

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	14KB (8K x 14)
Program Memory Type	ROM
EEPROM Size	
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16cr76-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16CR7X

28/40-Pin, 8-Bit CMOS ROM Microcontrollers

Devices Included in this Data Sheet:

- PIC16CR73PIC16CR74
- PIC16CR77

PIC16CR76

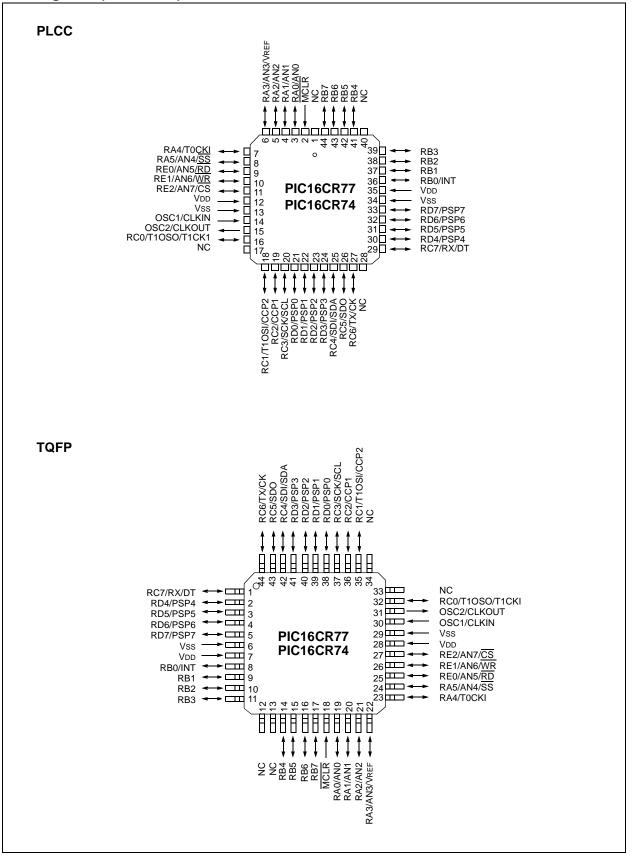
High-Performance RISC CPU:

- High-performance RISC CPU
- Only 35 single-word instructions to learn
- All single-cycle instructions except for program branches which are two-cycle
- Operating speed: DC 20 MHz clock input DC – 200 ns instruction cycle
- Up to 8K x 14 words of ROM Program Memory, Up to 368 x 8 bytes of Data Memory (RAM)
- Function compatible to the PIC16F73/74/76/77
- Pinout compatible to the PIC16F873/874/876/877
- Interrupt capability (up to 12 sources)
- Eight-level deep hardware stack
- Direct, Indirect and Relative Addressing modes
- Processor read access to program memory

Special Microcontroller Features:

- Power-on Reset (POR)
- Power-up Timer (PWRT) and Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- Power-Saving Sleep mode
- Selectable oscillator options

Peripheral Features:


- Timer0: 8-bit timer/counter with 8-bit prescaler
- Timer1: 16-bit timer/counter with prescaler, can be incremented during Sleep via external crystal/clock
- Timer2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler
- Two Capture, Compare, PWM modules:
 - Capture is 16-bit, max. resolution is 12.5 ns
 - Compare is 16-bit, max. resolution is 200 ns
 - PWM max. resolution is 10-bit
- 8-bit, up to 8-channel Analog-to-Digital converter
- Synchronous Serial Port (SSP) with SPI (Master mode) and I²C[™] (Slave)
- Universal Synchronous Asynchronous Receiver Transmitter (USART/SCI)
- Parallel <u>Slave Port</u> (P<u>SP</u>), 8-bits wide with external <u>RD</u>, <u>WR</u> and <u>CS</u> controls (40/44-pin only)
- Brown-out detection circuitry for Brown-out Reset (BOR)

CMOS Technology:

- Low-power, high-speed CMOS ROM technology
- · Fully static design
- Wide operating voltage range: 2.0V to 5.5V
- High Sink/Source Current: 25 mA
- Industrial temperature range
- Low power consumption:
 - < 2 mA typical @ 5V, 4 MHz TBD
 - 20 μA typical @ 3V, 32 kHz TBD
 - <1 μ A typical standby current TBD

	Program	Data						SS	P		
Device	Memory (# Single Word Instructions)	SRAM (Bytes)	I/O	Interrupts	8-bit A/D (ch)	CCP (PWM)	SPI (Master)	l ² C™ (Slave)	USART	Timers 8/16-bit	
PIC16CR73	4096	192	22	11	5	2	Yes	Yes	Yes	2/1	
PIC16CR74	4096	192	33	12	8	2	Yes	Yes	Yes	2/1	
PIC16CR76	8192	368	22	11	5	2	Yes	Yes	Yes	2/1	
PIC16CR77	8192	368	33	12	8	2	Yes	Yes	Yes	2/1	

Pin Diagrams (Continued)

TABLE 1-2:PIC16CR73 AND PIC16CR76 PINOUT DESCRIPTION

Pin Name	PDIP SSOP SOIC Pin#	MLF Pin#	I/O/P Type	Buffer Type	Description
OSC1/CLKIN OSC1	9	6	I	ST/CMOS ⁽³⁾	Oscillator crystal or external clock input. Oscillator crystal input or external clock source input. ST buffer when configured in RC mode. Otherwise CMOS.
CLKIN			Ι		External clock source input. Always associated with pin function OSC1 (see OSC1/CLKIN, OSC2/CLKOUT pins).
OSC2/CLKOUT OSC2	10	7	0	_	Oscillator crystal or clock output. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.
CLKOUT			0		In RC mode, OSC2 pin outputs CLKOUT, which has 1/4 the frequency of OSC1 and denotes the instruction cycle rate.
MCLR	1	26	Ι	ST	Master Clear (Reset) input. This pin is an active low Reset to the device.
					PORTA is a bidirectional I/O port.
RA0/AN0	2	27		TTL	
RA0			I/O		Digital I/O.
AN0			I		Analog input 0.
RA1/AN1	3	28		TTL	
RA1			I/O		Digital I/O.
AN1			I		Analog input 1.
RA2/AN2	4	1	1/0	TTL	
RA2 AN2			I/O		Digital I/O. Analog input 2.
RA3/AN3/VREF	5	2	1	TTL	Analog input 2.
RA3/AN3/VREF	5	2	I/O	116	Digital I/O.
AN3			1/C		Analog input 3.
VREF			I		A/D reference voltage input.
RA4/T0CKI	6	3		ST	
RA4			I/O		Digital I/O – Open drain when configured as output.
TOCKI			I		Timer0 external clock input.
RA5/AN4/SS	7	4		TTL	
RA5			I/O		Digital I/O.
AN4					Analog input 4.
SS					SPI slave select input.
					PORTB is a bidirectional I/O port. PORTB can be software programmed for internal weak pull-up on all inputs.
RB0/INT	21	18		TTL/ST ⁽¹⁾	
RB0			I/O		Digital I/O.
INT			I		External interrupt.
RB1	22	19	I/O	TTL	Digital I/O.
RB2	23	20	I/O	TTL	Digital I/O.
RB3	24	21	I/O	TTL	Digital I/O.
RB4	25	22	I/O	TTL	Digital I/O.
RB5	26	23	I/O	TTL	Digital I/O.
RB6	27	24	I/O	TTL	Digital I/O.
RB7	28	25	I/O	TTL	Digital I/O.
	1	1		1	

Note 1: This buffer is a Schmitt Trigger input when configured as the external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Verify mode.

3: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

Pin Name	PDIP Pin#	PLCC Pin#	QFP Pin#	I/O/P Type	Buffer Type	Description
						PORTD is a bidirectional I/O port or parallel slave port
					(2)	when interfacing to a microprocessor bus.
RD0/PSP0	19	21	38		ST/TTL ⁽³⁾	
RD0 PSP0				I/O I/O		Digital I/O. Parallel Slave Port data.
	20	00	20		ST/TTL ⁽³⁾	Paraller Slave Port data.
RD1/PSP1 RD1	20	22	39	I I/O	51/1124	Digital I/O.
PSP1				I/O		Parallel Slave Port data.
RD2/PSP2	21	23	40	1	ST/TTL ⁽³⁾	
RD2				I/O	0.,	Digital I/O.
PSP2				I/O		Parallel Slave Port data.
RD3/PSP3	22	24	41		ST/TTL ⁽³⁾	
RD3				I/O		Digital I/O.
PSP3				I/O	(2)	Parallel Slave Port data.
RD4/PSP4	27	30	2		ST/TTL ⁽³⁾	
RD4 PSP4				I/O I/O		Digital I/O. Parallel Slave Port data.
-	20	24	2	1/0	ST/TTL ⁽³⁾	Paraller Slave Port data.
RD5/PSP5 RD5	28	31	3	I/O	51/1124	Digital I/O.
PSP5				I/O		Parallel Slave Port data.
RD6/PSP6	29	32	4		ST/TTL ⁽³⁾	
RD6				I/O		Digital I/O.
PSP6				I/O		Parallel Slave Port data.
RD7/PSP7	30	33	5		ST/TTL ⁽³⁾	
RD7				I/O		Digital I/O.
PSP7	_			I/O		Parallel Slave Port data.
					(2)	PORTE is a bidirectional I/O port.
RE0/AN5/RD/	8	9	25		ST/TTL ⁽³⁾	
RE0 AN5				I/O I		Digital I/O. Analog input 5.
				1		Read control for parallel slave port .
RE1/AN6/WR/	9	10	26	-	ST/TTL ⁽³⁾	
RE1	°,			I/O	0.,	Digital I/O.
AN6				I		Analog input 6.
WR				I		Write control for parallel slave port .
RE2/AN7/CS	10	11	27		ST/TTL ⁽³⁾	
RE2				I/O		Digital I/O.
AN7 CS						Analog input 7. Chip Select control for parallel slave port .
Vss	12,31	13,34	6,29	P		Ground reference for logic and I/O pins.
VSS VDD	12,31	12,35	7,28	 Р		Positive supply for logic and I/O pins.
NC	11,52			Г		
		1,17, 28, 40	12,13, 33, 34			These pins are not internally connected. These pins should be left unconnected.

TABLE 1-3: PIC16CR74 AND PIC16CR77 PINOUT DESCRIPTION (CONTINUED)

— = Not used TTL = TTL input ST = Schmitt Trigger input

Note 1: This buffer is a Schmitt Trigger input when configured as an external interrupt.

2: This buffer is a Schmitt Trigger input when used in Serial Verify mode.

3: This buffer is a Schmitt Trigger input when configured as general purpose I/O and a TTL input when used in the Parallel Slave Port mode (for interfacing to a microprocessor bus).

4: This buffer is a Schmitt Trigger input when configured in RC Oscillator mode and a CMOS input otherwise.

2.0 MEMORY ORGANIZATION

There are two memory blocks in each of these PIC[®] MCUs. The Program Memory and Data Memory have separate buses so that concurrent access can occur and is detailed in this section. The Program Memory can be read internally by user code (see Section 3.0 "Reading Program Memory").

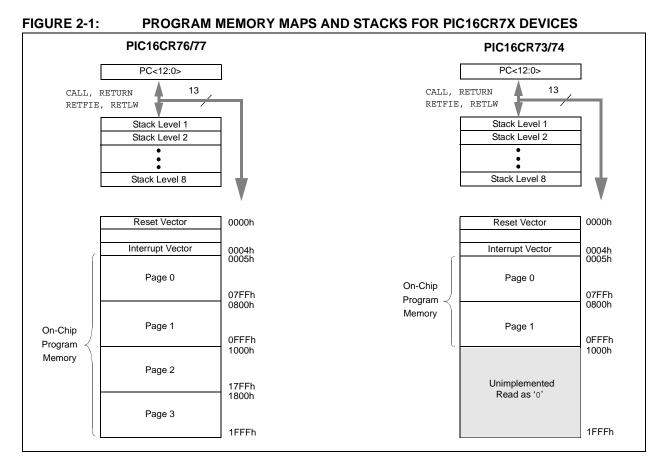
Additional information on device memory may be found in the "*PIC*[®] *Mid-Range MCU Family Reference Manual*" (DS33023).

2.1 Program Memory Organization

The PIC16CR7X devices have a 13-bit program counter capable of addressing an 8K word x 14-bit program memory space. The PIC16CR77/76 devices have 8K words of ROM program memory and the PIC16CR73/74 devices have 4K words. The program memory maps for PIC16CR7X devices are shown in Figure 2-1. Accessing a location above the physically implemented address will cause a wraparound.

The Reset vector is at 0000h and the interrupt vector is at 0004h.

2.2 Data Memory Organization


The Data Memory is partitioned into multiple banks, which contain the General Purpose Registers (GPR) and the Special Function Registers (SFR). Bits RP1 (STATUS<6>) and RP0 (STATUS<5>) are the bank select bits:

RP1:RP0	Bank
00	0
01	1
10	2
11	3

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM. All implemented banks contain Special Function Registers. Some frequently used Special Function Registers from one bank may be mirrored in another bank for code reduction and quicker access.

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file (shown in Figure 2-2 and Figure 2-3) can be accessed either directly, or indirectly, through the File Select Register (FSR).

FIGURE 2-2: PIC16CR77/76 REGISTER FILE MAP

F	File \ddress	P	File Address		File Address		File Addres
Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180h
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION_REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h		105h		185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
PORTC	07h	TRISC	87h		107h		187h
PORTD ⁽¹⁾	08h	TRISD ⁽¹⁾	88h		108h		188h
PORTE ⁽¹⁾	09h	TRISE ⁽¹⁾	89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	PMDATA	10Ch	PMCON1	18Ch
PIR2	0Dh	PIE2	8Dh	PMADR	10Dh		18Dh
TMR1L	0Eh	PCON	8Eh	PMDATH	10Eh		18Eh
TMR1H	0Fh		8Fh	PMADRH	10Fh		18Fh
T1CON	10h		90h		110h		190h
TMR2	11h	-	91h		111h		191h
T2CON	12h	PR2	92h		112h		192h
SSPBUF	13h	SSPADD	93h		113h		193h
SSPCON	14h	SSPSTAT	94h		114h		194h
CCPR1L	15h		95h		115h		195h
CCPR1H	16h		96h		116h		196h
CCP1CON	17h		97h	General	117h	General	197h
RCSTA	18h	TXSTA	98h	Purpose Register	118h	Purpose Register	198h
TXREG	19h	SPBRG	99h	16 Bytes	119h	16 Bytes	199h
RCREG	1Ah		9Ah	,	11Ah	,	19Ah
CCPR2L	1Bh		9Bh		11Bh		19Bh
CCPR2H	1Ch		9Ch		11Ch		19Ch
CCP2CON	1Dh		9Dh		11Dh		19Dh
ADRES	1Eh		9Eh		11Eh		19Eh
ADCON0	1Fh	ADCON1	9Fh		11Fh		19Fh
	20h		A0h		120h		1A0h
General Purpose Register 96 Bytes		General Purpose Register 80 Bytes	EFh	General Purpose Register 80 Bytes	16Fh	General Purpose Register 80 Bytes	1EFh
	7Fh	accesses 70h-7Fh	FOh FFh	accesses 70h-7Fh	170h 17Fh	accesses 70h-7Fh	1F0h
Bank 0		Bank 1		Bank 2		Bank 3	

Unimplemented data memory locations, read as '0'.

* Not a physical register.

Note 1: These registers are not implemented on 28-pin devices.

PIC16CR7X

2.2.2.6 PIE2 Register

The PIE2 register contains the individual enable bits for the CCP2 peripheral interrupt.

REGISTER 2-6: PIE2: (ADDRESS 8Dh)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	_	—	—	—	CCP2IE
bit 7							bit 0
Legend:							

Logona.					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-1	Unimplemented: Read as '0'
---------	----------------------------

bit 0 CCP2IE: CCP2 Interrupt Enable bit

1 = Enables the CCP2 interrupt

0 = Disables the CCP2 interrupt

2.2.2.7 PIR2 Register

The PIR2 register contains the flag bits for the CCP2 interrupt.

Note:	Interrupt flag bits are set when an interrupt
	condition occurs, regardless of the state of
	its corresponding enable bit or the global
	enable bit, GIE (INTCON<7>). User soft-
	ware should ensure the appropriate inter-
	rupt flag bits are clear prior to enabling an
	interrupt.

REGISTER 2-7: PIR2: (ADDRESS 0Dh)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
							CCP2IF
bit 7							bit 0

Ν

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-1 Unimplemented: Read as '0'

bit 0	CCP2IF: CCP2 Interrupt Flag bit
	Capture mode:
	1 = A TMR1 register capture occurred (must be cleared in software)
	0 = No TMR1 register capture occurred
	Compare mode:
	1 = A TMR1 register compare match occurred (must be cleared in software)
	0 = No TMR1 register compare match occurred
	PWM mode:
	Unused

2.2.2.8 PCON Register

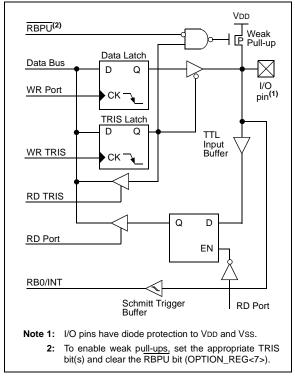
The Power Control (PCON) register contains flag bits to allow differentiation between a Power-on Reset (POR), a Brown-out Reset (BOR), a Watchdog Reset (WDT) and an external MCLR Reset.

Note:	BOR is unknown on POR. It must be set by
	the user and checked on subsequent
	Resets to see if BOR is clear, indicating a
	brown-out has occurred. The BOR Status
	bit is not predictable if the brown-out circuit
	is disabled (by clearing the BOREN bit in
	the Configuration Word).

REGISTER 2-8: PCON: (ADDRESS 8Eh)

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-1
—	—	—	—	—	_	POR	BOR
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown


bit 7-2	Unimplemented: Read as '0'
bit 1	POR: Power-on Reset Status bit
	1 = No Power-on Reset occurred
	0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0	BOR: Brown-out Reset Status bit
	1 = No Brown-out Reset occurred
	0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)

4.2 PORTB and the TRISB Register

PORTB is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISB. Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a High-Impendance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

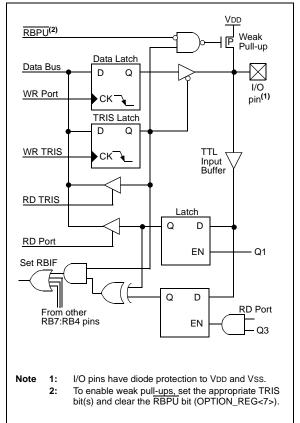
Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is performed by clearing bit RBPU (OPTION_REG<7>). The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Four of the PORTB pins (RB7:RB4) have an interrupton-change feature. Only pins configured as inputs can cause this interrupt to occur (i.e., any RB7:RB4 pin configured as an output is excluded from the interrupton-change comparison). The input pins (of RB7:RB4) are compared with the old value latched on the last read of PORTB. The "mismatch" outputs of RB7:RB4 are ORed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>). This interrupt can wake the device from Sleep. The user, in the Interrupt Service Routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- b) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.


This interrupt on mismatch feature, together with software configureable pull-ups on these four pins, allow easy interface to a keypad and make it possible for wake-up on key depression. Refer to the Embedded Control Handbook, "*Implementing Wake-up on Key Stroke*" (AN552).

RB0/INT is an external interrupt input pin and is configured using the INTEDG bit (OPTION_REG<6>).

RB0/INT is discussed in detail in **Section 12.11.1 "INT Interrupt"**.

BLOCK DIAGRAM OF RB7:RB4 PINS

6.5 Timer1 Oscillator

A crystal oscillator circuit is built-in between pins T1OSI (input) and T1OSO (amplifier output). It is enabled by setting control bit T1OSCEN (T1CON<3>). The oscillator is a low-power oscillator rated up to 200 kHz. It will continue to run during Sleep. It is primarily intended for use with a 32 kHz crystal. Table 6-1 shows the capacitor selection for the Timer1 oscillator.

The Timer1 oscillator is identical to the LP oscillator. The user must provide a software time delay to ensure proper oscillator start-up.

6.6 Resetting Timer1 using a CCP Trigger Output

If the CCP1 or CCP2 module is configured in Compare mode to generate a "special event trigger" (CCP1M3:CCP1M0 = 1011), this signal will reset Timer1.

Note:	The special event triggers from the CCP1
	and CCP2 modules will not set interrupt
	flag bit TMR1IF (PIR1<0>).

Timer1 must be configured for either Timer or Synchronized Counter mode, to take advantage of this feature. If Timer1 is running in Asynchronous Counter mode, this Reset operation may not work.

In the event that a write to Timer1 coincides with a special event trigger from CCP1 or CCP2, the write will take precedence.

In this mode of operation, the CCPRxH:CCPRxL register pair effectively becomes the period register for Timer1.

6.7 Resetting of Timer1 Register Pair (TMR1H, TMR1L)

TMR1H and TMR1L registers are not reset to 00h on a POR, or any other Reset, except by the CCP1 and CCP2 special event triggers.

TABLE 6-1:CAPACITOR SELECTION FOR
THE TIMER1 OSCILLATOR

	Frequency	Capacitors Used:			
Osc Type	Frequency	OSC1	OSC2		
LP	32 kHz	47 pF	47 pF		
	100 kHz	33 pF	33 pF		
	200 kHz	15 pF	15 pF		
A 1					

Capacitor values are for design guidance only.

These capacitors were tested with the crystals listed below for basic start-up and operation. These values were not optimized.

Different capacitor values may be required to produce acceptable oscillator operation. The user should test the performance of the oscillator over the expected VDD and temperature range for the application.

e notes (below) table for additional information.

	Commonly Used Crystals:								
32.768 kHz	Epson C-001R32.768K-A								
100 kHz	Epson C-2 100.00 KC-P								
200 kHz	STD XTL 200.000 kHz								
0	ligher capacitance increases the stability f the oscillator, but also increases the tart-up time.								
 Start-up time. Since each resonator/crystal has its own characteristics, the user should consult the resonator/crystal manufacturer for appropriate values of external components. 									

T1CON register is reset to 00h on a Power-on Reset or a Brown-out Reset, which shuts off the timer and leaves a 1:1 prescale. In all other Resets, the register is unaffected.

6.8 Timer1 Prescaler

The prescaler counter is cleared on writes to the TMR1H or TMR1L registers.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
0Eh	TMR1L	Holding Reg	Holding Register for the Least Significant Byte of the 16-bit TMR1 Register							xxxx xxxx	uuuu uuuu
0Fh	TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Register							xxxx xxxx	uuuu uuuu	
10h	T1CON	—	_	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	uu uuuu

TABLE 6-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16CR73/76; always maintain these bits clear.

			•		-			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 7	Unimplemen	ted: Read as '	0'					
bit 6-3	TOUTPS3:TOUTPS0: Timer2 Output Postscale Select bits							
	0000 = 1:1 P	ostscale						
	0001 = 1:2 P							
	0010 = 1:3 P	ostscale						
	•							
	•							
	1111 = 1:16	Postscale						
bit 2	TMR2ON: Tir	ner2 On bit						
	1 = Timer2 is	on						
	0 = Timer2 is	off						
bit 1-0	T2CKPS1:T2	CKPS0: Timer	2 Clock Presc	ale Select bits				
	00 = Prescale							
	01 = Prescale							
	1x = Prescale	er is 16						

REGISTER 7-1: T2CON: TIMER2 CONTROL (ADDRESS 12h)

TABLE 7-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
0Bh,8Bh, 10Bh, 18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
11h	TMR2	Timer2 Mc	Fimer2 Module Register							0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
92h	PR2	2 Timer2 Period Register									1111 1111

Legend: x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the Timer2 module.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16CR73/76; always maintain these bits clear.

9.0 SYNCHRONOUS SERIAL PORT (SSP) MODULE

9.1 SSP Module Overview

The Synchronous Serial Port (SSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be Serial EEPROMs, shift registers, display drivers, A/D converters, etc. The SSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI)
- Inter-Integrated Circuit (I²C)

An overview of I²C operations and additional information on the SSP module can be found in the "*PIC*[®] *Mid-Range MCU Family Reference Manual*" (DS33023).

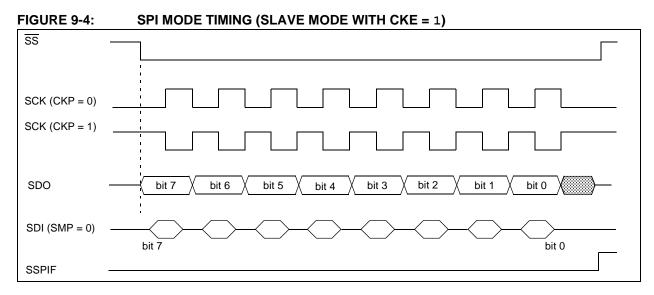
Refer to Application Note AN578, "Use of the SSP Module in the I^2C^{TM} Multi-Master Environment" (DS00578).

9.2 SPI Mode

This section contains register definitions and operational characteristics of the SPI module. Additional information on the SPI module can be found in the "*PIC*[®] *Mid-Range MCU Family Reference Manual*" (DS33023).

SPI mode allows 8 bits of data to be synchronously transmitted and received simultaneously. To accomplish communication, typically three pins are used:

- Serial Data Out (SDO) RC5/SDO
- Serial Data In (SDI) RC4/SDI/SDA
- Serial Clock (SCK) RC3/SCK/SCL

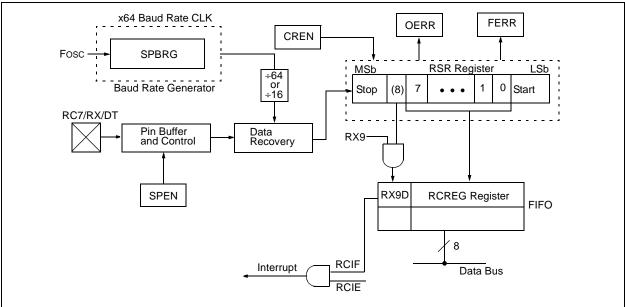

Additionally, a fourth pin may be used when in a Slave mode of operation:

• Slave Select (SS) RA5/SS/AN4

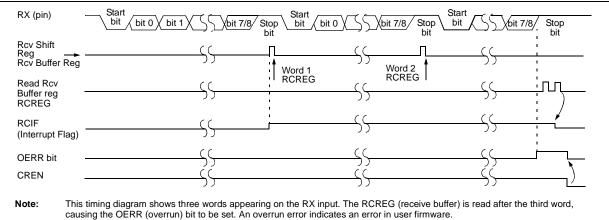
When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits in the SSPCON register (SSPCON<5:0>) and SSPSTAT<7:6>. These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Clock edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- Slave Select mode (Slave mode only)

PIC16CR7X



Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR		Value on all other Resets	
0Bh,8Bh. 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000	000x	0000	000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000	0000	0000	0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000	0000	0000	0000
87h	TRISC	PORTC Da	ta Directio	on Registe	n Register			1111	1111	1111	1111		
13h	SSPBUF	Synchrono	us Serial I	Port Recei	ve Buff	er/Transm	nit Registe	r		xxxx	xxxx	uuuu	uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000	0000	0000	0000
85h	TRISA	_	_	PORTA Data Direction Register			11	1111	11	1111			
94h	SSPSTAT	SMP	CKE	D/A	Ρ	S	R/W	UA	BF	0000	0000	0000	0000


Legend:x = unknown, u = unchanged, - = unimplemented, read as '0'. Shaded cells are not used by the SSP in SPI mode.Note1:Bits PSPIE and PSPIF are reserved on the PIC16CR73/76; always maintain these bits clear.

DS21993C-page 64

Steps to follow when setting up an Asynchronous Reception:

- Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH (Section 10.1 "USART Baud Rate Generator (BRG)").
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit RCIE.
- 4. If 9-bit reception is desired, then set bit RX9.
- 5. Enable the reception by setting bit CREN.
- 6. Flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE is set.
- 7. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.

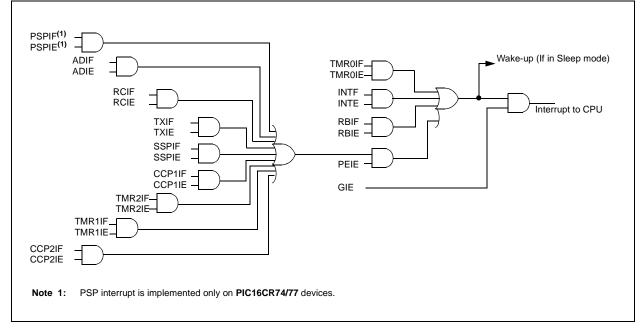
- 8. Read the 8-bit received data by reading the RCREG register.
- 9. If any error occurred, clear the error by clearing enable bit CREN.
- 10. If using interrupts, ensure that GIE and PEIE in the INTCON register are set.

12.11 Interrupts

The PIC16CR7X family has up to 12 sources of interrupt. The Interrupt Control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual	interrup	t flag	bits	are	set,
	regardless	of the	status	of th	eir c	orre-
	sponding mask bit or the GIE bit.					

A Global Interrupt Enable bit, GIE (INTCON<7>) enables (if set) all unmasked interrupts, or disables (if cleared) all interrupts. When bit GIE is enabled and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set, regardless of the status of the GIE bit. The GIE bit is cleared on Reset.


The "return from interrupt" instruction, RETFIE, exits the interrupt routine, as well as sets the GIE bit, which re-enables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the Special Function Registers, PIR1 and PIR2. The corresponding interrupt enable bits are contained in Special Function Registers, PIE1 and PIE2, and the peripheral interrupt enable bit is contained in Special Function Register, INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs, relative to the current Q cycle. The latency is the same for one or two-cycle instructions. Individual interrupt flag bits are set, regardless of the status of their corresponding mask bit, PEIE bit or the GIE bit.

FIGURE 12-10: INTERRUPT LOGIC

13.0 INSTRUCTION SET SUMMARY

The PIC16 instruction set is highly orthogonal and is comprised of three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

Each PIC16 instruction is a 14-bit word divided into an **opcode**, which specifies the instruction type and one or more **operands**, which further specify the operation of the instruction. The formats for each of the categories are presented in Figure 13-1, while the various opcode fields are summarized in Table 13-1.

Table 13-2 lists the instructions recognized by the MPASMTM Assembler. A complete description of each instruction is also available in the " $PIC^{\mbox{\ensuremath{\mathbb{R}}}}$ Mid-Range MCU Family Reference Manual" (DS33023).

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

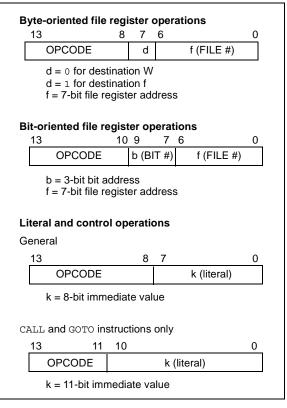
For **bit-oriented** instructions, 'b' represents a bit field designator, which selects the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight- or eleven-bit constant or literal value.

One instruction cycle consists of four oscillator periods; for an oscillator frequency of 4 MHz, this gives a normal instruction execution time of 1 μ s. All instructions are executed within a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of an instruction. When this occurs, the execution takes two instruction cycles, with the second cycle executed as a NOP.

Note:	To maintain upward compatibility with
	future PIC16CR7X products, do not use
	the OPTION and TRIS instructions.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.


13.1 Read-Modify-Write operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register. For example, a "CLRF PORTB" instruction will read PORTB, clear all the data bits, then write the result back to PORTB. This example would have the unintended result that the condition that sets the RBIF flag would be cleared for pins configured as inputs and using the PORTB interrupt-on-change feature.

TABLE 13-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is $d = 1$.
PC	Program Counter
TO	Time-out bit
PD	Power-down bit

FIGURE 13-1: GENERAL FORMAT FOR INSTRUCTIONS

RLF	Rotate Left f through Carry				
Syntax:	[<i>label</i>] RLF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$				
Operation:	See description below				
Status Affected:	С				
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.				

SLEEP

Syntax:	[label] SLEEP
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow \underline{WDT} \text{ prescaler}, \\ 1 \rightarrow \underline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$
Status Affected:	TO, PD
Description:	The power-down Status bit $\overline{\text{PD}}$ is cleared. Time-out Status bit $\overline{\text{TO}}$ is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.

RETURN	Return from Subroutine					
Syntax:	[label] RETURN					
Operands:	None					
Operation:	$TOS\toPC$					
Status Affected:	None					
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.					

RRF	Rotate Right f through Carry				
Syntax:	[<i>label</i>] RRF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$				
Operation:	See description below				
Status Affected:	С				
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.				
	C Register f				

SUBLW	Subtract W from Literal				
Syntax:	[<i>label</i>] SUBLW k				
Operands:	$0 \le k \le 255$				
Operation:	$k \text{ - } (W) \to (W)$				
Status Affected:	C, DC, Z				
Description:	The W register is subtracted (2's complement method) from the eight-bit literal 'k'. The result is placed in the W register.				

SUBWF	Subtract W from f					
Syntax:	[label] SUBWF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \left[0,1\right] \end{array}$					
Operation:	(f) - (W) \rightarrow (destination)					
Status Affected:	C, DC, Z					
Description:	Subtract (2's complement method) W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.					

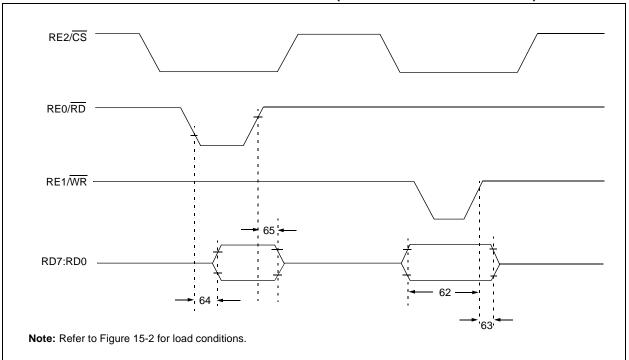
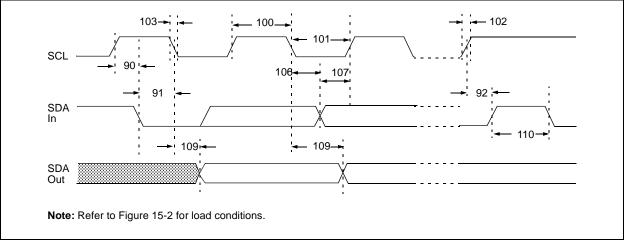


 TABLE 15-6:
 PARALLEL SLAVE PORT REQUIREMENTS (PIC16CR74/77 DEVICES ONLY)

Parameter No.	Symbol	Characteristic		Min	Тур†	Max	Units	Conditions
62	TdtV2wrH	Data in valid before \overline{WR}^{\uparrow} or \overline{CS}^{\uparrow}	` (setup time)	20 25	_		ns ns	Extended range only
63*	TwrH2dtl	\overline{WR}^{\uparrow} or \overline{CS}^{\uparrow} to data in invalid (hold time)	Standard(5V) Extended(3V)	20 35	_		ns ns	
64	TrdL2dtV	$\overline{RD}\downarrow$ and $\overline{CS}\downarrow$ to data out valid			_	80 90	ns ns	Extended range only
65	TrdH2dtl	\overline{RD} or \overline{CS} to data out invalid		10		30	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


*

Param No.	Symbol	Characteristic		Min	Тур	Max	Units	Conditions
90*	TSU:STA	Start condition	100 kHz mode	4700		_	ns	Only relevant for Repeated
		Setup time	400 kHz mode	600	_	—		Start condition
91*	THD:STA	Start condition	100 kHz mode	4000	_	—	ns	After this period, the first clock pulse is generated
		Hold time	400 kHz mode	600	_	—		
92*	Tsu:sto	Stop condition	100 kHz mode	4700	_	_	ns	
		Setup time	400 kHz mode	600	_	_		
93	THD:STO	Stop condition	100 kHz mode	4000	—		ns	
		Hold time	400 kHz mode	600	_			

TABLE 15-8:	I ² C [™] BUS START/STOP BITS REQUIREMENTS
-------------	--

* These parameters are characterized but not tested.

PIC16CR7X

0

	405
OPCODE Field Descriptions	
OPTION_REG Register	
INTEDG Bit	
PS2:PS0 Bits	
PSA Bit	
RBPU Bit	
T0CS Bit	
T0SE Bit	
OSC1/CLKI Pin	
OSC2/CLKO Pin	
Oscillator Configuration	
Oscillator Configurations	
Crystal Oscillator/Ceramic Resonators	
HS	
LP	
RC	91, 92, 95
XT	
Oscillator, WDT	

Ρ

P (STOP) bit	60
Packaging	149
Marking	
PDIP Details	
Paging, Program Memory	
Parallel Slave Port	
Associated Registers	
Parallel Slave Port (PSP)	
RE0/RD/AN5 Pin	
RE1/WR/AN6 Pin	
RE2/CS/AN7 Pin	
Select (PSPMODE Bit)	
PCFG0 bit	
PCFG1 bit	
PCFG2 bit	
PCL Register	
PCLATH Register	
PCON Register	
POR Bit	
PICSTART Plus Development Programmer	
PIE1 Register	
PIE2 Register	
Pinout Descriptions	
PIC16CR73/PIC16CR76	
PIC16CR74/PIC16CR77	10–12
PIR1 Register	
PIR2 Register	24
PMADR Register	
PMADRH Register	
POP	
POR. See Power-on Reset	
PORTA	
Analog Port Pins	
Associated Registers	
PORTA Register	
RA4/T0CKI Pin	
RA5/SS/AN4 Pin	
	, -

TRISA Register	
PORTA Register	
PORTB Associated Registers	
PORTB Register	
Pull-up Enable (RBPU Bit)	20
RB0/INT Edge Select (INTEDG Bit)	
RB0/INT Pin, External	
RB7:RB4 Interrupt-on-Change	100
RB7:RB4 Interrupt-on-Change Enable (F	RBIE Bit) 100
RB7:RB4 Interrupt-on-Change Flag	
(RBIF Bit)	
TRISB Register	
PORTB Register	
Associated Registers	
PORTC Register	
RC0/T1OSO/T1CKI Pin	
RC1/T1OSI/CCP2 Pin	
RC2/CCP1 Pin	9, 11
RC3/SCK/SCL Pin	
RC4/SDI/SDA Pin	
RC5/SDO Pin	
RC6/TX/CK Pin	
RC7/RX/DT Pin	
TRISC Register	
PORTC Register	
Associated Registers	
Parallel Slave Port (PSP) Function	
PORTD Register	
TRISD Register	
PORTD Register	
PORTE	
Analog Port Pins	12, 39
Associated Registers	
Input Buffer Full Status (IBF Bit)	
Input Buffer Overflow (IBOV Bit)	
PORTE Register	
PSP Mode Select (PSPMODE Bit)	
RE0/RD/AN5	
RE2/CS/AN7 Pin	
TRISE Register	
PORTE Register	
Postscaler, WDT	
Assignment (PSA Bit)	
Rate Select (PS2:PS0 Bits)	
Power-down Mode. See SLEEP	
Power-on Reset (POR)	89, 93, 95, 96
Oscillator Start-up Timer (OST)	
POR Status (POR Bit)	
Power Control (PCON) Register	
Power-down (PD Bit) Power-up Timer (PWRT)	
Time-out (TO Bit)	
PR2 Register	
Prescaler, Timer0	
Assignment (PSA Bit)	
Rate Select (PS2:PS0 Bits)	
Program Counter	
RESET Conditions	
Program Memory	
Associated Registers	
Interrupt Vector Memory and Stack Maps	
Memory and Stack Mane	13