

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

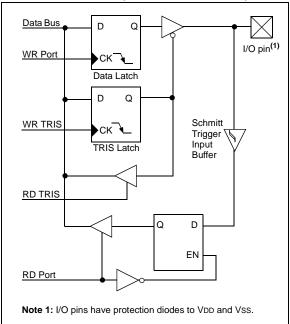
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	22
Program Memory Size	14KB (8K x 14)
Program Memory Type	ROM
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 5x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16cr76t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


4.4 PORTD and TRISD Registers

This section is not applicable to the PIC16CR73 or PIC16CR76.

PORTD is an 8-bit port with Schmitt Trigger input buffers. Each pin is individually configureable as an input or output.

PORTD can be configured as an 8-bit wide microprocessor port (Parallel Slave Port) by setting control bit PSPMODE (TRISE<4>). In this mode, the input buffers are TTL.

FIGURE 4-6: PORTD BLOCK DIAGRAM (IN I/O PORT MODE)

Name	Bit#	Buffer Type	Function					
RD0/PSP0	bit 0	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit 0					
RD1/PSP1	bit 1	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit 1					
RD2/PSP2	bit 2	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit 2					
RD3/PSP3	bit 3	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit 3					
RD4/PSP4	bit 4	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit 4					
RD5/PSP5	bit 5	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit 5					
RD6/PSP6	bit 6	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit 6					
RD7/PSP7	bit 7	ST/TTL ⁽¹⁾	Input/output port pin or parallel slave port bit					

TABLE 4-7:PORTD FUNCTIONS

Legend: ST = Schmitt Trigger input, TTL = TTL input

Note 1: Input buffers are Schmitt Triggers when in I/O mode and TTL buffers when in Parallel Slave Port mode.

TABLE 4-8:	SUMMARY OF REGISTERS ASSOCIATED WITH PORTD
------------	--

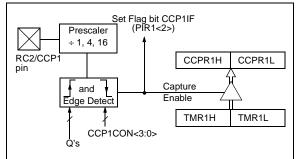
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets	
08h	PORTD	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	uuuu uuuu	
88h	TRISD	PORT	D Data D	Direction	irection Register 1111 1111 1							
89h	TRISE	IBF	OBF	IBOV	PSPMODE	—	PORTE Da	ata Directio	on bits	0000 -111	0000 -111	
Logondu			unahan	and -	unimplomonto	d rood a	ha 'a' Shad	od oollo or	o pot upod			

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PORTD.

8.3 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16-bit value of the TMR1 register when an event occurs on pin RC2/CCP1. An event is defined as one of the following and is configured by CCPxCON<3:0>:

- · Every falling edge
- · Every rising edge
- Every 4th rising edge
- Every 16th rising edge


An event is selected by control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. The interrupt flag must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value is overwritten by the new captured value.

8.3.1 CCP PIN CONFIGURATION

In Capture mode, the RC2/CCP1 pin should be configured as an input by setting the TRISC<2> bit.

Note:	If the RC2/CCP1 pin is configured as an								
	output, a write to the port can cause a								
	capture condition.								

FIGURE 8-1: CAPTURE MODE OPERATION BLOCK DIAGRAM

8.3.2 TIMER1 MODE SELECTION

Timer1 must be running in Timer mode or Synchronized Counter mode for the CCP module to use the capture feature. In Asynchronous Counter mode, the capture operation may not work.

8.3.3 SOFTWARE INTERRUPT

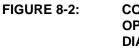
When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear the flag bit CCP1IF following any such change in operating mode.

8.3.4 CCP PRESCALER

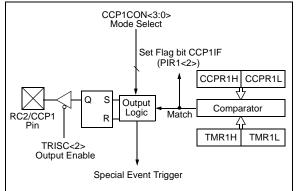
There are four prescaler settings, specified by bits CCP1M3:CCP1M0. Whenever the CCP module is turned off, or the CCP module is not in Capture mode, the prescaler counter is cleared. Any Reset will clear the prescaler counter.

Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore, the first capture may be from a non-zero prescaler. Example 8-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 8-1: CHANGING BETWEEN CAPTURE PRESCALERS


CLRF	CCP1CON	;Turn CCP module off
MOVLW	NEW_CAPT_PS	;Load the W reg with
		;the new prescaler
		;move value and CCP ON
MOVWF	CCP1CON	;Load CCP1CON with this
		;value

8.4 Compare Mode


In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the RC2/CCP1 pin is:

- Driven high
- Driven low
- Remains unchanged

The action on the pin is based on the value of control bits CCP1M3:CCP1M0 (CCP1CON<3:0>). At the same time, interrupt flag bit CCP1IF is set.

COMPARE MODE OPERATION BLOCK DIAGRAM

Special Event Trigger will:

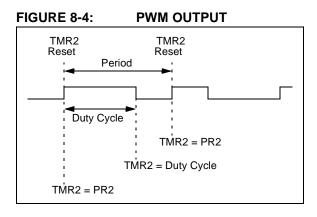
- clear TMR1H and TMR1L registers
- NOT set interrupt flag bit TMR1F (PIR1<0>)
- (for CCP2 only) set the GO/DONE bit (ADCON0<2>)

8.5 PWM Mode (PWM)

FIGURE 8-3:

In Pulse Width Modulation mode, the CCPx pin produces up to a 10-bit resolution PWM output. Since the CCP1 pin is multiplexed with the PORTC data latch, the TRISC<2> bit must be cleared to make the CCP1 pin an output.

Note:	Clearing the CCP1CON register will force
	the CCP1 PWM output latch to the default
	low level. This is not the PORTC I/O data
	latch.


Figure 8-3 shows a simplified block diagram of the CCP module in PWM mode.

For a step-by-step procedure on how to set up the CCP module for PWM operation, see **Section 8.5.3** "**SetUp for PWM Operation**".

SIMPLIFIED PWM BLOCK

DIAGRAM									
Duty Cycle Reg	isters	CCP1CON<5:4>							
CCPR1L		\leftarrow							
	(1) Clear CCP1 latch	is concatenated with the 2-bit inter-							
	ime base	e 2 bits of the prescaler to create the							

A PWM output (Figure 8-4) has a time base (period) and a time that the output stays high (duty cycle). The frequency of the PWM is the inverse of the period (1/period).

8.5.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

PWM period = $[(PR2) + 1] \cdot 4 \cdot TOSC \cdot$

(TMR2 prescale value)

PWM frequency is defined as 1 / [PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

8.5.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

When the CCPR1H and 2-bit latch match TMR2, concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

The maximum PWM resolution (bits) for a given PWM frequency is given by the formula:

	0,
Resolutio	$\operatorname{pn} = \frac{\log\left(\frac{\operatorname{Fosc}}{\operatorname{FpWM}}\right)}{\log(2)} \text{ bits}$
Note:	If the PWM duty cycle value is longer than the PWM period, the CCP1 pin will not be cleared.

Note: The Timer2 postscaler (see Section 8.3 "Capture Mode") is not used in the determination of the PWM frequency. The postscaler could be used to have a servo update rate at a different frequency than the PWM output.

9.3.2 MASTER MODE

Master mode of operation is supported in firmware using interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the SSP module is disabled. The Stop (P) and Start (S) bits will toggle based on the Start and Stop conditions. Control of the I^2C bus may be taken when the P bit is set, or the bus is Idle and both the S and P bits are clear.

In Master mode, the SCL and SDA lines are manipulated by clearing the corresponding TRISC<4:3> bit(s). The output level is always low, irrespective of the value(s) in PORTC<4:3>. So when transmitting data, a '1' data bit must have the TRISC<4> bit set (input) and a '0' data bit must have the TRISC<4> bit cleared (output). The same scenario is true for the SCL line with the TRISC<3> bit. Pull-up resistors must be provided externally to the SCL and SDA pins for proper operation of the I²C module.

The following events will cause SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt will occur if enabled):

- Start condition
- Stop condition
- Data transfer byte transmitted/received

Master mode of operation can be done with either the Slave mode Idle (SSPM3:SSPM0 = 1011), or with the Slave active. When both Master and Slave modes are enabled, the software needs to differentiate the source(s) of the interrupt.

9.3.3 MULTI-MASTER MODE

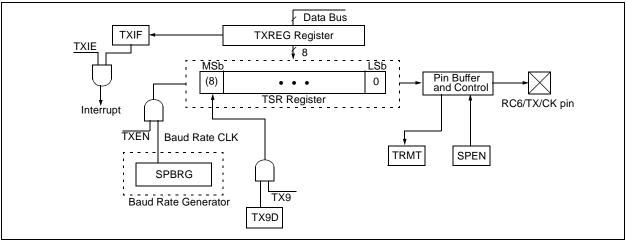
In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions, allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the SSP module is disabled. The Stop (P) and Start (S) bits will toggle based on the Start and Stop conditions. Control of the I^2C bus may be taken when bit P (SSPSTAT<4>) is set, or the bus is Idle and both the S and P bits clear. When the bus is busy, enabling the SSP Interrupt will generate the interrupt when the Stop condition occurs.

In Multi-Master operation, the SDA line must be monitored to see if the signal level is the expected output level. This check only needs to be done when a high level is output. If a high level is expected and a low level is present, the device needs to release the SDA and SCL lines (set TRISC<4:3>). There are two stages where this arbitration can be lost, these are:

- Address Transfer
- Data Transfer

When the slave logic is enabled, the slave continues to receive. If arbitration was lost during the address transfer stage, communication to the device may be in progress. If addressed, an ACK pulse will be generated. If arbitration was lost during the data transfer stage, the device will need to retransfer the data at a later time.

ABLE 3-3. REGISTERS ASSOCIATED WITH C OF ERATION											
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
13h	SSPBUF	Synchrono	us Serial	Port Rece	eive Buff	er/Transn	nit Registe	er		xxxx xxxx	uuuu uuuu
93h	SSPADD	Synchrono	us Serial	Port (I ² C ¹	™ mode)	Address	Register			0000 0000	0000 0000
14h	SSPCON	WCOL	WCOL SSPOV SSPEN CKP SSPM3 SSPM2 SSPM1 SSPM0							0000 0000	0000 0000
94h	SSPSTAT	SMP ⁽²⁾	CKE ⁽²⁾	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
87h	TRISC	PORTC Da	ata Direct	ion Regist	er	•	•		•	1111 1111	1111 1111

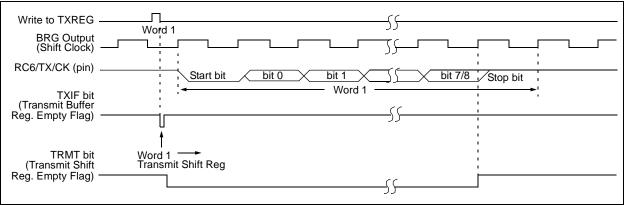

TABLE 9-3: REGISTERS ASSOCIATED WITH I²C[™] OPERATION

Legend: $x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by SSP module in <math>l^2C^{TM}$ mode.

Note 1: PSPIF and PSPIE are reserved on the PIC16CR73/76; always maintain these bits clear.

2: Maintain these bits clear in I²C mode.

FIGURE 10-1: USART TRANSMIT BLOCK DIAGRAM

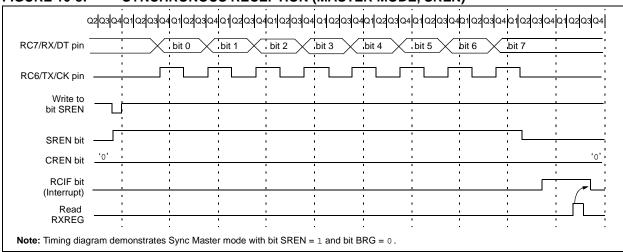


Steps to follow when setting up an Asynchronous Transmission:

- Initialize the SPBRG register for the appropriate baud rate. If a high speed baud rate is desired, set bit BRGH (Section 10.1 "USART Baud Rate Generator (BRG)").
- 2. Enable the asynchronous serial port by clearing bit SYNC and setting bit SPEN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set transmit bit TX9.

- 5. Enable the transmission by setting bit TXEN, which will also set bit TXIF.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Load data to the TXREG register (starts transmission).
- 8. If using interrupts, ensure that GIE and PEIE in the INTCON register are set.

FIGURE 10-2: ASYNCHRONOUS MASTER TRANSMISSION



10.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either enable bit SREN (RCSTA<5>), or enable bit CREN (RCSTA<4>). Data is sampled on the RC7/RX/DT pin on the falling edge of the clock. If enable bit SREN is set, then only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set, CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to the RCREG register (if it is empty). When the transfer is complete, interrupt flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/ disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read-only bit, which is reset by the hardware. In this case, it is reset when the RCREG register has been read and is empty. The RCREG is a double buffered register (i.e., it is a twodeep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR register. On the clocking of the last bit of the third byte, if the RCREG register is still full, then overrun error bit OERR (RCSTA<1>) is set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Bit OERR has to be cleared in software (by clearing bit CREN). If bit OERR is set, transfers from the RSR to the RCREG are inhibited, so it is essential to clear bit OERR if it is set. The ninth receive bit is buffered the same way as the receive data. Reading the RCREG register will load bit RX9D with a new value, therefore, it is essential for the user to read the RCSTA register before reading RCREG, in order not to lose the old RX9D information.

Steps to follow when setting up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 10.1 "USART Baud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, then set enable bit RCIE.
- 5. If 9-bit reception is desired, then set bit RX9.
- 6. If a single reception is required, set bit SREN. For continuous reception set bit CREN.
- 7. Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit CREN.
- 11. If using interrupts, ensure that GIE and PEIE in the INTCON register are set.

FIGURE 10-8: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
18h	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00x
1Ah	RCREG	USART Re	eceive Da	ta Registe	r					0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
98h	TXSTA	CSRC	TX9	TXEN	SYNC	_	BRGH	TRMT	TX9D	0000 -010	0000 -010
99h	SPBRG	Baud Rate	Generat	or Registe	r					0000 0000	0000 0000

Legend: x = unknown, - = unimplemented, read as '0'. Shaded cells are not used for synchronous master reception.

Note 1: Bits PSPIE and PSPIF are reserved on the PIC16CR73/76 devices; always maintain these bits clear.

10.4 USART Synchronous Slave Mode

Synchronous Slave mode differs from the Master mode, in that the shift clock is supplied externally at the RC6/TX/CK pin (instead of being supplied internally in Master mode). This allows the device to transfer or receive data while in Sleep mode. Slave mode is entered by clearing bit CSRC (TXSTA<7>).

10.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the Synchronous Master and Slave modes are identical except in the case of the Sleep mode.

If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- a) The first word will immediately transfer to the TSR register and transmit when the master device drives the CK line.
- b) The second word will remain in TXREG register.
- c) Flag bit TXIF will not be set.
- d) When the first word has been shifted out of TSR, the TXREG register will transfer the second word to the TSR and flag bit TXIF will now be set.
- e) If enable bit TXIE is set, the interrupt will wake the chip from Sleep and if the global interrupt is enabled, the program will branch to the interrupt vector (0004h).

Follow these steps when setting up a Synchronous Slave Transmission:

- 1. Enable the synchronous slave serial port by setting bits SYNC and SPEN and clearing bit CSRC.
- 2. Clear bits CREN and SREN.
- 3. If interrupts are desired, then set enable bit TXIE.
- 4. If 9-bit transmission is desired, then set bit TX9.
- 5. Enable the transmission by setting enable bit TXEN.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in bit TX9D.
- 7. Start transmission by loading data to the TXREG register.
- 8. If using interrupts, ensure that GIE and PEIE in the INTCON register are set.

REGISTER 11-2: ADCON1: (ADDRESS 1Fh)

U-0 U-0 U-0 U-0 R/W-0 R/W-0 - - - - PCFG2 PCFG1 PCFG0 bit 7 - - bit 7 - bit 7 - - - - - bit 7 - </th <th>Lanandi</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Lanandi							
<u> </u>								
	bit 7							bit 0
U-0 U-0 U-0 U-0 U-0 R/W-0 R/W-0 R/W-0	—			—		PCFG2	PCFG1	PCFG0
	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-3 Unimplemented: Read as '0'

bit 2-0 PCFG2:PCFG0: A/D Port Configuration Control bits

PCFG2:PCFG0	RA0	RA1	RA2	RA5	RA3	RE0 ⁽¹⁾	RE1 ⁽¹⁾	RE2 ⁽¹⁾	VREF
000	Α	Α	Α	Α	Α	Α	Α	Α	Vdd
001	Α	А	Α	Α	VREF	Α	Α	А	RA3
010	Α	А	Α	А	А	D	D	D	Vdd
011	Α	А	Α	Α	Vref	D	D	D	RA3
100	А	Α	D	D	А	D	D	D	Vdd
101	Α	А	D	D	VREF	D	D	D	RA3
11x	D	D	D	D	D	D	D	D	Vdd

A = Analog input

D = Digital I/O

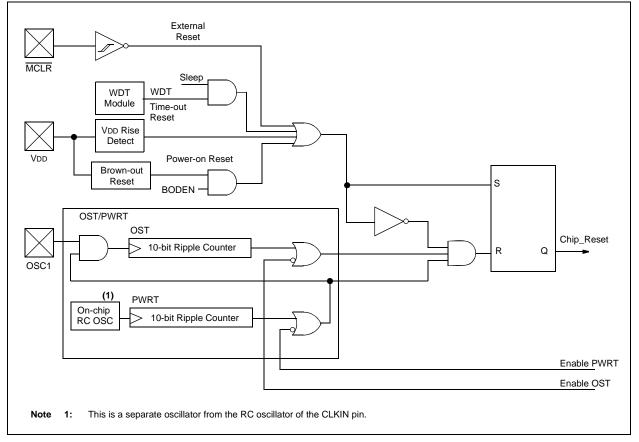
Note 1: RE0, RE1 and RE2 are implemented on the PIC16CR74/77 only.

REGISTER 12-1:	CONFIGURATION WORD:	(ADDRESS 2007h ⁽¹⁾)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	_	—	—	—	_	—	
bit 13		·		•		bit	
R/P-1	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	
BOREN	—	CP0	PWRTEN	WDTEN	FOSC1	FOSC0	
bit 6						bit	
Legend:							
R = Readable	bit	W = Writable bi	t	U = Unimpleme	ented bit, read a	s '0'	
-n = Value at P	POR	'1' = Bit is set		ʻ0' = Bit is clear	ed	x = Bit is unknown	
bit 13-7	Unimplemente	ed: Read as '1'					
bit 6	BOREN: Brown-out Reset Enable bit 1 = BOR enabled 0 = BOR disabled						
bit 5	Unimplemente	ed: Read as '1'					
bit 4	CP0: ROM Program Memory Code Protection bit 1 = Code protection off 0 = All memory locations code protected						
bit 3	PWRTEN : Power-up Timer Enable bit 1 = PWRT disabled 0 = PWRT enabled						
bit 2	WDTEN: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled						
bit 1-0	FOSC1:FOSC0: Oscillator Selection bits 11 = RC oscillator 10 = HS oscillator 01 = XT oscillator 00 = LP oscillator						

Note 1: The erased (unprogrammed) value of the Configuration Word is 3FFFh.

12.3 Reset


The PIC16CR7X differentiates between various kinds of Reset:

- Power-on Reset (POR)
- MCLR Reset during normal operation
- MCLR Reset during Sleep
- WDT Reset (during normal operation)
- WDT Wake-up (during Sleep)
- Brown-out Reset (BOR)

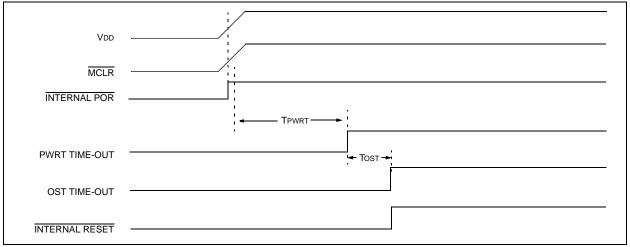
Some registers are not affected in any Reset condition. Their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on Power-on Reset (POR), on the MCLR and WDT Reset, on MCLR Reset during Sleep, and Brownout Reset (BOR). They are not affected by a WDT Wake-up, which is viewed as the resumption of normal operation. The TO and PD bits are set or cleared differently in different Reset situations, as indicated in Table 12-4. These bits are used in software to determine the nature of the Reset. See Table 12-6 for a full description of Reset states of all registers.

A simplified block diagram of the on-chip Reset circuit is shown in Figure 12-4.

FIGURE 12-4: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

Register		Dev	ices		Power-on Reset, Brown-out Reset	MCLR Reset, WDT Reset	Wake-up via WDT or Interrupt
PIE1	73	74	76	77	r000 0000	r000 0000	ruuu uuuu
	73	74	76	77	0000 0000	0000 0000	uuuu uuuu
PIE2	73	74	76	77	0	0	u
PCON	73	74	76	77	dd	uu	uu
PR2	73	74	76	77	1111 1111	1111 1111	1111 1111
SSPSTAT	73	74	76	77	00 0000	00 0000	uu uuuu
SSPADD	73	74	76	77	0000 0000	0000 0000	uuuu uuuu
TXSTA	73	74	76	77	0000 -010	0000 -010	uuuu -uuu
SPBRG	73	74	76	77	0000 0000	0000 0000	uuuu uuuu
ADCON1	73	74	76	77	000	000	uuu
PMDATA	73	74	76	77	0 0000	0 0000	u uuuu
PMADR	73	74	76	77	xxxx xxxx	uuuu uuuu	uuuu uuuu
PMDATH	73	74	76	77	XXXX XXXX	uuuu uuuu	uuuu uuuu
PMADRH	73	74	76	77	xxxx xxxx	uuuu uuuu	uuuu uuuu
PMCON1	73	74	76	77	1 0	10	1u
							1 11.0

TABLE 12-6: INITIALIZATION CONDITIONS FOR ALL REGISTERS (CONTINUED)


Legend: u = unchanged, x = unknown, - = unimplemented bit, read as '0', q = value depends on condition, r = reserved, maintain clear

Note 1: One or more bits in INTCON, PIR1 and/or PIR2 will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GIE bit is set, the PC is loaded with the interrupt vector (0004h).

3: See Table 12-5 for Reset value for specific condition.

FIGURE 12-6: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD THROUGH RC NETWORK)

13.0 INSTRUCTION SET SUMMARY

The PIC16 instruction set is highly orthogonal and is comprised of three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

Each PIC16 instruction is a 14-bit word divided into an **opcode**, which specifies the instruction type and one or more **operands**, which further specify the operation of the instruction. The formats for each of the categories are presented in Figure 13-1, while the various opcode fields are summarized in Table 13-1.

Table 13-2 lists the instructions recognized by the MPASMTM Assembler. A complete description of each instruction is also available in the " $PIC^{\mbox{\ensuremath{\mathbb{R}}}}$ Mid-Range MCU Family Reference Manual" (DS33023).

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

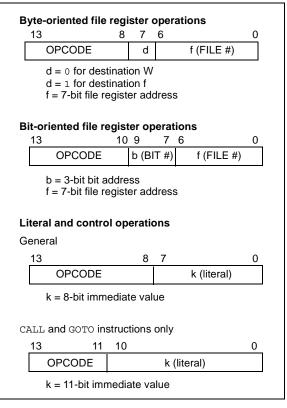
For **bit-oriented** instructions, 'b' represents a bit field designator, which selects the bit affected by the operation, while 'f' represents the address of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight- or eleven-bit constant or literal value.

One instruction cycle consists of four oscillator periods; for an oscillator frequency of 4 MHz, this gives a normal instruction execution time of 1 μ s. All instructions are executed within a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of an instruction. When this occurs, the execution takes two instruction cycles, with the second cycle executed as a NOP.

Note:	To maintain upward compatibility with
	future PIC16CR7X products, do not use
	the OPTION and TRIS instructions.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.


13.1 Read-Modify-Write operations

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register. For example, a "CLRF PORTB" instruction will read PORTB, clear all the data bits, then write the result back to PORTB. This example would have the unintended result that the condition that sets the RBIF flag would be cleared for pins configured as inputs and using the PORTB interrupt-on-change feature.

TABLE 13-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; $d = 0$: store result in W, d = 1: store result in file register f. Default is $d = 1$.
PC	Program Counter
TO	Time-out bit
PD	Power-down bit

FIGURE 13-1: GENERAL FORMAT FOR INSTRUCTIONS

PIC16CR7X

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \le k \le 2047$
Operation:	$\begin{array}{l} (PC)+1 \rightarrow TOS, \\ k \rightarrow PC < 10:0>, \\ (PCLATH < 4:3>) \rightarrow PC < 12:11> \end{array}$
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The eleven-bit immedi- ate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a two-cycle instruction.

CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operands:	None
Operation: Status Affected:	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \ prescaler, \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow PD \\ \overline{TO}, \ \overline{PD} \end{array}$
Description:	CLRWDT instruction resets the Watchdog Timer. It also resets the prescaler of the WDT. Status bits TO and PD are set.

CLRF	Clear f
Syntax:	[label] CLRF f
Operands:	$0 \le f \le 127$
Operation:	$\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Description:	The contents of register 'f' are cleared and the Z bit is set.

COMF	Complement f
Syntax:	[label] COMF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow (destination)$
Status Affected:	Z
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

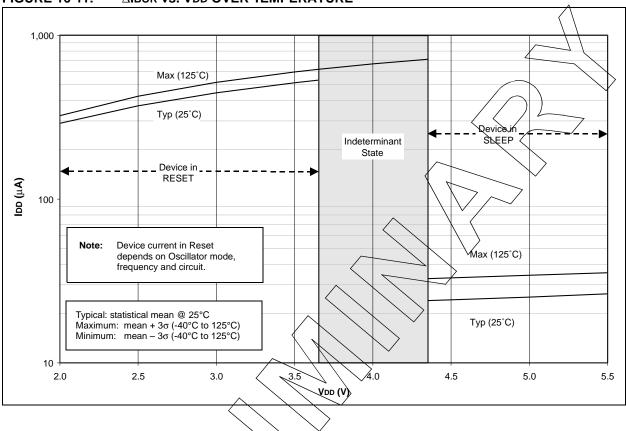
CLRW	Clear W
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} \text{00h} \rightarrow (\text{W}) \\ 1 \rightarrow \text{Z} \end{array}$
Status Affected:	Z
Description:	W register is cleared. Zero bit (Z) is set.

DECF	Decrement f
Syntax:	[label] DECF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in \ [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination)
Status Affected:	Z
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
A01	Nr	Resolution	_	-	8 bits	bit	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A02	Eabs	Total absolute error	—	_	< ±1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A03	EIL	Integral linearity error	—	_	< ±1	LSb	VREF = VDD = 5.12V, $VSS \le VAIN \le VREF$
A04	Edl	Differential linearity error	—	_	< ±1	LSb	VREF = VDD = 5.12V, $VSS \le VAIN \le VREF$
A05	Efs	Full scale error	—	_	< ±1	LSb	$\begin{array}{l} VREF=VDD=5.12V,\\ VSS\leqVAIN\leqVREF \end{array}$
A06	EOFF	Offset error	—	—	< ±1	LSb	VREF = VDD = 5.12V, $VSS \le VAIN \le VREF$
A10	—	Monotonicity (Note 3)	—	guaranteed	_	_	$VSS \le VAIN \le VREF$
A20	Vref	Reference voltage	2.5 2.2		5.5 5.5	V V	-40°C to +125°C 0°C to +125°C
A25	VAIN	Analog input voltage	Vss - 0.3	_	Vref + 0.3	V	
A30	ZAIN	Recommended impedance of analog voltage source	—	_	10.0	kΩ	
A40	IAD	A/D conversion current (VDD)	—	180	—	μA	Average current consumption when A/D is on (Note 1).
A50	IREF	VREF input current (Note 2)	N/A —	_	±5 500	μΑ μΑ	During VAIN acquisition. During A/D Conversion cycle.

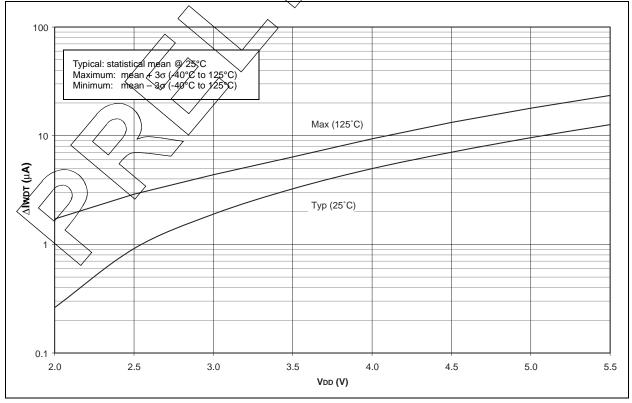
TABLE 15-12: A/D CONVERTER CHARACTERISTICS:PIC16CR7X (INDUSTRIAL, EXTENDED)

* These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than minor leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from the RA3 pin or the VDD pin, whichever is selected as a reference input.


3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

PIC16CR7X

FIGURE 16-11: △IBOR vs. VDD OVER TEMPERATURE

PIC16CR7X

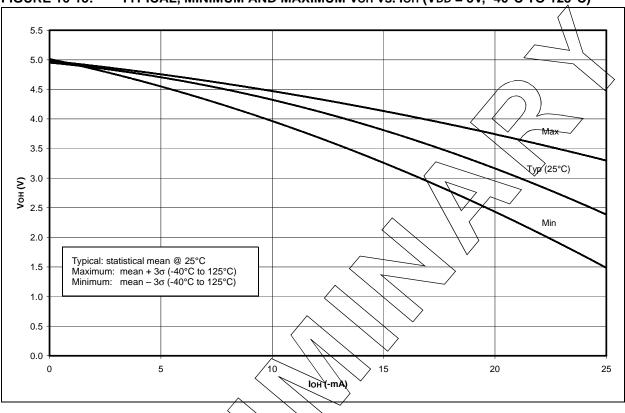


FIGURE 16-16: TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 3V, -40°C TO 125°C)

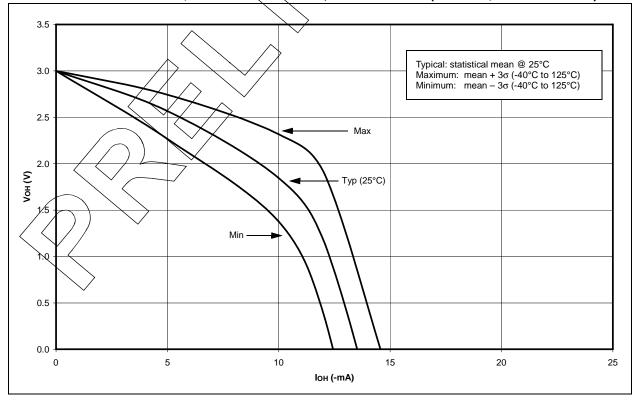
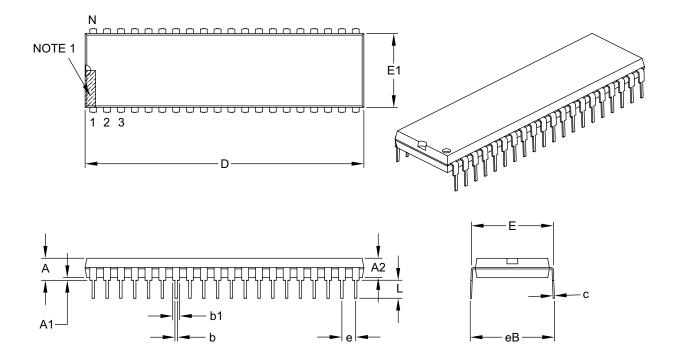



FIGURE 16-15: TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 5V, -40°C TO 125°C)

40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

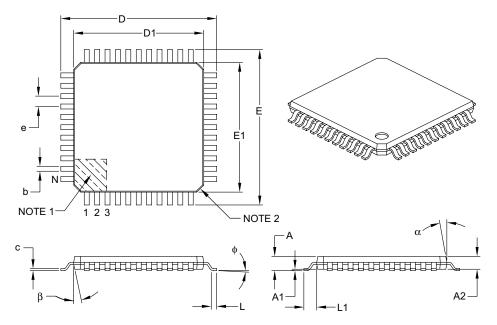
	Units		INCHES	
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		40	
Pitch	e		.100 BSC	
Top to Seating Plane	A	-	-	.250
Molded Package Thickness	A2	.125	-	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.590	-	.625
Molded Package Width	E1	.485	-	.580
Overall Length	D	1.980	-	2.095
Tip to Seating Plane	L	.115	-	.200
Lead Thickness	С	.008	-	.015
Upper Lead Width	b1	.030	-	.070
Lower Lead Width	b	.014	-	.023
Overall Row Spacing §	eB	-	-	.700

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.


4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	6
	Dimension Limits	MIN	NOM	MAX
Number of Leads	N	44		
Lead Pitch	е	0.80 BSC		
Overall Height	A	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1		1.00 REF	
Foot Angle	¢	0°	3.5°	7°
Overall Width	E		12.00 BSC	
Overall Length	D		12.00 BSC	
Molded Package Width	E1	10.00 BSC		
Molded Package Length	D1		10.00 BSC	
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.30	0.37	0.45
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

INDEX

- 1	L
-	•

A/D Conversio Status (GO/DONE Bit)	
	83
Acquisition Requirements	
ADCON0 Register	83
ADCON1 Register	83
ADRES Register	83
Analog Port Pins	
Analog-to-Digital Converter	83
Associated Registers	88
Configuring Analog Port Pins	87
Configuring the Interrupt	
Configuring the Module	85
Conversion Clock	87
Conversion Requirements	137
Conversions	87
Converter Characteristics	136
Effects of a RESET	87
Faster Conversion – Lower Resolution Trade-off	87
Internal Sampling Switch (Rss) Impedance	86
Operation During SLEEP	
Source Impedance	
Using the CCP Trigger	
Absolute Maximum Ratings	
ACK pulse	
ADCON0 Register	
GO/DONE Bit	
ADCON1 Register	
ADRES Register	
Analog Port Pins. See A/D	00
Application Notes	
AN552 (Implementing Wake-up on Key Strokes	
Using PIC16F7X)	33
AN556 (Implementing a Table Read)	
AN578 (Use of the SSP Module in the I^2C	20
Multi-Master Environment)	59
AN607 (Power-up Trouble Shooting)	00
	Q1
Assembler	94
Assembler MPASM Assembler	
Assembler MPASM Assembler	
MPASM Assembler	114
MPASM Assembler B Banking, Data Memory	114 13
MPASM Assembler B Banking, Data Memory BF bit	114 13
MPASM Assembler B Banking, Data Memory BF bit Block Diagrams	114 13 60
MPASM Assembler B Banking, Data Memory BF bit Block Diagrams A/D	114 13 60 85
MPASM Assembler B Banking, Data Memory BF bit Block Diagrams A/D Analog Input Model	114 13 60 85 86
MPASM Assembler B Banking, Data Memory BF bit Block Diagrams A/D Analog Input Model Capture Mode Operation	114 13 60 85 86 55
MPASM Assembler B Banking, Data Memory BF bit Block Diagrams A/D Analog Input Model Capture Mode Operation Compare	114 13 60 85 86 55
MPASM Assembler B Banking, Data Memory BF bit Block Diagrams A/D Analog Input Model Capture Mode Operation Compare Crystal/Ceramic Resonator Operation (HS, XT	114 13 60 85 86 55 55
MPASM Assembler B Banking, Data Memory BF bit Block Diagrams A/D Analog Input Model Capture Mode Operation Compare Crystal/Ceramic Resonator Operation (HS, XT or LP Osc Configuration)	114 13 60 85 86 55 55
MPASM Assembler B Banking, Data Memory BF bit Block Diagrams A/D Analog Input Model Capture Mode Operation Compare Crystal/Ceramic Resonator Operation (HS, XT or LP Osc Configuration) External Clock Input Operation	114 13 60 85 86 55 55 91
MPASM Assembler B Banking, Data Memory BF bit Block Diagrams A/D Analog Input Model Capture Mode Operation Compare Crystal/Ceramic Resonator Operation (HS, XT or LP Osc Configuration) External Clock Input Operation (HS Osc Configuration)	114 13 60 85 86 55 55 91 91
MPASM Assembler B Banking, Data Memory BF bit Block Diagrams A/D Analog Input Model Capture Mode Operation Compare Crystal/Ceramic Resonator Operation (HS, XT or LP Osc Configuration) External Clock Input Operation (HS Osc Configuration) Interrupt Logic	114 13 60 85 55 55 91 91 99
MPASM Assembler B Banking, Data Memory BF bit Block Diagrams A/D Analog Input Model Capture Mode Operation Compare Crystal/Ceramic Resonator Operation (HS, XT or LP Osc Configuration) External Clock Input Operation (HS Osc Configuration) Interrupt Logic PIC16CR73 and PIC16CR76	114 13 60 85 55 55 91 91 99 6
MPASM Assembler B Banking, Data Memory BF bit Block Diagrams A/D Analog Input Model Capture Mode Operation Compare Crystal/Ceramic Resonator Operation (HS, XT or LP Osc Configuration) External Clock Input Operation (HS Osc Configuration) Interrupt Logic PIC16CR73 and PIC16CR76 PIC16CR74 and PIC16CR77	114 13 60 85 55 55 91 91 99 6
MPASM Assembler Banking, Data Memory BF bit Block Diagrams A/D Analog Input Model Capture Mode Operation Compare Crystal/Ceramic Resonator Operation (HS, XT or LP Osc Configuration) External Clock Input Operation (HS Osc Configuration) Interrupt Logic PIC16CR73 and PIC16CR76 PIC16CR74 and PIC16CR77 PORTA	114 13 60 85 95 91 91 99 6 7
MPASM Assembler B Banking, Data Memory BF bit Block Diagrams A/D Analog Input Model Capture Mode Operation Capture Mode Operation Compare Crystal/Ceramic Resonator Operation (HS, XT or LP Osc Configuration) External Clock Input Operation (HS Osc Configuration) External Clock Input Operation (HS Osc Configuration) Interrupt Logic PIC16CR73 and PIC16CR76 PIC16CR74 and PIC16CR77 PORTA RA3:RA0 and RA5 Port Pins	114 13 60 85 91 91 99 6 7 7
MPASM Assembler Banking, Data MemoryBF bit Block Diagrams A/DAnalog Input ModelCapture Mode OperationCompareCrystal/Ceramic Resonator Operation (HS, XT or LP Osc Configuration)External Clock Input Operation (HS Osc Configuration)External Clock Input Operation (HS Osc Configuration)	114 13 60 85 91 91 99 6 7 7
MPASM Assembler B Banking, Data Memory BF bit Block Diagrams A/D Analog Input Model Capture Mode Operation Compare Crystal/Ceramic Resonator Operation (HS, XT or LP Osc Configuration) External Clock Input Operation (HS Osc Configuration) External Clock Input Operation (HS Osc Configuration) Interrupt Logic PIC16CR73 and PIC16CR76 PIC16CR74 and PIC16CR77 PORTA RA3:RA0 and RA5 Port Pins RA4/T0CKI Pin PORTB	114 13 60 85 91 91 91 7 7
MPASM Assembler Banking, Data MemoryBF bit Block Diagrams A/DAnalog Input ModelCapture Mode Operation Capture Mode OperationCompareCrystal/Ceramic Resonator Operation (HS, XT or LP Osc Configuration)External Clock Input Operation (HS Osc Configuration)External Clock Input Operation (HS Osc Configuration) PIC16CR73 and PIC16CR76 PIC16CR74 and PIC16CR77 PORTA RA3:RA0 and RA5 Port Pins RA4/TOCKI Pin PORTB RB3:RB0 Port Pins	114 13 60 85 91 91 91 7 7
MPASM Assembler B Banking, Data Memory BF bit Block Diagrams A/D Analog Input Model Capture Mode Operation Capture Mode Operation Crystal/Ceramic Resonator Operation (HS, XT or LP Osc Configuration) External Clock Input Operation (HS Osc Configuration) External Clock Input Operation (HS Osc Configuration) Interrupt Logic PIC16CR73 and PIC16CR76 PIC16CR74 and PIC16CR77 PORTA RA3:RA0 and RA5 Port Pins RA4/T0CKI Pin PORTB RB3:RB0 Port Pins RB7:RB4 Port Pins RB7:RB4 Port Pins	114 13 60 85 91 91 99 6 7 31 31 33 33
MPASM Assembler B Banking, Data Memory BF bit Block Diagrams A/D Analog Input Model Capture Mode Operation Compare Crystal/Ceramic Resonator Operation (HS, XT or LP Osc Configuration) External Clock Input Operation (HS Osc Configuration) External Clock Input Operation (HS Osc Configuration) Interrupt Logic PIC16CR73 and PIC16CR76 PIC16CR74 and PIC16CR77 PORTA RA3:RA0 and RA5 Port Pins RA4/T0CKI Pin PORTB RB3:RB0 Port Pins RB7:RB4 Port Pins PORTC (Peripheral Output Override)	114 13 60 85 91 91 91 91 7 31 31 31 33 35
MPASM Assembler B Banking, Data Memory BF bit Block Diagrams A/D Analog Input Model Capture Mode Operation Capture Mode Operation Crystal/Ceramic Resonator Operation (HS, XT or LP Osc Configuration) External Clock Input Operation (HS Osc Configuration) External Clock Input Operation (HS Osc Configuration) Interrupt Logic PIC16CR73 and PIC16CR76 PIC16CR74 and PIC16CR77 PORTA RA3:RA0 and RA5 Port Pins RA4/T0CKI Pin PORTB RB3:RB0 Port Pins RB7:RB4 Port Pins	114 13 60 85 91 91 91 91

PORTE (In I/O Port Mode)	37
PWM Mode	57
RC Oscillator Mode	92
Recommended MCLR Circuit	94
Reset Circuit	93
SSP (I ² C Mode)	65
SSP (SPI Mode)	
Timer0/WDT Prescaler	43
Timer1	48
Timer2	51
USART	
Receive	76
USART Transmit	74
Watchdog Timer (WDT)	101
BOR. See Brown-out Reset	
BRGH bit	71
Brown-out Reset (BOR) 89, 93, 94,	95, 96

С

C Compilers	
MPLAB C18	114
MPLAB C30	114
Capture/Compare/PWM (CCP)	
Associated Registers	56, 58
Capture Mode	
Prescaler	
CCP Pin Configuration	55, 56
CCP1	,
RC2/CCP1 Pin	9, 11
CCP2	,
RC1/T1OSI/CCP2 Pin	9. 11
Compare Mode	,
Software Interrupt Mode	
Special Trigger Output	
Timer1 Mode Selection	
Example PWM Frequencies and Resolutions	
Interaction of Two CCP Modules	
PWM Duty Cycle	
PWM Mode	
PWM Period	
Setup for PWM Operation	
Special Event Trigger and A/D Conversions	
Timer Resources	
CCP1 Module	
CCP2 Module	
CCPR1H Register	
CCPR1L Register	
CCPxM<3:0> bits	
CCPxX and CCPxY bits	
CKE bit	
CKP bit	
Code Examples	-
Call of a Subroutine in Page 1 from Page 0	
Changing Between Capture Prescalers	
Changing Prescaler Assignment to Timer0	
Changing Prescaler Assignment to WDT	
Indirect Addressing	
Initializing PORTA	
Reading a 16-bit Free-Running Timer	
ROM Program Read	
Saving STATUS, W, and PCLATH Registers	
in RAM	100
Writing a 16-bit Free-Running Timer	
Code Protection	

PIC18FXXXX

Computed GOTO	
Configuration Bits	
Continuous Receive Enable (CREN Bit)	70
Conversion Considerations	
Customer Change Notification Service	167
Customer Notification Service	167
Customer Support	167

D

D/A bit	60
Data Memory	13
Bank Select (RP1:RP0 Bits)	
General Purpose Registers	
Register File Map, PIC16CR74/73	15
Register File Map, PIC16CR77/76	14
Special Function Registers	
Data/Address bit (D/A)	60
DC and AC Characteristics	
Graphs and Tables	139
DC Characteristics	
Development Support	113
Device Differences	
Device Overview	5
Features	5
Direct Addressing	

Ε

Electrical Characteristics
Errata4
External Clock Input (RA4/T0CKI). See Timer0
External Interrupt Input (RB0/INT). See Interrupt Sources

F

Firmware Instructions	
FSR Register	27
1	
I/O Ports	
I ² C Mode	-
Addressing	
Associated Registers	
Master Mode	
Mode Selection	
Multi-Master Mode	68
Operation	65
Reception	66
Slave Mode	
SCL and SDA pins	65
Transmission	67
ID Locations	
INDF Register	27
Indirect Addressing	
FSR Register	
Instruction Format	
Instruction Set	
ADDLW	
ADDWF	
ANDLW	
ANDWF	
BCF	
BSF	
BTFSC	
BTFSS	
CALL	
CLRF	
CLRW	

CLRWDT 108	3
COMF 108	3
DECF	3
DECFSZ 109)
GOTO	
INCF	
INCFSZ	
IORLW	
IORUV	
RETURN 110, 111	
RLF	
RRF 110, 111	
SLEEP 110, 111	
SUBLW 110, 111	
SUBWF 110, 111	l
SWAPF112)
XORLW 112)
XORWF	>
Summary Table 106	ì
INT Interrupt (RB0/INT). See Interrupt Sources	ĺ
INTCON Register	
GIE Bit	
INTE Bit	
INTF Bit	
RBIF Bit	
TMR0IE Bit 21	i.
Inter-Integrated Circuit (I ² C). See I ² C Mode	
Internet Address 167	'
Interrupt Sources 89, 99	
Interrupt-on-Change (RB7:RB4)	3
RB0/INT Pin, External)
TMR0 Overflow 100)
USART Receive/Transmit Complete)
Interrupts	
Synchronous Serial Port Interrupt	ł
Interrupts, Context Saving During	
Interrupts, Enable Bits	'
Global Interrupt Enable (GIE Bit)	`
Interrupt-on-Change (RB7:RB4) Enable (RBIE Bit) 100	
RB0/INT Enable (INTE Bit)	
TMR0 Overflow Enable (TMR0IE Bit)	I
Interrupts, Flag Bits	
Interrupt-on Change (RB7:RB4) Flag (RBIF Bit) 21	I
Interrupt-on-Change (RB7:RB4) Flag	
(RBIF Bit)21, 33, 100	
RB0/INT Flag (INTF Bit)21	
TMR0 Overflow Flag (TMR0IF Bit) 100)
1	
L	

Loading of PC..... 26

Master Clear (MCLR)	
MCLR Reset, Normal Operation	
MCLR Reset, SLEEP	93, 95, 96
Operation and ESD Protection	
MCLR Pin	10
MCLR/VPP Pin	8
Memory Organization	
Data Memory	13
Program Memory	13
Program Memory and Stack Maps	
Microchip Internet Web Site	167
MPLAB ASM30 Assembler, Linker, Librarian	114
MPLAB ICD 2 In-Circuit Debugger	115