit	W = Writable bi	t	U = Unimplemented bit, read		
-n = Value at POR '1' = Bit is set '0' = Bit is cleared		ed	x = Bit is unknown			
bit 13-7	Unimplemente	ed: Read as '1'				
bit 6	BOREN: Brown-out Reset Enable bit 1 = BOR enabled 0 = BOR disabled					
bit 5	Unimplemented: Read as '1'					
bit 4	CP0: ROM Program Memory Code Protection bit 1 = Code protection off 0 = All memory locations code protected					
bit 3	PWRTEN : Power-up Timer Enable bit 1 = PWRT disabled 0 = PWRT enabled					
bit 2	WDTEN : Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled					
bit 1-0	FOSC1:FOSC 11 = RC oscilla 10 = HS oscilla 01 = XT oscilla 00 = LP oscilla	ator	tion bits			

Note 1: The erased (unprogrammed) value of the Configuration Word is 3FFFh.

Mnemonic, Operands		Description			14-Bit	Status			
		Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORIENTED FILE REGISTER OPERATIONS									
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C,DC,Z	1,2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	1,2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	—	Clear W	1	00	0001	0xxx	xxxx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	1,2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	1,2
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1,2,3
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	1,2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1,2,3
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	1,2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	1,2
MOVWF	f	Move W to f	1	00	0000	lfff	ffff		
NOP	_	No Operation	1	00	0000	0xx0	0000		
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	1,2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	1,2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C,DC,Z	1,2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		1,2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	1,2
		BIT-ORIENTED FILE		RATIO	NS				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		1,2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		1,2
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		3
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		3
		LITERAL AND CO		IONS					
ADDLW	k	Add literal and W	1	11	111x	kkkk	kkkk	C,DC,Z	
ANDLW	k	AND literal with W	1	11	1001	kkkk	kkkk	Z	
CALL	k	Call subroutine	2	10	0kkk	kkkk	kkkk		
CLRWDT	—	Clear Watchdog Timer	1	00	0000	0110	0100	TO,PD	
GOTO	k	Go to address	2	10	1kkk	kkkk	kkkk		
IORLW	k	Inclusive OR literal with W	1	11	1000	kkkk	kkkk	Z	
MOVLW	k	Move literal to W	1	11	00xx	kkkk	kkkk		
RETFIE	—	Return from interrupt	2	00	0000	0000	1001		
RETLW	k	Return with literal in W	2	11	01xx	kkkk	kkkk		
RETURN	_	Return from Subroutine	2	00	0000	0000	1000		
SLEEP	_	Go into Standby mode	1	00	0000	0110	0011	TO,PD	
SUBLW	k	Subtract W from literal	1	11	110x	kkkk	kkkk	C,DC,Z	
XORLW	k	Exclusive OR literal with W	1	11	1010			Z	
Note 1.	When an	I/O register is modified as a function of itse	f(ea MOVE POI	סידים	1) the v		d will b	e that value	nreser

TABLE 13-2: PIC16CR7X INSTRUCTION SET

on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.
2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if

2: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared if assigned to the Timer0 module.

3: If Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

Note: Additional information on the mid-range instruction set is available in the "*PIC*[®] *Mid-Range MCU Family Reference Manual*" (DS33023).

14.2 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for all PIC MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

14.3 MPLAB C18 and MPLAB C30 C Compilers

The MPLAB C18 and MPLAB C30 Code Development Systems are complete ANSI C compilers for Microchip's PIC18 family of microcontrollers and the dsPIC30, dsPIC33 and PIC24 family of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

14.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

14.5 MPLAB ASM30 Assembler, Linker and Librarian

MPLAB ASM30 Assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- Support for the entire dsPIC30F instruction set
- Support for fixed-point and floating-point data
- Command line interface
- Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

14.6 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C18 and MPLAB C30 C Compilers, and the MPASM and MPLAB ASM30 Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

14.11 PICSTART Plus Development Programmer

The PICSTART Plus Development Programmer is an easy-to-use, low-cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus Development Programmer supports most PIC devices in DIP packages up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus Development Programmer is CE compliant.

14.12 PICkit 2 Development Programmer

The PICkit[™] 2 Development Programmer is a low-cost programmer and selected Flash device debugger with an easy-to-use interface for programming many of Microchip's baseline, mid-range and PIC18F families of Flash memory microcontrollers. The PICkit 2 Starter Kit includes a prototyping development board, twelve sequential lessons, software and HI-TECH's PICC[™] Lite C compiler, and is designed to help get up to speed quickly using PIC[®] microcontrollers. The kit provides everything needed to program, evaluate and develop applications using Microchip's powerful, mid-range Flash memory family of microcontrollers.

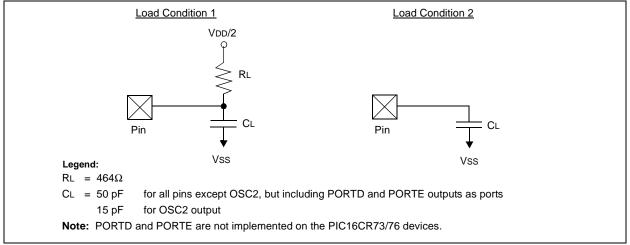
14.13 Demonstration, Development and Evaluation Boards

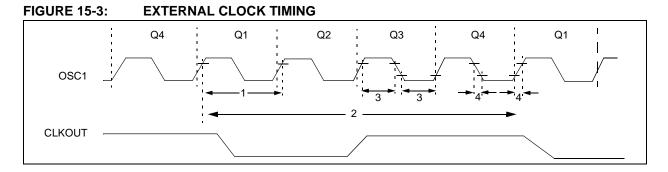
A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart[®] battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.


Check the Microchip web page (www.microchip.com) and the latest *"Product Selector Guide"* (DS00148) for the complete list of demonstration, development and evaluation kits.


15.3 Timing Parameter Symbology

The timing parameter symbols have been created using one of the following formats:

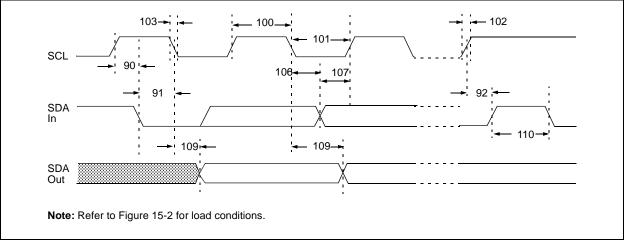
1. TppS2p	pS	3. Tcc:st	(I ² C [™] specifications only)
2. TppS		4. Ts	(I ² C [™] specifications only)
Т			· · · · ·
F	Frequency	Т	Time
Lowerca	se letters (pp) and their meanings:		
рр			
сс	CCP1	OSC	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	tO	ТОСКІ
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Uppercase letters and their meanings:			
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (High-impendance)	V	Valid
L	Low	Z	High-impendance
I ² C™ only	,		
AA	output access	High	High
BUF	Bus free	Low	Low
Tcc:st (I ² C specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	Stop condition
STA	Start condition		

FIGURE 15-2: LOAD CONDITIONS

TABLE 15-1: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency	DC		1	MHz	XT osc mode
		(Note 1)	DC	_	20	MHz	HS osc mode
			DC	_	32	kHz	LP osc mode
		Oscillator Frequency	DC		4	MHz	RC osc mode
		(Note 1)	0.1	_	4	MHz	XT osc mode
			4	_	20	MHz	HS osc mode
			5		200	kHz	LP osc mode
1	Tosc	External CLKIN Period	1000	_	—	ns	XT osc mode
		(Note 1)	50	—	—	ns	HS osc mode
			5	—	—	ms	LP osc mode
		Oscillator Period	250			ns	RC osc mode
		(Note 1)	250	_	10,000	ns	XT osc mode
			50	_	250	ns	HS osc mode
			5	_	—	ms	LP osc mode
2	Тсү	Instruction Cycle Time (Note 1)	200	Тсү	DC	ns	Tcy = 4/Fosc
3	TosL,	External Clock in (OSC1)	500			ns	XT oscillator
	TosH	High or Low Time	2.5	—	—	ms	LP oscillator
			15	—	—	ns	HS oscillator
4	TosR,	External Clock in (OSC1)	—	_	25	ns	XT oscillator
	TosF	Rise or Fall Time	—	—	50	ns	LP oscillator
			—	—	15	ns	HS oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions, with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

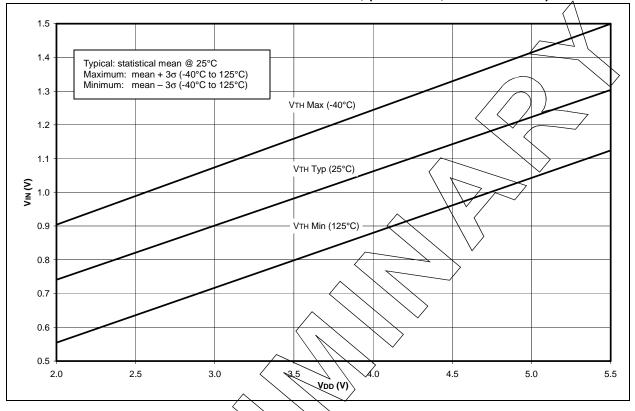
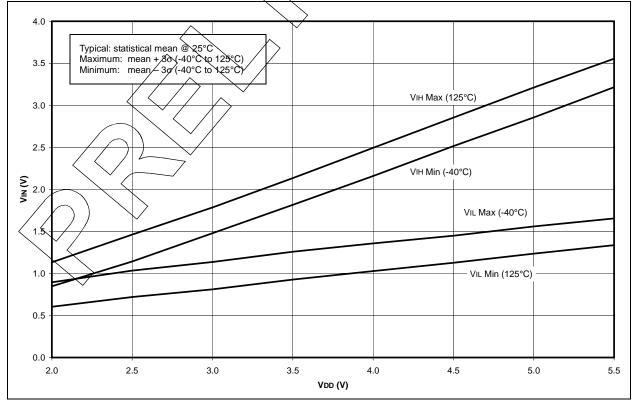
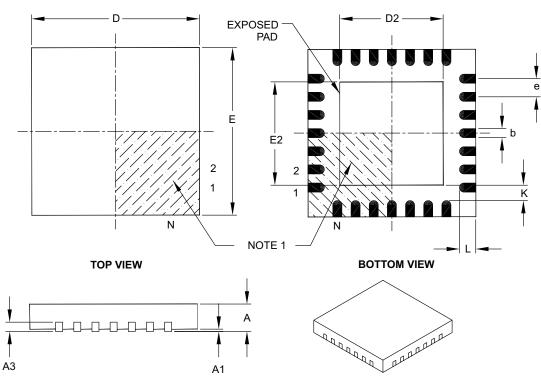

Param No.	Symbol	Characteristic		Min	Тур	Max	Units	Conditions	
90*	TSU:STA	Start condition	100 kHz mode	4700		_	ns	Only relevant for Repeated	
		Setup time	400 kHz mode	600	_	—		Start condition	
91*	THD:STA	Start condition	100 kHz mode	4000	_	—	ns	After this period, the first clock pulse is generated	
		Hold time	400 kHz mode	600	_	—			
92*	Tsu:sto	Stop condition	100 kHz mode	4700	_	_	ns		
		Setup time	400 kHz mode	600	_	_			
93	THD:STO	Stop condition	100 kHz mode	4000	—		ns		
		Hold time	400 kHz mode	600	_				

TABLE 15-8:	I ² C [™] BUS START/STOP BITS REQUIREMENTS
-------------	--

* These parameters are characterized but not tested.





28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	6	
C	Dimension Limits	MIN	NOM	MAX	
Number of Pins		28			
Pitch	е		0.65 BSC		
Overall Height	А	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	E	6.00 BSC			
Exposed Pad Width	E2	3.65 3.70 4.20			
Overall Length	D	6.00 BSC			
Exposed Pad Length	D2	3.65	3.70	4.20	
Contact Width		0.23	0.30	0.35	
Contact Length	L	0.50	0.55	0.70	
Contact-to-Exposed Pad	К	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	X /XX XXX Temperature Package Pattern Range	Examples:
Device:	PIC16CR73 PIC16CR74 PIC16CR76 PIC16CR77	
Temperature Range:	$I = -40^{\circ}C \text{ to } +85^{\circ}C (Industrial)$ E = -40^{\circ}C to+125^{\circ}C (Extended)	
Package:	PT = TQFP (Thin Quad Flatpack) L = PLCC SO = SOIC SP = Skinny Plastic DIP P = PDIP	 Note1: F = Standard Voltage Range LF = Wide Voltage Range 2: T = in tape and reel PLCC, and TQFP
Pattern:	QTP, SQTP, Code or Special Requirements (blank otherwise)	packages only.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Habour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Fuzhou Tel: 86-591-8750-3506 Fax: 86-591-8750-3521

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Shunde Tel: 86-757-2839-5507 Fax: 86-757-2839-5571

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7250 Fax: 86-29-8833-7256

ASIA/PACIFIC

India - Bangalore Tel: 91-80-4182-8400 Fax: 91-80-4182-8422

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Gumi Tel: 82-54-473-4301 Fax: 82-54-473-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Penang Tel: 60-4-646-8870 Fax: 60-4-646-5086

Philippines - Manila Tel: 63-2-634-9065

Fax: 63-2-634-9069 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-572-9526 Fax: 886-3-572-6459

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820