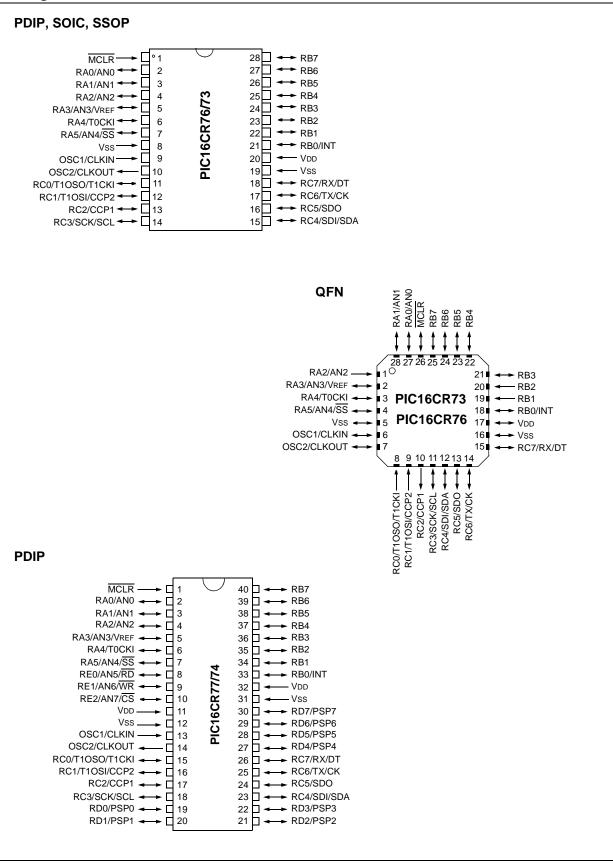


Welcome to E-XFL.COM

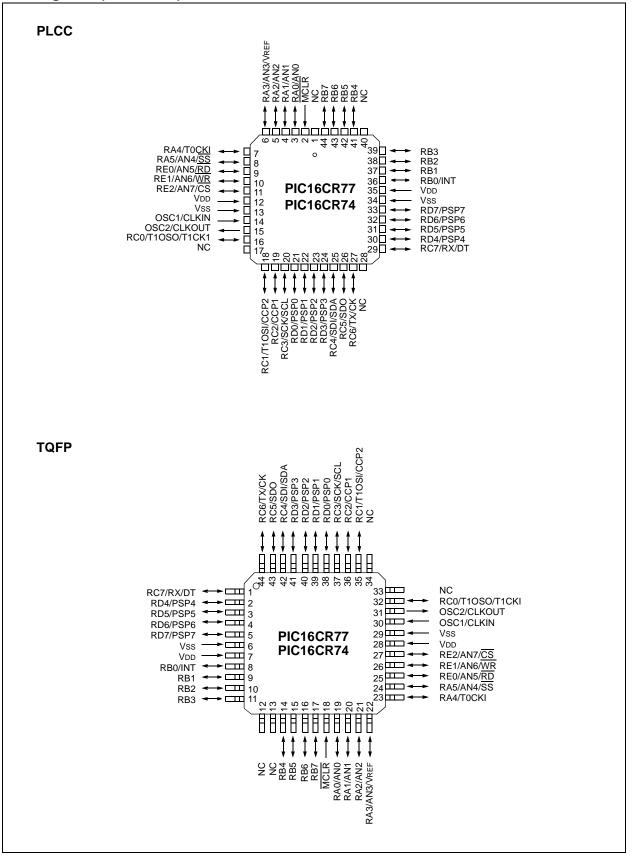
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	33
Program Memory Size	14KB (8K x 14)
Program Memory Type	ROM
EEPROM Size	-
RAM Size	368 x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 5.5V
Data Converters	A/D 8x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16cr77t-i-ml


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

Pin Diagrams (Continued)

2.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers are registers used by the CPU and peripheral modules for controlling the desired operation of the device. These registers are implemented as static RAM. A list of these registers is given in Table 2-1. The Special Function Registers can be classified into two sets: core (CPU) and peripheral. Those registers associated with the core functions are described in detail in this section. Those related to the operation of the peripheral features are described in detail in the peripheral feature section.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page
Bank 0											
00h ⁽⁴⁾	INDF	Addressing	g this locatio	n uses conte	ents of FSR to	address dat	a memory (r	not a physica	al register)	0000 0000	27, 96
01h	TMR0	Timer0 Mc	ïmer0 Module Register							XXXX XXXX	45, 96
02h ⁽⁴⁾	PCL	Program C	Counter (PC)	Least Signif	icant Byte					0000 0000	26, 96
03h ⁽⁴⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	C ⁽²⁾	0001 1xxx	19, 96
04h ⁽⁴⁾	FSR	Indirect Da	ata Memory	Address Poir	nter					xxxx xxxx	27, 96
05h	PORTA		_	PORTA Dat	a Latch when	written: POF	RTA pins wh	en read		0x 0000	32, 96
06h	PORTB	PORTB D	ata Latch wh	en written: P	ORTB pins w	/hen read				xxxx xxxx	34, 96
07h	PORTC	PORTC D	ata Latch wh	en written: P	ORTC pins v	vhen read				XXXX XXXX	35, 96
08h (5)	PORTD	PORTD D	ata Latch wh	en written: F	ORTD pins v	vhen read				xxxx xxxx	36, 96
09h (5)	PORTE	_	_	_		_	RE2	RE1	RE0	xxx	39, 96
0Ah ^(1,4)	PCLATH	_		_	Write Buffer	for the upper	5 bits of the	Program C	ounter	0 0000	26, 96
0Bh ⁽⁴⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	21, 96
0Ch	PIR1	PSPIF ⁽³⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	23, 96
0Dh	PIR2	_		_	_	_	_	_	CCP2IF	0	24, 96
0Eh	TMR1L	Holding Re	egister for th	e Least Sign	ificant Byte of	f the 16-bit TM	MR1 Registe	er		xxxx xxxx	50, 96
0Fh	TMR1H	Holding Re	egister for the	e Most Signi	ficant Byte of	the 16-bit TN	IR1 Registe	r		XXXX XXXX	50, 96
10h	T1CON	_		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	00 0000	47, 96
11h	TMR2	Timer2 Mc	dule Registe	er						0000 0000	52, 96
12h	T2CON		TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	52, 96
13h	SSPBUF	Synchrono	ous Serial Po	ort Receive B	uffer/Transmi	it Register				xxxx xxxx	64, 68, 96
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	61, 96
15h	CCPR1L	Capture/C	ompare/PWI	M Register 1	(LSB)					xxxx xxxx	56, 96
16h	CCPR1H	Capture/C	ompare/PWI	M Register 1	(MSB)	T	1	r		xxxx xxxx	56, 96
17h	CCP1CON		_	CCP1X	CCP1Y	CCP1M3	CCP1M2	CCP1M1	CCP1M0	00 0000	54, 96
18h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	70, 96
19h	TXREG	USART Transmit Data Register					0000 0000	75, 96			
1Ah	RCREG	USART Receive Data Register					0000 0000	77, 96			
1Bh	CCPR2L	Capture/Compare/PWM Register 2 (LSB)						xxxx xxxx	58, 96		
1Ch	CCPR2H	Capture/C	ompare/PWI	M Register 2	(MSB)	1	1	1	I	xxxx xxxx	58, 96
1Dh	CCP2CON	—	_	CCP2X	CCP2Y	CCP2M3	CCP2M2	CCP2M1	CCP2M0	00 0000	54, 96
1Eh	ADRES	A/D Resul	t Register By	/te	T	1	1		1	xxxx xxxx	88, 96
1Fh	ADCON0	ADCS1	ADCS0	CHS2	CHS1	CHS0	GO/ DONE	—	ADON	0000 00-0	83, 96

TABLE 2-1:SPECIAL FUNCTION REGISTER SUMMARY

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter during branches (CALL or GOTO).

2: Other (non Power-up) Resets include external Reset through MCLR and Watchdog Timer Reset.

3: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.

4: These registers can be addressed from any bank.

5: PORTD, PORTE, TRISD and TRISE are not physically implemented on the 28-pin devices, read as '0'.

6: This bit always reads as a '1'.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Details on page
Bank 1											
80h ⁽⁴⁾	INDF	Addressin	g this locatio	n uses conte	ents of FSR to	address dat	a memory (r	not a physica	al register)	0000 0000	27, 96
81h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	20, 44, 96
82h ⁽⁴⁾	PCL	Program C	Program Counter (PC) Least Significant Byte							0000 0000	26, 96
83h ⁽⁴⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	C ⁽²⁾	0001 1xxx	19, 96
84h ⁽⁴⁾	FSR	Indirect da	ata memory a	ddress poin	ter					xxxx xxxx	27, 96
85h	TRISA		_	PORTA Dat	a Direction Re	egister				11 1111	32, 96
86h	TRISB	PORTB D	ata Direction			•				1111 1111	34, 96
87h	TRISC	PORTC D	ata Direction	Register						1111 1111	35, 96
88h (5)	TRISD	PORTD D	ata Direction	Register						1111 1111	36, 96
89h (5)	TRISE	IBF	OBF	IBOV	PSPMODE	—	PORTE Da	ata Direction	Bits	0000 -111	38, 96
8Ah ^(1,4)	PCLATH	_	—	—	Write Buffer f	or the upper	5 bits of the	Program C	ounter	0 0000	26, 96
8Bh ⁽⁴⁾	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	21, 96
8Ch	PIE1	PSPIE ⁽³⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	22, 97
8Dh	PIE2	_	—	—	_		_	—	CCP2IE	0	24, 97
8Eh	PCON	_	_	_	_	_	_	POR	BOR	dd	22, 97
8Fh	_	Unimplem	ented							_	_
90h	_	Unimplem	ented							_	_
91h	—	Unimplem	ented							_	_
92h	PR2	Timer2 Mo	Timer2 Module Period Register						1111 1111	52, 97	
93h	SSPADD	Synchrono	ous Serial Po	ort (l ² C™ mo	de) Address F	Register				0000 0000	68, 97
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	60, 97
95h	—	Unimplem	ented							_	—
96h	—	Unimplem	Unimplemented					_	_		
97h	—	Unimplemented				_	_				
98h	TXSTA	CSRC	TX9	TXEN	SYNC		BRGH	TRMT	TX9D	0000 -010	69, 97
99h	SPBRG	Baud Rate Generator Register					0000 0000	71, 97			
9Ah	—	Unimplemented					_				
9Bh	_	Unimplemented					_				
9Ch	—	Unimplemented						_			
9Dh	—	Unimplem	ented							_	
9Eh	_	Unimplem	ented							_	
9Fh	ADCON1	_	_	_	_	_	PCFG2	PCFG1	PCFG0	000	84, 97

TABLE 2-1: SPECIAL FUNCTION REGISTER SUMMARY (C	CONTINUED)
---	------------

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8>, whose contents are transferred to the upper byte of the program counter during branches (CALL or GOTO).

2: Other (non Power-up) Resets include external Reset through MCLR and Watchdog Timer Reset.

3: Bits PSPIE and PSPIF are reserved on the 28-pin devices; always maintain these bits clear.

4: These registers can be addressed from any bank.

5: PORTD, PORTE, TRISD and TRISE are not physically implemented on the 28-pin devices, read as '0'.

6: This bit always reads as a '1'.

2.2.2.2 OPTION_REG Register

The OPTION_REG register is a readable and writable register, which contains various control bits to configure the TMR0 prescaler/WDT postscaler (single assignable register known also as the prescaler), the External INT Interrupt, TMR0 and the weak pull-ups on PORTB.

Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer.

REGISTER 2-2: OPTION_REG: (ADDRESS 81h, 181h)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
RBPU	INTEDG	T0CS	TOSE	PSA	PS2	PS1	PS0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	RBPU: PORTB Pull-up Enable bit
	1 = PORTB pull-ups are disabled
	0 = PORTB pull-ups are enabled by individual PORT latch values
bit 6	INTEDG: Interrupt Edge Select bit
	 1 = Interrupt on rising edge of RB0/INT pin 0 = Interrupt on falling edge of RB0/INT pin
bit 5	TOCS: TMR0 Clock Source Select bit
	1 = Transition on RA4/T0CKI pin
	0 = Internal instruction cycle clock (CLKOUT)
bit 4	T0SE: TMR0 Source Edge Select bit
	1 = Increment on high-to-low transition on RA4/T0CKI pin
	0 = Increment on low-to-high transition on RA4/T0CKI pin
bit 3	PSA: Prescaler Assignment bit
	1 = Prescaler is assigned to the WDT
	0 = Prescaler is assigned to the Timer0 module
bit 2-0	PS2:PS0: Prescaler Rate Select bits
	Bit Value TMR0 Rate WDT Rate

000	1:2	1:1
001	1:4	1:2
010	1:8	1:4
011	1:16	1:8
100	1:32	1:16
101	1:64	1:32
110	1 : 128	1:64
111	1 : 256	1 : 128

2.2.2.6 PIE2 Register

The PIE2 register contains the individual enable bits for the CCP2 peripheral interrupt.

REGISTER 2-6: PIE2: (ADDRESS 8Dh)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	_	—	—	—	CCP2IE
bit 7							bit 0
Legend:							

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-1	Unimplemented: Read as '0'
---------	----------------------------

bit 0 CCP2IE: CCP2 Interrupt Enable bit

1 = Enables the CCP2 interrupt

0 = Disables the CCP2 interrupt

2.2.2.7 PIR2 Register

The PIR2 register contains the flag bits for the CCP2 interrupt.

Note:	Interrupt flag bits are set when an interrupt
	condition occurs, regardless of the state of
	its corresponding enable bit or the global
	enable bit, GIE (INTCON<7>). User soft-
	ware should ensure the appropriate inter-
	rupt flag bits are clear prior to enabling an
	interrupt.

REGISTER 2-7: PIR2: (ADDRESS 0Dh)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
							CCP2IF
bit 7							bit 0

Ν

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-1 Unimplemented: Read as '0'

bit 0	CCP2IF: CCP2 Interrupt Flag bit				
	Capture mode:				
	1 = A TMR1 register capture occurred (must be cleared in software)				
	0 = No TMR1 register capture occurred				
	Compare mode:				
	1 = A TMR1 register compare match occurred (must be cleared in software)				
	0 = No TMR1 register compare match occurred				
	PWM mode:				
	Unused				

TABLE 4-1:PORTA FUNCTIONS

Name	Bit#	Buffer	Function
RA0/AN0	bit 0	TTL	Input/output or analog input.
RA1/AN1	bit 1	TTL	Input/output or analog input.
RA2/AN2	bit 2	TTL	Input/output or analog input.
RA3/AN3/VREF	bit 3	TTL	Input/output or analog input or VREF.
RA4/T0CKI	bit 4	ST	Input/output or external clock input for Timer0. Output is open drain type.
RA5/AN4/SS	bit 5	TTL	Input/output or slave select input for synchronous serial port or analog input.

Legend: TTL = TTL input, ST = Schmitt Trigger input

TABLE 4-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
05h	PORTA	_	_	RA5	RA4	RA3	RA2	RA1	RA0	0x 0000	0u 0000
85h	TRISA	_	_	PORTA Data Direction Register					11 1111	11 1111	
9Fh	ADCON1		—		—		PCFG2	PCFG1	PCFG0	000	000

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

Note: When using the SSP module in SPI Slave mode and \overline{SS} enabled, the A/D converter must be set to one of the following modes where PCFG2:PCFG0 = 100, 101, 11x.

9.3.2 MASTER MODE

Master mode of operation is supported in firmware using interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the SSP module is disabled. The Stop (P) and Start (S) bits will toggle based on the Start and Stop conditions. Control of the I^2C bus may be taken when the P bit is set, or the bus is Idle and both the S and P bits are clear.

In Master mode, the SCL and SDA lines are manipulated by clearing the corresponding TRISC<4:3> bit(s). The output level is always low, irrespective of the value(s) in PORTC<4:3>. So when transmitting data, a '1' data bit must have the TRISC<4> bit set (input) and a '0' data bit must have the TRISC<4> bit cleared (output). The same scenario is true for the SCL line with the TRISC<3> bit. Pull-up resistors must be provided externally to the SCL and SDA pins for proper operation of the I²C module.

The following events will cause SSP Interrupt Flag bit, SSPIF, to be set (SSP Interrupt will occur if enabled):

- Start condition
- Stop condition
- Data transfer byte transmitted/received

Master mode of operation can be done with either the Slave mode Idle (SSPM3:SSPM0 = 1011), or with the Slave active. When both Master and Slave modes are enabled, the software needs to differentiate the source(s) of the interrupt.

9.3.3 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions, allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the SSP module is disabled. The Stop (P) and Start (S) bits will toggle based on the Start and Stop conditions. Control of the I^2C bus may be taken when bit P (SSPSTAT<4>) is set, or the bus is Idle and both the S and P bits clear. When the bus is busy, enabling the SSP Interrupt will generate the interrupt when the Stop condition occurs.

In Multi-Master operation, the SDA line must be monitored to see if the signal level is the expected output level. This check only needs to be done when a high level is output. If a high level is expected and a low level is present, the device needs to release the SDA and SCL lines (set TRISC<4:3>). There are two stages where this arbitration can be lost, these are:

- Address Transfer
- Data Transfer

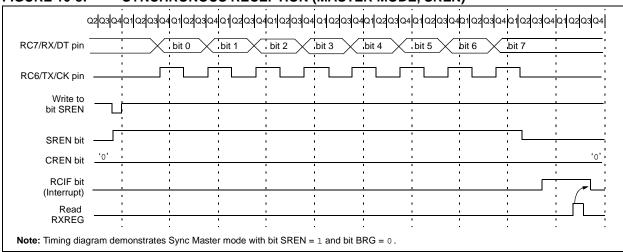
When the slave logic is enabled, the slave continues to receive. If arbitration was lost during the address transfer stage, communication to the device may be in progress. If addressed, an ACK pulse will be generated. If arbitration was lost during the data transfer stage, the device will need to retransfer the data at a later time.

	ABLE 3-3. REGISTERS ASSOCIATED WITH COPERATION										
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TMR0IE	INTE	RBIE	TMR0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
8Ch	PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
13h	SSPBUF	Synchrono	Synchronous Serial Port Receive Buffer/Transmit Register xxxx x							xxxx xxxx	uuuu uuuu
93h	SSPADD	Synchrono	Synchronous Serial Port (I ² C™ mode) Address Register							0000 0000	0000 0000
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
94h	SSPSTAT	SMP ⁽²⁾	CKE ⁽²⁾	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
87h	TRISC	PORTC Da	PORTC Data Direction Register						•	1111 1111	1111 1111

TABLE 9-3: REGISTERS ASSOCIATED WITH I²C[™] OPERATION

Legend: $x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by SSP module in <math>l^2C^{TM}$ mode.

Note 1: PSPIF and PSPIE are reserved on the PIC16CR73/76; always maintain these bits clear.


2: Maintain these bits clear in I²C mode.

10.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once Synchronous mode is selected, reception is enabled by setting either enable bit SREN (RCSTA<5>), or enable bit CREN (RCSTA<4>). Data is sampled on the RC7/RX/DT pin on the falling edge of the clock. If enable bit SREN is set, then only a single word is received. If enable bit CREN is set, the reception is continuous until CREN is cleared. If both bits are set, CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to the RCREG register (if it is empty). When the transfer is complete, interrupt flag bit RCIF (PIR1<5>) is set. The actual interrupt can be enabled/ disabled by setting/clearing enable bit RCIE (PIE1<5>). Flag bit RCIF is a read-only bit, which is reset by the hardware. In this case, it is reset when the RCREG register has been read and is empty. The RCREG is a double buffered register (i.e., it is a twodeep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR register. On the clocking of the last bit of the third byte, if the RCREG register is still full, then overrun error bit OERR (RCSTA<1>) is set. The word in the RSR will be lost. The RCREG register can be read twice to retrieve the two bytes in the FIFO. Bit OERR has to be cleared in software (by clearing bit CREN). If bit OERR is set, transfers from the RSR to the RCREG are inhibited, so it is essential to clear bit OERR if it is set. The ninth receive bit is buffered the same way as the receive data. Reading the RCREG register will load bit RX9D with a new value, therefore, it is essential for the user to read the RCSTA register before reading RCREG, in order not to lose the old RX9D information.

Steps to follow when setting up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate (Section 10.1 "USART Baud Rate Generator (BRG)").
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN and CSRC.
- 3. Ensure bits CREN and SREN are clear.
- 4. If interrupts are desired, then set enable bit RCIE.
- 5. If 9-bit reception is desired, then set bit RX9.
- 6. If a single reception is required, set bit SREN. For continuous reception set bit CREN.
- 7. Interrupt flag bit RCIF will be set when reception is complete and an interrupt will be generated if enable bit RCIE was set.
- 8. Read the RCSTA register to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 9. Read the 8-bit received data by reading the RCREG register.
- 10. If any error occurred, clear the error by clearing bit CREN.
- 11. If using interrupts, ensure that GIE and PEIE in the INTCON register are set.

FIGURE 10-8: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

12.0 SPECIAL FEATURES OF THE CPU

These devices have a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator Selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
 - Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- Sleep
- Code Protection
- ID Locations
- In-Circuit Serial Programming[™]

These devices have a Watchdog Timer, which can be enabled or disabled, using a Configuration bit. It runs off its own RC oscillator for added reliability.

There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in Reset until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up only. It is designed to keep the part in Reset while the power supply stabilizes, and is enabled or disabled, using a Configuration bit. With these two timers on-chip, most applications need no external Reset circuitry. Sleep mode is designed to offer a very low-current power-down mode. The user can wake-up from Sleep through external Reset, Watchdog Timer Wake-up or through an interrupt.

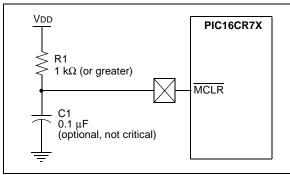
Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LP crystal option saves power. Configuration bits are used to select the desired oscillator mode.

Additional information on special features is available in the "*PIC*[®] *Mid-Range MCU Family Reference Manual*" (DS33023).

12.1 Configuration Bits

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space, which can be accessed only during programming.


12.4 MCLR

PIC16CR7X devices have a noise filter in the $\overline{\text{MCLR}}$ Reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive MCLR pin low.

The behavior of the ESD protection on the $\overline{\text{MCLR}}$ pin has been altered from previous devices of this family. Voltages applied to the pin that exceed its specification can result in both $\overline{\text{MCLR}}$ Resets and excessive current beyond the device specification during the ESD event. For this reason, Microchip recommends that the $\overline{\text{MCLR}}$ pin no longer be tied directly to VDD. The use of an RC network, as shown in Figure 12-5, is suggested.

FIGURE 12-5: RECOMMENDED MCLR CIRCUIT

12.5 Power-on Reset (POR)

A Power-on Reset pulse is generated on-chip when VDD rise is detected (in the range of 1.2V-1.7V). To take advantage of the POR, tie the $\overline{\text{MCLR}}$ pin to VDD as described in **Section 12.4 "MCLR**". A maximum rise time for VDD is specified. See the Electrical Specifications for details.

When the device starts normal operation (exits the Reset condition), device operating parameters (voltage, frequency, temperature,...) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met. For additional information, refer to Application Note AN607, "*Power-up Trouble Shooting*" (DS00607).

12.6 Power-up Timer (PWRT)

The Power-up Timer provides a fixed 72 ms nominal time-out on power-up only from the POR. The Power-up Timer operates on an internal RC oscillator. The chip is kept in Reset as long as the PWRT is active. The PWRT's time delay allows VDD to rise to an acceptable level. A Configuration bit is provided to enable/disable the PWRT.

The power-up time delay will vary from chip-to-chip, due to VDD, temperature and process variation. See DC parameters for details (TPWRT, parameter #33).

12.7 Oscillator Start-up Timer (OST)

The Oscillator Start-up Timer (OST) provides 1024 oscillator cycles (from OSC1 input) delay after the PWRT delay is over (if enabled). This helps to ensure that the crystal oscillator or resonator has started and stabilized.

The OST time-out is invoked only for XT, LP and HS modes and only on Power-on Reset, or wake-up from Sleep.

12.8 Brown-out Reset (BOR)

The Configuration bit, BODEN, can enable or disable the Brown-out Reset circuit. If VDD falls below VBOR (parameter D005, about 4V) for longer than TBOR (parameter #35, about 100 μ S), the brown-out situation will reset the device. If VDD falls below VBOR for less than TBOR, a Reset may not occur.

Once the brown-out occurs, the device will remain in Brown-out Reset until VDD rises above VBOR. The Power-up Timer then keeps the device in Reset for TPWRT (parameter #33, about 72 mS). If VDD should fall below VBOR during TPWRT, the Brown-out Reset process will restart when VDD rises above VBOR, with the Power-up Timer Reset. The Power-up Timer is always enabled when the Brown-out Reset circuit is enabled, regardless of the state of the PWRT Configuration bit.

12.9 Time-out Sequence

On power-up, the time-out sequence is as follows: the PWRT delay starts (if enabled) when a POR Reset occurs. Then, OST starts counting 1024 oscillator cycles when PWRT ends (LP, XT, HS). When the OST ends, the device comes out of Reset.

If MCLR is kept low long enough, all delays will expire. Bringing MCLR high will begin execution immediately. This is useful for testing purposes or to synchronize more than one PIC16CR7X device operating in parallel.

Table 12-5 shows the Reset conditions for the STATUS, PCON and PC registers, while Table 12-6 shows the Reset conditions for all the registers.

NOTES:

14.2 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for all PIC MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

14.3 MPLAB C18 and MPLAB C30 C Compilers

The MPLAB C18 and MPLAB C30 Code Development Systems are complete ANSI C compilers for Microchip's PIC18 family of microcontrollers and the dsPIC30, dsPIC33 and PIC24 family of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

14.4 MPLINK Object Linker/ MPLIB Object Librarian

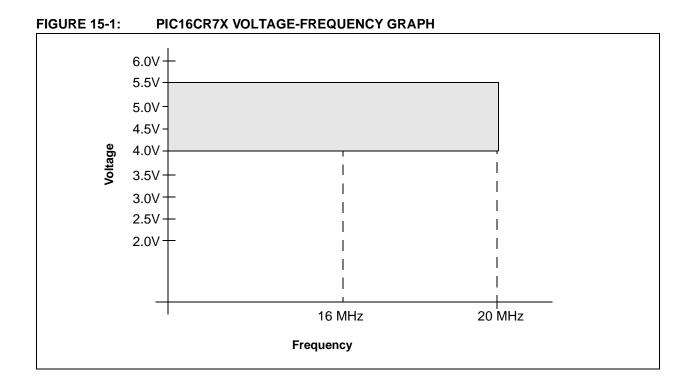
The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

14.5 MPLAB ASM30 Assembler, Linker and Librarian

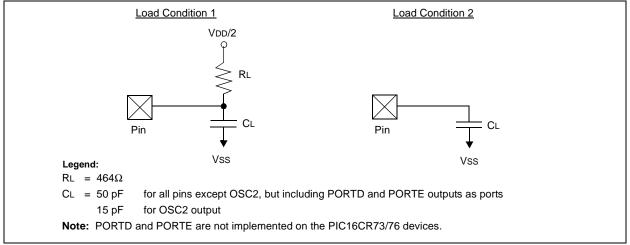

MPLAB ASM30 Assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- Support for the entire dsPIC30F instruction set
- Support for fixed-point and floating-point data
- Command line interface
- Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

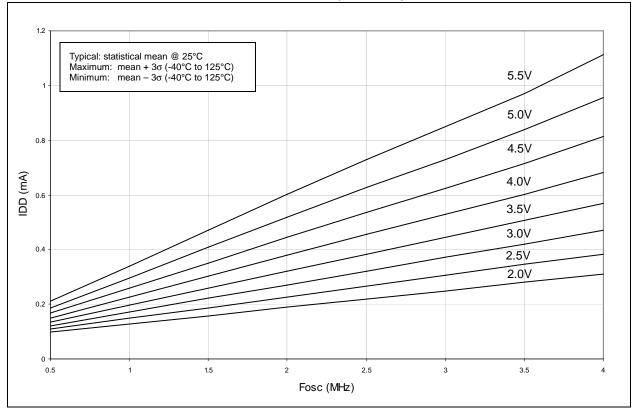
14.6 MPLAB SIM Software Simulator

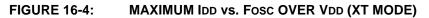
The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

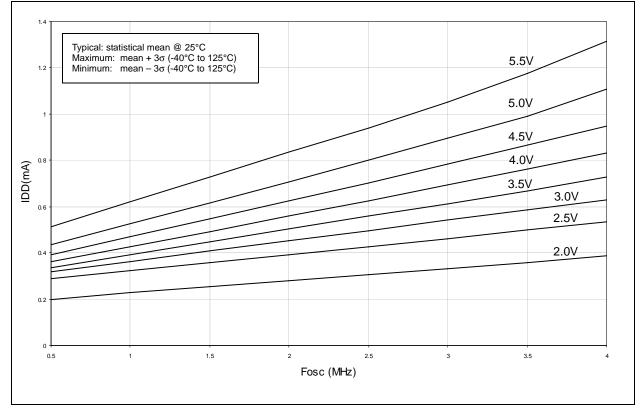
The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C18 and MPLAB C30 C Compilers, and the MPASM and MPLAB ASM30 Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.



15.3 Timing Parameter Symbology


The timing parameter symbols have been created using one of the following formats:


1. TppS2p	pS	3. Tcc:st	(I ² C [™] specifications only)
2. TppS		4. Ts	(I ² C [™] specifications only)
Т			· · · · ·
F	Frequency	Т	Time
Lowerca	se letters (pp) and their meanings:		
рр			
сс	CCP1	OSC	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	tO	ТОСКІ
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
	se letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (High-impendance)	V	Valid
L	Low	Z	High-impendance
I ² C™ only	,		
AA	output access	High	High
BUF	Bus free	Low	Low
Tcc:st (I ² C specifications only)		
CC			
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	Stop condition
STA	Start condition		


FIGURE 15-2: LOAD CONDITIONS

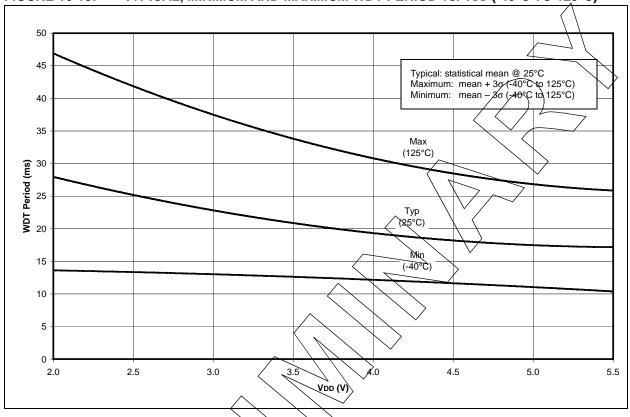
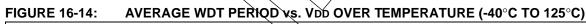
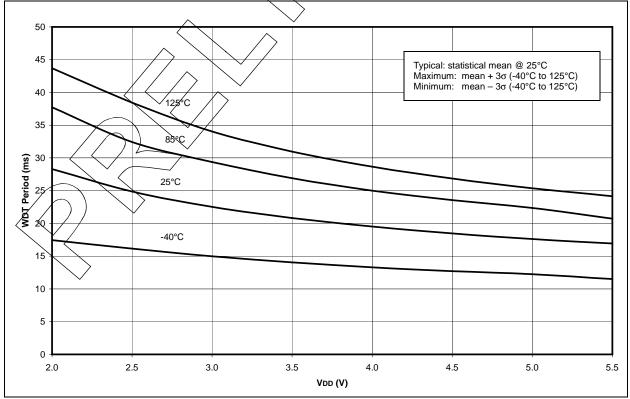




FIGURE 16-13: TYPICAL, MINIMUM AND MAXIMUM WDT PERIOD vs. Vdd (-40°C TO 125°C)

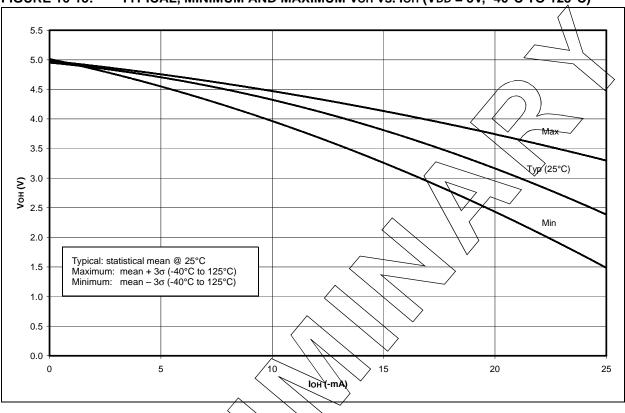


FIGURE 16-16: TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 3V, -40°C TO 125°C)

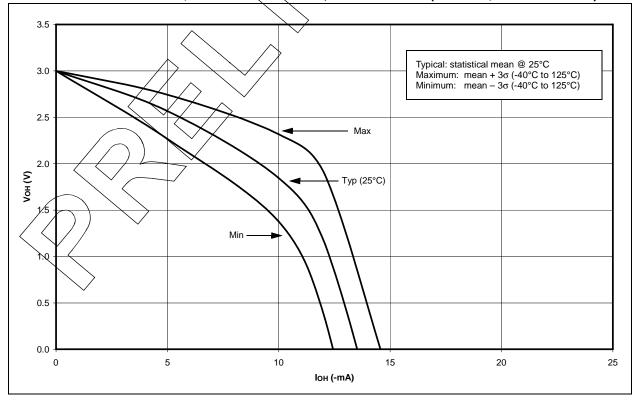
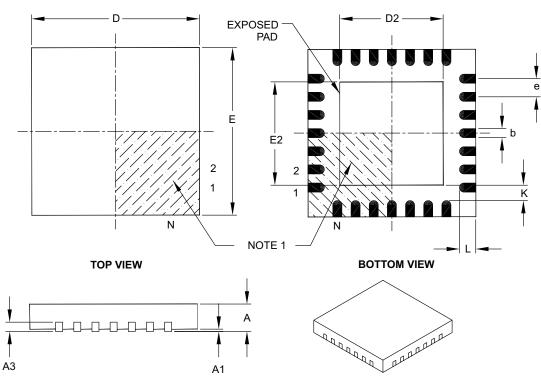



FIGURE 16-15: TYPICAL, MINIMUM AND MAXIMUM VOH vs. IOH (VDD = 5V, -40°C TO 125°C)

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	6	
C	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N		28		
Pitch	е		0.65 BSC		
Overall Height	А	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	E		6.00 BSC		
Exposed Pad Width	E2	3.65	3.70	4.20	
Overall Length	D		6.00 BSC		
Exposed Pad Length	D2	3.65	3.70	4.20	
Contact Width	b	0.23	0.30	0.35	
Contact Length	L	0.50	0.55	0.70	
Contact-to-Exposed Pad	К	0.20	-	-	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
Fror	n: Name	
	Company	
	Address	
	Telephone: ()	FAX: ()
Арр	lication (optional):	
Wou	Ild you like a reply?YN	
Dev	ice: PIC16CR7X	Literature Number: DS21993C
Que	stions:	
1.	What are the best features of this do	cument?
2.	How does this document meet your	hardware and software development needs?
3.	Do you find the organization of this of	locument easy to follow? If not, why?
4.	What additions to the document do y	you think would enhance the structure and subject?
_		
5.	What deletions from the document c	ould be made without affecting the overall usefulness?
0		a formation (what and what and)
6.	Is there any incorrect or misleading i	nformation (what and where)?
7.	How would you improve this docume	ent?