

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	133MHz
Co-Processors/DSP	Communications; CPM, Security; SEC
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (3), 10/100Mbps (2)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 100°C (TA)
Security Features	Cryptography
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc885czp133

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Overview

The MPC885/MPC880 is a versatile single-chip integrated microprocessor and peripheral combination that can be used in a variety of controller applications and communications and networking systems. The MPC885/MPC880 provides enhanced ATM functionality, an additional fast Ethernet controller, a USB, and an encryption block.

Table 1 shows the functionality supported by MPC885/MPC880.

Part	Cache (Kbytes)	Ethe	ernet	scc	SMC	USB	ATM Support	Security
Fait	I Cache D Cache		10BaseT	10/100	300	SINC	036		Engine
MPC885	8	8	Up to 3	2	3	2	1	Serial ATM and UTOPIA interface	Yes
MPC880	8	8	Up to 2	2	2	2	1	Serial ATM and UTOPIA interface	No

Table 1. MPC885 Family

2 Features

The MPC885/MPC880 is comprised of three modules that each use the 32-bit internal bus: a MPC8xx core, a system integration unit (SIU), and a communications processor module (CPM).

The following list summarizes the key MPC885/MPC880 features:

- Embedded MPC8xx core up to 133 MHz
- Maximum frequency operation of the external bus is 80 MHz (in 1:1 mode)
 - The 133-MHz core frequency supports 2:1 mode only.
 - The 66-/80-MHz core frequencies support both the 1:1 and 2:1 modes.
- Single-issue, 32-bit core (compatible with the Power Architecture definition) with thirty-two 32-bit general-purpose registers (GPRs)
 - The core performs branch prediction with conditional prefetch and without conditional execution.
 - 8-Kbyte data cache and 8-Kbyte instruction cache (see Table 1)
 - Instruction cache is two-way, set-associative with 256 sets in 2 blocks
 - Data cache is two-way, set-associative with 256 sets
 - Cache coherency for both instruction and data caches is maintained on 128-bit (4-word) cache blocks.
 - Caches are physically addressed, implement a least recently used (LRU) replacement algorithm, and are lockable on a cache block basis.
 - MMUs with 32-entry TLB, fully associative instruction and data TLBs
 - MMUs support multiple page sizes of 4, 16, and 512 Kbytes, and 8 Mbytes; 16 virtual address spaces and 16 protection groups
 - Advanced on-chip emulation debug mode

Thermal Calculation and Measurement

If the board temperature is known, an estimate of the junction temperature in the environment can be made using the following equation:

$$T_{J} = T_{B} + (R_{\theta JB} \times P_{D})$$

where:

 $R_{\theta JB}$ = junction-to-board thermal resistance (°C/W)

 T_{B} = board temperature (°C)

 P_D = power dissipation in package

If the board temperature is known and the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. For this method to work, the board and board mounting must be similar to the test board used to determine the junction-to-board thermal resistance, namely a 2s2p (board with a power and a ground plane) and vias attaching the thermal balls to the ground plane.

7.4 Estimation Using Simulation

When the board temperature is not known, a thermal simulation of the application is needed. The simple two resistor model can be used with the thermal simulation of the application [2], or a more accurate and complex model of the package can be used in the thermal simulation.

7.5 Experimental Determination

To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

 Ψ_{JT} = thermal characterization parameter

 T_T = thermocouple temperature on top of package

 P_D = power dissipation in package

The thermal characterization parameter is measured per the JESD51-2 specification published by JEDEC using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by the cooling effects of the thermocouple wire.

Part Frequency	66 I	MHz	80 MHz		
r art requency	Min	Мах	Min	Max	
Core frequency	40	66.67	40	80	
Bus frequency	40	66.67	40	80	

Table 7. Frequency Ranges for Standard Part Frequencies (1:1 Bus Mode)

Table 8. Frequency Ranges for Standard Part Frequencies (2:1 Bus Mode)

Part Frequency	66 I	MHz	80	MHz	133 MHz		
Fait inequency	Min	Мах	Min	Мах	Min	Max 133	
Core frequency	40	66.67	40	80	40	133	
Bus frequency	20	33.33	20	40	20	66	

Table 9 provides the timings for the MPC885/MPC880 at 33-, 40-, 66-, and 80-MHz bus operation.

The timing for the MPC885/MPC880 bus shown assumes a 50-pF load for maximum delays and a 0-pF load for minimum delays. CLKOUT assumes a 100-pF load for maximum delays and a 50-pF load for minimum delays.

Num	Characteristic	33	MHz	40 I	MHz	66 I	MHz	80 MHz		Unit
Num			Max	Min	Max	Min	Max	Min	Max	Unit
B1	Bus period (CLKOUT), see Table 7	_	—	—	—		_	_	—	ns
B1a	EXTCLK to CLKOUT phase skew - If CLKOUT is an integer multiple of EXTCLK, then the rising edge of EXTCLK is aligned with the rising edge of CLKOUT. For a non-integer multiple of EXTCLK, this synchronization is lost, and the rising edges of EXTCLK and CLKOUT have a continuously varying phase skew.	-2	+2	-2	+2	-2	+2	-2	+2	ns
B1b	CLKOUT frequency jitter peak-to-peak	_	1	_	1	_	1	_	1	ns
B1c	Frequency jitter on EXTCLK	_	0.50	_	0.50	_	0.50	_	0.50	%
B1d	CLKOUT phase jitter peak-to-peak for OSCLK \geq 15 MHz	—	4	—	4	_	4	_	4	ns
	CLKOUT phase jitter peak-to-peak for OSCLK < 15 MHz	—	5	—	5	_	5	_	5	ns
B2	CLKOUT pulse width low (MIN = $0.4 \times B1$, MAX = $0.6 \times B1$)	12.1	18.2	10.0	15.0	6.1	9.1	5.0	7.5	ns
B3	CLKOUT pulse width high (MIN = $0.4 \times B1$, MAX = $0.6 \times B1$)	12.1	18.2	10.0	15.0	6.1	9.1	5.0	7.5	ns
B4	CLKOUT rise time	—	4.00	—	4.00		4.00		4.00	ns

Table 9. Bus Operation Timings

Bus Signal Timing

Num	Characteristic	33	MHz	40	MHz	66 I	MHz	80 MHz		Unit
Num	Characteristic	Min	Мах	Min	Мах	Min	Мах	Min	Мах	Unit
B5	CLKOUT fall time	_	4.00	_	4.00	_	4.00	_	4.00	ns
B7	CLKOUT to A(0:31), BADDR(28:30), RD/ \overline{WR} , BURST, D(0:31) output hold (MIN = 0.25 × B1)	7.60	—	6.30		3.80	_	3.13	—	ns
B7a	CLKOUT to TSIZ(0:1), $\overline{\text{REG}}$, $\overline{\text{RSV}}$, $\overline{\text{BDIP}}$, PTR output hold (MIN = 0.25 × B1)	7.60		6.30		3.80		3.13	_	ns
B7b	CLKOUT to \overline{BR} , \overline{BG} , FRZ, VFLS(0:1), VF(0:2) IWP(0:2), LWP(0:1), \overline{STS} output hold (MIN = 0.25 × B1)	7.60	—	6.30	_	3.80	—	3.13	—	ns
B8	CLKOUT to A(0:31), BADDR(28:30) RD/ \overline{WR} , BURST, D(0:31) valid (MAX = 0.25 × B1 + 6.3)	—	13.80	_	12.50	_	10.00	—	9.43	ns
B8a	CLKOUT to TSIZ(0:1), $\overline{\text{REG}}$, $\overline{\text{RSV}}$, AT(0:3) $\overline{\text{BDIP}}$, PTR valid (MAX = 0.25 × B1 + 6.3)	—	13.80		12.50		10.00	—	9.43	ns
B8b	CLKOUT to \overline{BR} , \overline{BG} , VFLS(0:1), VF(0:2), IWP(0:2), FRZ, LWP(0:1), \overline{STS} valid ⁴ (MAX = 0.25 × B1 + 6.3)	_	13.80	_	12.50	_	10.00	_	9.43	ns
B9	CLKOUT to A(0:31), BADDR(28:30), RD/WR, BURST, D(0:31), TSIZ(0:1), REG, RSV, AT(0:3), PTR High-Z (MAX = 0.25 × B1 + 6.3)	7.60	13.80	6.30	12.50	3.80	10.00	3.13	9.43	ns
B11	CLKOUT to \overline{TS} , \overline{BB} assertion (MAX = 0.25 × B1 + 6.0)	7.60	13.60	6.30	12.30	3.80	9.80	3.13	9.13	ns
B11a	CLKOUT to \overline{TA} , \overline{BI} assertion (when driven by the memory controller or PCMCIA interface) (MAX = $0.00 \times B1 + 9.30^{1}$)	2.50	9.30	2.50	9.30	2.50	9.30	2.50	9.30	ns
B12	CLKOUT to \overline{TS} , \overline{BB} negation (MAX = 0.25 × B1 + 4.8)	7.60	12.30	6.30	11.00	3.80	8.50	3.13	7.92	ns
B12a	CLKOUT to \overline{TA} , \overline{BI} negation (when driven by the memory controller or PCMCIA interface) (MAX = $0.00 \times B1 + 9.00$)	2.50	9.00	2.50	9.00	2.50	9.00	2.5	9.00	ns
B13	CLKOUT to $\overline{\text{TS}}$, $\overline{\text{BB}}$ High-Z (MIN = 0.25 × B1)	7.60	21.60	6.30	20.30	3.80	14.00	3.13	12.93	ns
B13a	CLKOUT to \overline{TA} , \overline{BI} High-Z (when driven by the memory controller or PCMCIA interface) (MIN = 0.00 × B1 + 2.5)	2.50	15.00	2.50	15.00	2.50	15.00	2.5	15.00	ns
B14	CLKOUT to $\overline{\text{TEA}}$ assertion (MAX = 0.00 × B1 + 9.00)	2.50	9.00	2.50	9.00	2.50	9.00	2.50	9.00	ns
B15	CLKOUT to TEA High-Z (MIN = $0.00 \times B1 + 2.50$)	2.50	15.00	2.50	15.00	2.50	15.00	2.50	15.00	ns
B16	$\overline{\text{TA}}$, $\overline{\text{BI}}$ valid to CLKOUT (setup time) (MIN = 0.00 × B1 + 6.00)	6.00	_	6.00	_	6.00	_	6	_	ns
B16a	TEA, $\overline{\text{KR}}$, $\overline{\text{RETRY}}$, $\overline{\text{CR}}$ valid to CLKOUT (setup time) (MIN = 0.00 × B1 + 4.5)	4.50	_	4.50	_	4.50	_	4.50	_	ns

Table 9. Bus Operation Timings (continued)

Num	Characteristic	33	MHz	40 I	MHz	66 I	MHz	80 MHz		Unit
Num	Characteristic	Min	Мах	Min	Мах	Min	Max	Min	Мах	Unit
B16b	\overline{BB} , \overline{BG} , \overline{BR} , valid to CLKOUT (setup time) ² (4MIN = 0.00 × B1 + 0.00)	4.00	—	4.00	_	4.00	—	4.00	_	ns
B17	CLKOUT to TA, TEA, BI, BB, BG, BR valid (hold time) (MIN = $0.00 \times B1 + 1.00^3$)	1.00		1.00		2.00	_	2.00		ns
B17a	CLKOUT to $\overline{\text{KR}}$, $\overline{\text{RETRY}}$, $\overline{\text{CR}}$ valid (hold time) (MIN = 0.00 × B1 + 2.00)	2.00	—	2.00	-	2.00	—	2.00		ns
B18	D(0:31) valid to CLKOUT rising edge (setup time) ⁴ (MIN = $0.00 \times B1 + 6.00$)	6.00	—	6.00	_	6.00	—	6.00	_	ns
B19	CLKOUT rising edge to D(0:31) valid (hold time) ⁴ (MIN = $0.00 \times B1 + 1.00^5$)	1.00	—	1.00		2.00	—	2.00		ns
B20	D(0:31) valid to CLKOUT falling edge (setup time) ⁶ (MIN = $0.00 \times B1 + 4.00$)	4.00	—	4.00		4.00	_	4.00		ns
B21	CLKOUT falling edge to D(0:31) valid (hold time) ⁶ (MIN = $0.00 \times B1 + 2.00$)	2.00	—	2.00		2.00	—	2.00		ns
B22	CLKOUT rising edge to \overline{CS} asserted GPCM ACS = 00 (MAX = 0.25 × B1 + 6.3)	7.60	13.80	6.30	12.50	3.80	10.00	3.13	9.43	ns
B22a	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 10, TRLX = [0 or 1] (MAX = 0.00 × B1 + 8.00)		8.00		8.00	_	8.00	_	8.00	ns
B22b	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 11, TRLX = [0 or 1], EBDF = 0 (MAX = 0.25 × B1 + 6.3)	7.60	13.80	6.30	12.50	3.80	10.00	3.13	9.43	ns
B22c	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 11, TRLX = [0 or 1], EBDF = 1 (MAX = 0.375 × B1 + 6.6)	10.90	18.00	10.90	16.00	5.20	12.30	4.69	10.93	ns
B23	CLKOUT rising edge to \overline{CS} negated GPCM read access, GPCM write access ACS = 00 and CSNT = 0 (MAX = 0.00 × B1 + 8.00)	2.00	8.00	2.00	8.00	2.00	8.00	2.00	8.00	ns
B24	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 10, TRLX = 0 (MIN = $0.25 \times B1 - 2.00$)	5.60		4.30		1.80		1.13		ns
B24a	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 11 TRLX = 0 (MIN = 0.50 × B1 - 2.00)	13.20		10.50		5.60	_	4.25		ns
B25	CLKOUT rising edge to \overline{OE} , \overline{WE} (0:3) asserted (MAX = 0.00 × B1 + 9.00)	_	9.00	—	9.00	—	9.00	—	9.00	ns
B26	CLKOUT rising edge to \overline{OE} negated (MAX = 0.00 × B1 + 9.00)	2.00	9.00	2.00	9.00	2.00	9.00	2.00	9.00	ns
B27	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 10, TRLX = 1 (MIN = $1.25 \times B1 - 2.00$)	35.90		29.30		16.90		13.60		ns

Table 9. Bus Operation Timings (continued)

Figure 12 provides the timing for the input data controlled by the UPM for data beats where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)

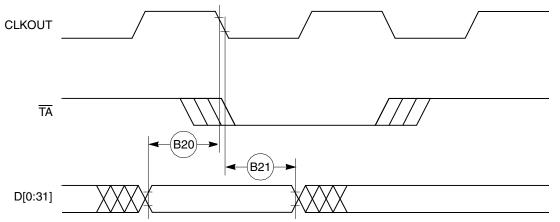


Figure 12. Input Data Timing when Controlled by UPM in the Memory Controller and DLT3 = 1

Figure 13 through Figure 16 provide the timing for the external bus read controlled by various GPCM factors.

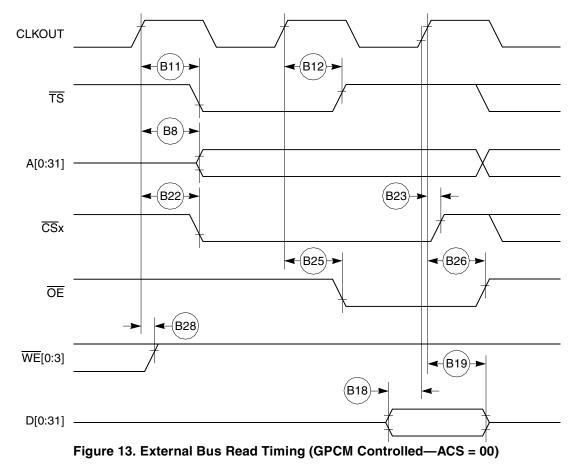


Table 11 shows the PCMCIA timing for the MPC885/MPC880.

Num	Characteristic	33	MHz	40	MHz	66 I	MHz	80 MHz		Unit
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
P44	A(0:31), $\overline{\text{REG}}$ valid to PCMCIA strobe asserted ¹ (MIN = 0.75 × B1 – 2.00)	20.70	_	16.70	—	9.40	_	7.40		ns
P45	A(0:31), $\overline{\text{REG}}$ valid to ALE negation ¹ (MIN = 1.00 × B1 – 2.00)	28.30	_	23.00	_	13.20	_	10.50		ns
P46	CLKOUT to $\overline{\text{REG}}$ valid (MAX = 0.25 × B1 + 8.00)	7.60	15.60	6.30	14.30	3.80	11.80	3.13	11.13	ns
P47	CLKOUT to REG invalid (MIN = 0.25 - B1 + 1.00)	8.60	—	7.30	—	4.80	_	4.13	—	ns
P48	CLKOUT to $\overline{CE1}$, $\overline{CE2}$ asserted (MAX = 0.25 × B1 + 8.00)	7.60	15.60	6.30	14.30	3.80	11.80	3.13	11.13	ns
P49	CLKOUT to $\overline{CE1}$, $\overline{CE2}$ negated (MAX = 0.25 × B1 + 8.00)	7.60	15.60	6.30	14.30	3.80	11.80	3.13	11.13	ns
P50	CLKOUT to \overline{PCOE} , \overline{IORD} , \overline{PCWE} , \overline{IOWR} assert time (MAX = 0.00 × B1 + 11.00)	_	11.00	—	11.00	_	11.00	_	11.00	ns
P51	CLKOUT to \overline{PCOE} , \overline{IORD} , \overline{PCWE} , \overline{IOWR} negate time (MAX = 0.00 × B1 + 11.00)	2.00	11.00	2.00	11.00	2.00	11.00	2.00	11.00	ns
P52	CLKOUT to ALE assert time (MAX = $0.25 \times B1 + 6.30$)	7.60	13.80	6.30	12.50	3.80	10.00	3.13	9.40	ns
P53	CLKOUT to ALE negate time (MAX = $0.25 \times B1 + 8.00$)	_	15.60	—	14.30	_	11.80		11.13	ns
P54	PCWE, IOWR negated to D(0:31) invalid 1(MIN = $0.25 \times B1 - 2.00)$	5.60	—	4.30	—	1.80	—	1.13	_	ns
P55	$\overline{\text{WAITA}}$ and $\overline{\text{WAITB}}$ valid to CLKOUT rising edge ¹ (MIN = 0.00 × B1 + 8.00)	8.00	_	8.00	—	8.00	_	8.00	_	ns
P56	CLKOUT rising edge to $\overline{\text{WAITA}}$ and $\overline{\text{WAITB}}$ invalid ¹ (MIN = 0.00 × B1 + 2.00)	2.00	—	2.00	—	2.00	—	2.00	—	ns

PSST = 1. Otherwise add PSST times cycle time.

PSHT = 0. Otherwise add PSHT times cycle time.

These synchronous timings define when the WAITx signals are detected in order to freeze (or relieve) the PCMCIA current cycle. The WAITx assertion will be effective only if it is detected 2 cycles before the PSL timer expiration. See Chapter 16, "PCMCIA Interface," in the MPC885 PowerQUICC™ Family Reference Manual.

1

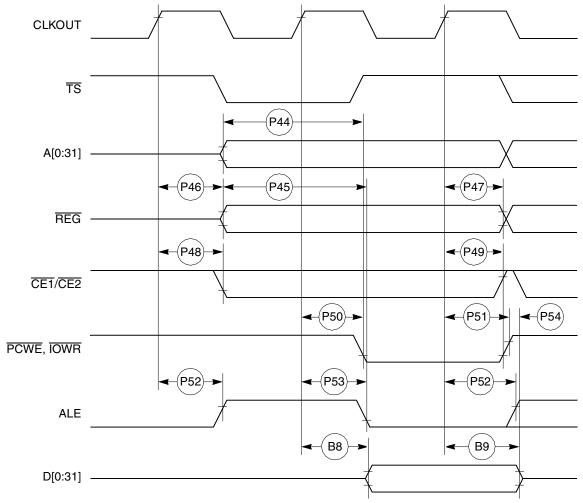


Figure 29 provides the PCMCIA access cycle timing for the external bus write.

Figure 29. PCMCIA Access Cycles Timing External Bus Write

Figure 30 provides the PCMCIA \overline{WAIT} signals detection timing.

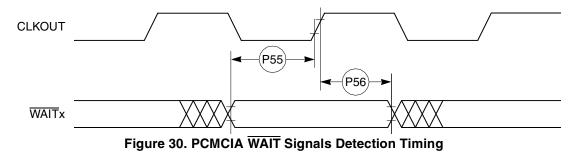


Table 13 shows the debug port timing for the MPC885/MPC880.

Table 13. Debug Port Timing

Num	Characteristic	All Frequer	Unit	
Nulli	Characteristic	Min	Мах	Unit
D61	DSCK cycle time	3 × T _{CLOCKOUT}		_
D62	DSCK clock pulse width	$1.25 \times T_{CLOCKOUT}$	_	—
D63	DSCK rise and fall times	0.00	3.00	ns
D64	DSDI input data setup time	8.00	_	ns
D65	DSDI data hold time	5.00	_	ns
D66	DSCK low to DSDO data valid	0.00	15.00	ns
D67	DSCK low to DSDO invalid	0.00	2.00	ns

Figure 33 provides the input timing for the debug port clock.

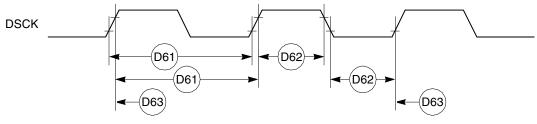
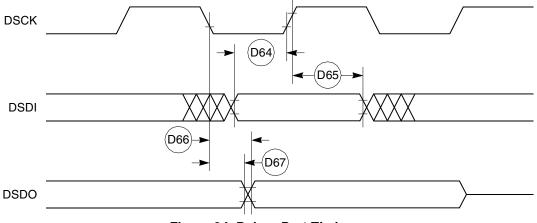



Figure 33. Debug Port Clock Input Timing

Figure 34 provides the timing for the debug port.



Figure 35 shows the reset timing for the data bus configuration.

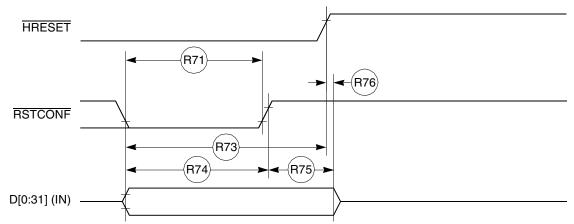


Figure 35. Reset Timing—Configuration from Data Bus

Figure 36 provides the reset timing for the data bus weak drive during configuration.

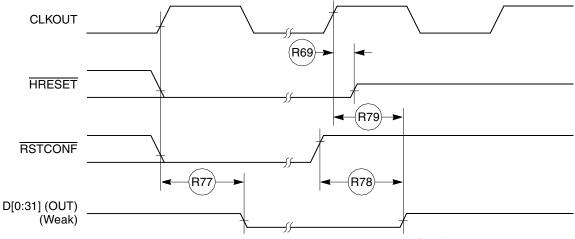
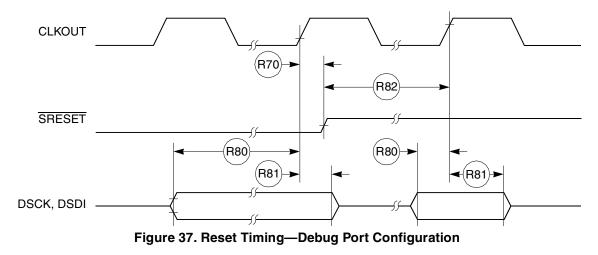



Figure 37 provides the reset timing for the debug port configuration.

IEEE 1149.1 Electrical Specifications

11 IEEE 1149.1 Electrical Specifications

Table 15 provides the JTAG timings for the MPC885/MPC880 shown in Figure 38 through Figure 41.

Table 15. JTAG Timing

Num	Characteristic	All Freq	uencies	l lucit
Num	Characteristic	Min	Max	Unit
J82	TCK cycle time	100.00		ns
J83	TCK clock pulse width measured at 1.5 V	40.00		ns
J84	TCK rise and fall times	0.00	10.00	ns
J85	TMS, TDI data setup time	5.00	_	ns
J86	TMS, TDI data hold time	25.00	_	ns
J87	TCK low to TDO data valid	—	27.00	ns
J88	TCK low to TDO data invalid	0.00	_	ns
J89	TCK low to TDO high impedance	_	20.00	ns
J90	TRST assert time	100.00	_	ns
J91	TRST setup time to TCK low	40.00	_	ns
J92	TCK falling edge to output valid	_	50.00	ns
J93	TCK falling edge to output valid out of high impedance	_	50.00	ns
J94	TCK falling edge to output high impedance	_	50.00	ns
J95	Boundary scan input valid to TCK rising edge	50.00	_	ns
J96	TCK rising edge to boundary scan input invalid	50.00		ns

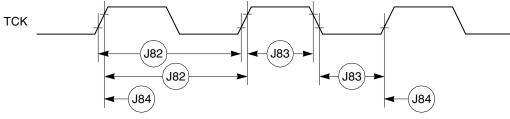
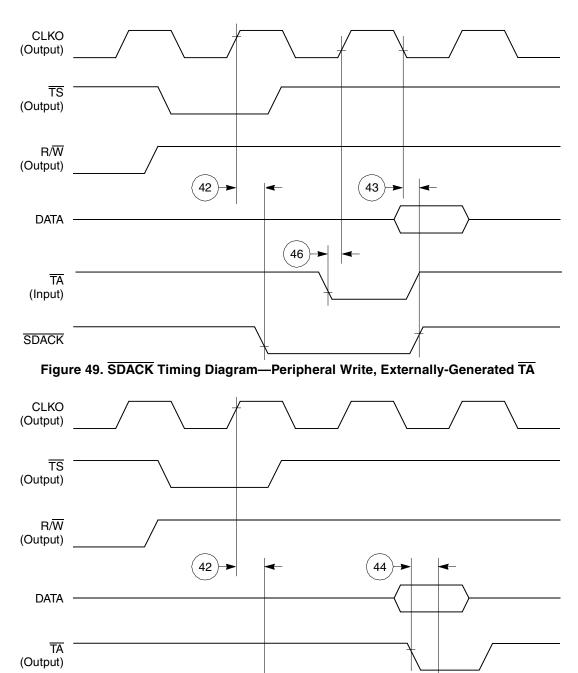



Figure 38. JTAG Test Clock Input Timing

CPM Electrical Characteristics

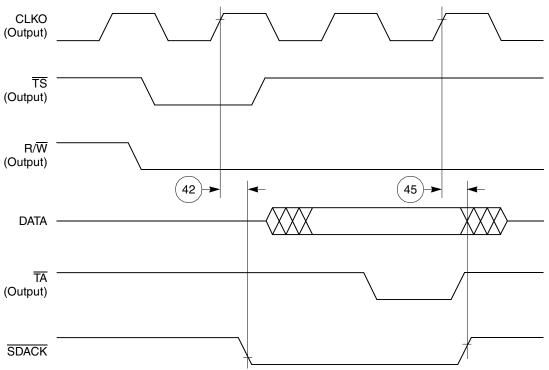


Figure 51. SDACK Timing Diagram—Peripheral Read, Internally-Generated TA

12.4 Baud Rate Generator AC Electrical Specifications

Table 19 provides the baud rate generator timings as shown in Figure 52.

Num Characteristic		All Frequencies		Unit
Num			Мах	Unit
50	BRGO rise and fall time		10	ns
51	BRGO duty cycle		60	%
52	BRGO cycle		—	ns

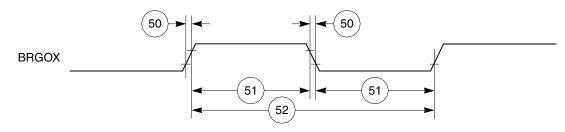
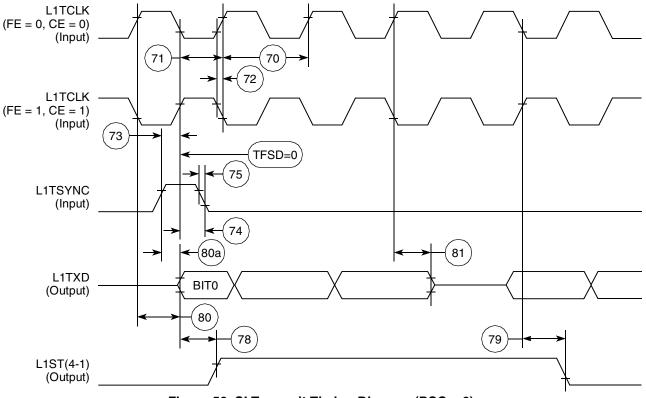



Figure 52. Baud Rate Generator Timing Diagram

CPM Electrical Characteristics

SCC in NMSI Mode Electrical Specifications 12.7

Table 22 provides the NMSI external clock timing.

Num	Characteristic	All Frequencies		Unit
Nulli	Characteristic	Min	Мах	Unit
100	RCLK1 and TCLK1 width high ¹	1/SYNCCLK	_	ns
101	RCLK1 and TCLK1 width low	1/SYNCCLK + 5	_	ns
102	RCLK1 and TCLK1 rise/fall time	—	15.00	ns
103	TXD1 active delay (from TCLK1 falling edge)	0.00	50.00	ns
104	RTS1 active/inactive delay (from TCLK1 falling edge)	0.00	50.00	ns
105	CTS1 setup time to TCLK1 rising edge	5.00	_	ns
106	RXD1 setup time to RCLK1 rising edge	5.00	—	ns
107	RXD1 hold time from RCLK1 rising edge ²	5.00	—	ns
108	CD1 setup time to RCLK1 rising edge	5.00	—	ns

Table 22. NMSI External Clock Timing

The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater than or equal to 2.25/1.
 Also applies to CD and CTS hold time when they are used as external sync signals.

Table 23 provides the NMSI internal clock timing.

Table 23. NMSI Internal Clock Timing

Num	Characteristic	All Frequencies		Unit	
Nulli		Min		Onit	
100	RCLK1 and TCLK1 frequency ¹	0.00	SYNCCLK/3	MHz	
102	RCLK1 and TCLK1 rise/fall time	—	—	ns	
103	TXD1 active delay (from TCLK1 falling edge)	0.00	30.00	ns	
104	RTS1 active/inactive delay (from TCLK1 falling edge)	0.00	30.00	ns	
105	CTS1 setup time to TCLK1 rising edge	40.00	—	ns	
106	RXD1 setup time to RCLK1 rising edge	40.00	—	ns	
107	RXD1 hold time from RCLK1 rising edge ²	0.00	—	ns	
108	CD1 setup time to RCLK1 rising edge	40.00	—	ns	

¹ The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater than or equal to 3/1.

² Also applies to \overline{CD} and \overline{CTS} hold time when they are used as external sync signals

CPM Electrical Characteristics

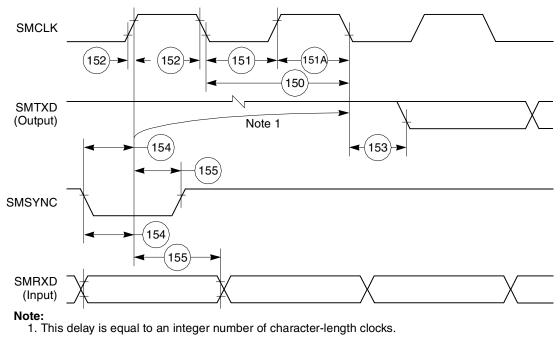


Figure 65. SMC Transparent Timing Diagram

12.10 SPI Master AC Electrical Specifications

Table 26 provides the SPI master timings as shown in Figure 66 and Figure 67.

Num	Characteristic	All Frequencies		Unit
Num	Cildracteristic	Min		
160	MASTER cycle time	4	1024	t _{cyc}
161	MASTER clock (SCK) high or low time	2 512		t _{cyc}
162	2 MASTER data setup time (inputs) 15 —		—	ns
163	Master data hold time (inputs)	0	—	ns
164	Master data valid (after SCK edge)	— 10		ns
165	Master data hold time (outputs)	0	—	ns
166	Rise time output	—	15	ns
167	Fall time output—15		15	ns

Table 39.	Pin	Assignments	(continued)
-----------	-----	-------------	-------------

Name	Pin Number	Туре
WE0, BS_B0, IORD	B18	Output
WE1, BS_B1, IOWR	E16	Output
WE2, BS_B2, PCOE	C17	Output
WE3, BS_B3, PCWE	B19	Output
BS_A[0:3]	D17, C18, C19, F16	Output
GPL_A0, GPL_B0	B17	Output
OE, GPL_A1, GPL_B1	A18	Output
<u>GPL_A</u> [2:3], <u>GPL_B</u> [2:3], <u>CS</u> [2:3]	D16, A17	Output
UPWAITA, GPL_A4	B13	Bidirectional
UPWAITB, GPL_B4	A14	Bidirectional
GPL_A5	C13	Output
PORESET	B3	Input
RSTCONF	D4	Input
HRESET	B4	Open-drain
SRESET	A3	Open-drain
XTAL	A4	Analog output
EXTAL	D5	Analog input (3.3 V only)
CLKOUT	G4	Output
EXTCLK	A5	Input (3.3 V only)
TEXP	C4	Output
ALE_A	B7	Output
CE1_A	B15	Output
CE2_A	C15	Output
WAIT_A, SOC_Split ¹	A2	Input
WAIT_B	C3	Input
IP_A0, UTPB_Split0 ¹	B1	Input
IP_A1, UTPB_Split1 ¹	C1	Input
IP_A2, IOIS16_A, UTPB_Split2 ¹	F4	Input
IP_A3, UTPB_Split3 ¹	E3	Input
IP_A4, UTPB_Split4 ¹	D2	Input
IP_A5, UTPB_Split5 ¹	D1	Input
IP_A6, UTPB_Split6 ¹	E2	Input
IP_A7, UTPB_Split7 ¹	D3	Input

Table 39. Pin Assignments (continued)

Name	Pin Number	Туре
ALE_B, DSCK/AT1	D8	Bidirectional Three-state
IP_B[0:1], IWP[0:1], VFLS[0:1]	A9, D9	Bidirectional
IP_B2, IOIS16_B, AT2	C8	Bidirectional Three-state
IP_B3, IWP2, VF2	C9	Bidirectional
IP_B4, LWP0, VF0	В9	Bidirectional
IP_B5, LWP1, VF1	A10	Bidirectional
IP_B6, DSDI, AT0	A8	Bidirectional Three-state
IP_B7, PTR, AT3	B8	Bidirectional Three-state
OP0, UtpClk_Split ¹	B6	Bidirectional
OP1	C6	Output
OP2, MODCK1, STS	D6	Bidirectional
OP3, MODCK2, DSDO	A6	Bidirectional
BADDR30, REG	A7	Output
BADDR[28:29]	C5, B5	Output
ĀS	D7	Input
PA15, USBRXD	N16	Bidirectional
PA14, USBOE	P17	Bidirectional (Optional: open-drain)
PA13, RXD2	W11	Bidirectional
PA12, TXD2	P16	Bidirectional (Optional: open-drain)
PA11, RXD4, MII1-TXD0, W9 Bidirec		Bidirectional (Optional: open-drain)
PA10, MII1-TXER, TIN4, CLK7	W17	Bidirectional (Optional: open-drain)
PA9, L1TXDA, RXD3	T15	Bidirectional (Optional: open-drain)
PA8, L1RXDA, TXD3	W15	Bidirectional (Optional: open-drain)
PA7, CLK1, L1RCLKA, BRGO1, TIN1	V14	Bidirectional
PA6, CLK2, TOUT1	U13	Bidirectional
PA5, CLK3, L1TCLKA, W13 Bidirectiona		Bidirectional

Name	Pin Number	Туре
PE14, RXD3, MII2-TXD0, RMII2-TXD0	V7	Bidirectional
TMS	V18	Input
TDI, DSDI	T16	Input
TCK, DSCK	U17	Input
TRST	W18	Input
TDO, DSDO	T17	Output
MII1_CRS	T11	Input
MII_MDIO	P19	Bidirectional
MII1_TXEN, RMII1_TXEN	Т5	Output
MII1_COL	U12	Input
V _{SSSYN1}	C2	PLL analog V _{DD} and GND
V _{SSSYN}	E4	Power
V _{DDLSYN}	B2	Power
GND	G6, G7, G8, G9, G10, G11, G12, G13, H7, H8, H9, H10, H11, H12, H13, H14, J7, J8, J9, J10, J11, J12, J13, K7, K8, K9, K10, K11, K12, K13, L7, L8, L9, L10, L11, L12, L13, M7, M8, M9, M10, M11, M12, M13, N7, N8, N9, N10, N11, N12, N13, N14, P7, P13, R16	Power
V _{DDL}	E5, E6, E9, E11, E14, G15, H5, J5, J15, K15, L5, M15, N5, R6, R9, R10, R12, R15	Power
V _{DDH}	E7, E8, E10, E12, E13, E15, F5, F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, G5, G14, H6, H15, J6, J14, K5, K6, K14, L6, L14, L15, M5, M6, M14, N6, N15, P5, P6, P8, P9, P10, P11, P12, P14, P15, R5, R7, R8, R11, R13, R14	Power
N/C	N17	No connect

Table 39. Pin Assignments (continued)

¹ ESAR mode only.

17 Document Revision History

Table 40 lists significant changes between revisions of this hardware specification.

Revision Number	Date	Changes
7	07/2010	 In Table 9, "Bus Operation Timings," changed the following: Updated TRLX condition value for B22a/b/c to "TRLX = [0 or 1]" Removed TRLX condition for B23 Updated condition and equation for B30 to "Invalid GPCM read/write access (MIN = 0.25 × B1 - 2.00)" Updated note 8 to "The timing B30 refers to CS when ACS = 00 and to CS and WE(0:3) when CSNT = 0."
6	05/2010	Added minimum load for CLKOUT in Section 10, "Bus Signal Timing."
5	03/2009	Updated formatting of Table 12, "PCMCIA Port Timing," Table 13, "Debug Port Timing," Table 14, "Reset Timing," and Table 15, "JTAG Timing."
4	08/2007	 On page 1, updated first paragraph and added a second paragraph. After Table 2, inserted a new figure showing the undershoot/overshoot voltage (Figure 3) and renumbered the rest of the figures. In Table 9, for reset timings B29f and B29g added footnote indicating that the formula only applies to bus operation up to 50 MHz. In Figure 6, changed all reference voltage measurement points from 0.2 and 0.8 V to 50% level. In Table 18, changed num 46 description to read, "TA assertion to rising edge"
3.0	7/22/2004	 Added sentence to Spec B1A about EXTCLK and CLKOUT being in Alignment for Integer Values Added a footnote to Spec 41 specifying that EDM = 1 Added RMII1_EN under M1II_EN in Table 36 Pin Assignments Added a tablefootnote to Table 6 DC Electrical Specifications about meeting the VIL Max of the I2C Standard Put the new part numbers in the Ordering Information Section
2.0	12/2003	 Changed the maximum operating frequency to 133 MHz. Put in the orderable part numbers that are orderable. Put the timing in the 80 MHz column. Rounded the timings to hundredths in the 80 MHz column. Put the pin numbers in footnotes by the maximum currents in Table 6. Changed 22 and 41 in the Timing. Put in the Thermal numbers.
1.0	9/2003	 Added the DSP information in the Features list Fixed table formatting. Nontechnical edits. Released to the external web.
0.9	8/2003	Changed the USB description to full-/low-speed compatible.
0.8	8/2003	Added the Reference to USB 2.0 to the Features list and removed 1.1 from USB on the block diagrams.
0.7	7/2003	Added the RxClav and TxClav signals to PC15.
0.6	6/2003	Changed the pin descriptions per the June 22 spec.
0.5	5/2003	Changed some more typos, put in the phsel and phreq pins. Corrected the USB timing.

Table 40. Document Revision History