

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	66MHz
Co-Processors/DSP	Communications; CPM, Security; SEC
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (3), 10/100Mbps (2)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 100°C (TA)
Security Features	Cryptography
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc885czp66

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

7.6 References

Semiconductor Equipment and Materials International(415) 964-5111 805 East Middlefield Rd Mountain View, CA 94043

MIL-SPEC and EIA/JESD (JEDEC) specifications800-854-7179 or (Available from Global Engineering Documents)303-397-7956

JEDEC Specifications http://www.jedec.org

- 1. C.E. Triplett and B. Joiner, "An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module," Proceedings of SemiTherm, San Diego, 1998, pp. 47–54.
- 2. B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling," Proceedings of SemiTherm, San Diego, 1999, pp. 212–220.

8 Power Supply and Power Sequencing

This section provides design considerations for the MPC885/MPC880 power supply. The MPC885/MPC880 has a core voltage (V_{DDL}) and PLL voltage (V_{DDSYN}), which both operate at a lower voltage than the I/O voltage V_{DDH} . The I/O section of the MPC885/MPC880 is supplied with 3.3 V across V_{DDH} and V_{SS} (GND).

The signals PA[0:15], PB[14:31], PC[4:15], PD[3:15], TDI, TDO, TCK, TRST_B, TMS, MII_TXEN, and MII_MDIO are 5 V tolerant. All inputs cannot be more than 2.5 V greater than V_{DDH}. In addition, 5-V tolerant pins cannot exceed 5.5 V and remaining input pins cannot exceed 3.465 V. This restriction applies to power up/down and normal operation.

One consequence of multiple power supplies is that when power is initially applied the voltage rails ramp up at different rates. The rates depend on the nature of the power supply, the type of load on each power supply, and the manner in which different voltages are derived. The following restrictions apply:

- V_{DDL} must not exceed V_{DDH} during power up and power down.
- V_{DDL} must not exceed 1.9 V, and V_{DDH} must not exceed 3.465 V.

These cautions are necessary for the long-term reliability of the part. If they are violated, the electrostatic discharge (ESD) protection diodes are forward-biased, and excessive current can flow through these diodes. If the system power supply design does not control the voltage sequencing, the circuit shown Figure 5 can be added to meet these requirements. The MUR420 Schottky diodes control the maximum potential difference between the external bus and core power supplies on power up, and the 1N5820 diodes regulate the maximum potential difference on power down.

Num	Characteristic	33	ЛНz	40 MHz		66 MHz		80 MHz		l lm it
NUM	Characteristic	Min	Max	Min	Мах	Min	Мах	Min	Мах	Unit
B27a	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 11, TRLX = 1 (MIN = 1.50 × B1 - 2.00)	43.50	_	35.50	-	20.70		16.75		ns
B28	CLKOUT rising edge to $\overline{WE}(0:3)$ negated GPCM write access CSNT = 0 (MAX = $0.00 \times B1 + 9.00$)	—	9.00	—	9.00	—	9.00	—	9.00	ns
B28a	CLKOUT falling edge to $\overline{WE}(0:3)$ negated GPCM write access TRLX = 0, CSNT = 1, EBDF = 0 (MAX = 0.25 × B1 + 6.80)	7.60	14.30	6.30	13.00	3.80	10.50	3.13	9.93	ns
B28b	CLKOUT falling edge to \overline{CS} negated GPCM write access TRLX = 0, CSNT = 1 ACS = 10 or ACS = 11, EBDF = 0 (MAX = $0.25 \times B1 + 6.80$)	—	14.30	—	13.00	—	10.50	_	9.93	ns
B28c	CLKOUT falling edge to $\overline{WE}(0:3)$ negated GPCM write access TRLX = 0, CSNT = 1 write access TRLX = 0, CSNT = 1, EBDF = 1 (MAX = 0.375 × B1 + 6.6)	10.90	18.00	10.90	18.00	5.20	12.30	4.69	11.29	ns
B28d	CLKOUT falling edge to \overline{CS} negated GPCM write access TRLX = 0, CSNT = 1, ACS = 10, or ACS = 11, EBDF = 1 (MAX = 0.375 × B1 + 6.6)	—	18.00	—	18.00	—	12.30	_	11.30	ns
B29	\overline{WE} (0:3) negated to D(0:31) High-Z GPCM write access, CSNT = 0, EBDF = 0 (MIN = 0.25 × B1 - 2.00)	5.60		4.30		1.80	_	1.13	_	ns
B29a	\overline{WE} (0:3) negated to D(0:31) High-Z GPCM write access, TRLX = 0, CSNT = 1, EBDF = 0 (MIN = 0.50 × B1 - 2.00)	13.20	-	10.50	_	5.60	_	4.25	_	ns
B29b	\overline{CS} negated to D(0:31) High-Z GPCM write access, ACS = 00, TRLX = 0 & CSNT = 0 (MIN = 0.25 × B1 - 2.00)	5.60	_	4.30	_	1.80	—	1.13		ns
B29c	$\overline{\text{CS}}$ negated to D(0:31) High-Z GPCM write access, TRLX = 0, CSNT = 1, ACS = 10, or ACS = 11 EBDF = 0 (MIN = $0.50 \times \text{B1} - 2.00$)	13.20		10.50		5.60	—	4.25	_	ns
B29d	$\overline{\text{WE}}$ (0:3) negated to D(0:31) High-Z GPCM write access, TRLX = 1, CSNT = 1, EBDF = 0 (MIN = 1.50 × B1 - 2.00)	43.50		35.50		20.70	_	16.75		ns
B29e	$\overline{\text{CS}}$ negated to D(0:31) High-Z GPCM write access, TRLX = 1, CSNT = 1, ACS = 10, or ACS = 11 EBDF = 0 (MIN = 1.50 × B1 – 2.00)	43.50	_	35.50	_	20.70	—	16.75	_	ns
B29f	\overline{WE} (0:3) negated to D(0:31) High-Z GPCM write access, TRLX = 0, CSNT = 1, EBDF = 1 (MIN = 0.375 × B1 - 6.30) ⁷	5.00		3.00		0.00		0.00	_	ns
B29g	$\overline{\text{CS}}$ negated to D(0:31) High-Z GPCM write access, TRLX = 0, CSNT = 1 ACS = 10 or ACS = 11, EBDF = 1 (MIN = 0.375 × B1 - 6.30) ⁷	5.00	—	3.00	—	0.00	_	0.00	—	ns

Table 9. Bus Operation Timings (continued)

Num	Characteristic	33 MHz		40 MHz		66 MHz		80 MHz		l lm it
NUM	Characteristic		Мах	Min	Мах	Min	Мах	Min	Мах	Unit
B32	CLKOUT falling edge to $\overline{\text{BS}}$ valid, as requested by control bit BST4 in the corresponding word in the UPM (MAX = $0.00 \times \text{B1} + 6.00$)	1.50	6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns
B32a	CLKOUT falling edge to $\overline{\text{BS}}$ valid, as requested by control bit BST1 in the corresponding word in the UPM, EBDF = 0 (MAX = 0.25 × B1 + 6.80)	7.60	14.30	6.30	13.00	3.80	10.50	3.13	10.00	ns
B32b	CLKOUT rising edge to $\overline{\text{BS}}$ valid, as requested by control bit BST2 in the corresponding word in the UPM (MAX = $0.00 \times \text{B1} + 8.00$)	1.50	8.00	1.50	8.00	1.50	8.00	1.50	8.00	ns
B32c	CLKOUT rising edge to $\overline{\text{BS}}$ valid, as requested by control bit BST3 in the corresponding word in the UPM (MAX = $0.25 \times \text{B1} + 6.80$)	7.60	14.30	6.30	13.00	3.80	10.50	3.13	10.00	ns
B32d	CLKOUT falling edge to $\overline{\text{BS}}$ valid, as requested by control bit BST1 in the corresponding word in the UPM, EBDF = 1 (MAX = 0.375 × B1 + 6.60)	13.30	18.00	11.30	16.00	7.60	12.30	4.49	11.30	ns
B33	CLKOUT falling edge to $\overline{\text{GPL}}$ valid, as requested by control bit GxT4 in the corresponding word in the UPM (MAX = 0.00 × B1 + 6.00)	1.50	6.00	1.50	6.00	1.50	6.00	1.50	6.00	ns
B33a	CLKOUT rising edge to $\overline{\text{GPL}}$ valid, as requested by control bit GxT3 in the corresponding word in the UPM (MAX = $0.25 \times B1 + 6.80$)	7.60	14.30	6.30	13.00	3.80	10.50	3.13	10.00	ns
B34	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid, as requested by control bit CST4 in the corresponding word in the UPM (MIN = $0.25 \times B1 - 2.00$)	5.60	_	4.30		1.80	_	1.13		ns
B34a	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid, as requested by control bit CST1 in the corresponding word in the UPM (MIN = $0.50 \times B1 - 2.00$)	13.20	_	10.50		5.60	_	4.25		ns
B34b	A(0:31), BADDR(28:30), and D(0:31) to \overline{CS} valid, as requested by CST2 in the corresponding word in UPM (MIN = $0.75 \times B1 - 2.00$)	20.70	_	16.70		9.40	_	6.80	_	ns
B35	A(0:31), BADDR(28:30) to $\overline{\text{CS}}$ valid, as requested by control bit BST4 in the corresponding word in the UPM (MIN = $0.25 \times \text{B1} - 2.00$)	5.60	_	4.30		1.80	—	1.13		ns
B35a	A(0:31), BADDR(28:30), and D(0:31) to \overline{BS} valid, as requested by BST1 in the corresponding word in the UPM (MIN = $0.50 \times B1 - 2.00$)	13.20		10.50		5.60		4.25		ns
B35b	A(0:31), BADDR(28:30), and D(0:31) to \overline{BS} valid, as requested by control bit BST2 in the corresponding word in the UPM (MIN = $0.75 \times B1 - 2.00$)	20.70		16.70	_	9.40	_	7.40		ns

Table 9. Bus Operation Timings (continued)

Figure 6 provides the control timing diagram.

Figure 7 provides the timing for the external clock.

Figure 7. External Clock Timing

Figure 8 provides the timing for the synchronous output signals.

Figure 9 provides the timing for the synchronous active pull-up and open-drain output signals.

Figure 9. Synchronous Active Pull-Up Resistor and Open-Drain Outputs Signals Timing

Figure 10 provides the timing for the synchronous input signals.

Figure 11 provides normal case timing for input data. It also applies to normal read accesses under the control of the user-programmable machine (UPM) in the memory controller.

Figure 11. Input Data Timing in Normal Case

Figure 17 through Figure 19 provide the timing for the external bus write controlled by various GPCM factors.

Figure 17. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 0)

Figure 18. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 1)

Figure 20 provides the timing for the external bus controlled by the UPM.

Figure 20. External Bus Timing (UPM-Controlled Signals)

Table 14 shows the reset timing for the MPC885/MPC880.

Table 14. Reset Timing

Num	Characteristic	33 MHz		40 MHz		66 MHz		80 MHz		Unit
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
R69	CLKOUT to $\overline{\text{HRESET}}$ high impedance (MAX = 0.00 × B1 + 20.00)	—	20.00	—	20.00	—	20.00	—	20.00	ns
R70	CLKOUT to $\overline{\text{SRESET}}$ high impedance (MAX = 0.00 × B1 + 20.00)	—	20.00	—	20.00	_	20.00	—	20.00	ns
R71	RSTCONF pulse width (MIN = 17.00 × B1)	515.20	_	425.00	_	257.60	_	212.50	_	ns
R72	_	—	_	—	_	_	_	—	_	—
R73	Configuration data to HRESET rising edge setup time (MIN = 15.00 × B1 + 50.00)	504.50	_	425.00	—	277.30	_	237.50	_	ns
R74	Configuration data to $\overrightarrow{\text{RSTCONF}}$ rising edge setup time (MIN = 0.00 × B1 + 350.00)	350.00	_	350.00	—	350.00	_	350.00	_	ns
R75	$\frac{\text{Configuration data hold time after}}{\text{RSTCONF}}$ negation (MIN = 0.00 × B1 + 0.00)	0.00	_	0.00	—	0.00	_	0.00	_	ns
R76	Configuration data hold time after HRESET negation (MIN = $0.00 \times B1 + 0.00$)	0.00	_	0.00	—	0.00	_	0.00	_	ns
R77	HRESET and RSTCONF asserted to data out drive (MAX = 0.00 × B1 + 25.00)	—	25.00	—	25.00	—	25.00	—	25.00	ns
R78	$\frac{\text{RSTCONF}}{\text{RSTCONF}} \text{ negated to data out high}$ impedance (MAX = 0.00 × B1 + 25.00)	—	25.00	—	25.00	_	25.00	—	25.00	ns
R79	CLKOUT of last rising edge before chip three-states $\overrightarrow{\text{HRESET}}$ to data out high impedance (MAX = 0.00 × B1 + 25.00)	_	25.00	_	25.00	_	25.00	_	25.00	ns
R80	DSDI, DSCK setup (MIN = 3.00 × B1)	90.90		75.00		45.50		37.50		ns
R81	DSDI, DSCK hold time (MIN = 0.00 × B1 + 0.00)	0.00	_	0.00	—	0.00	—	0.00	—	ns
R82	$\begin{tabular}{l} \hline $$ \overline{SRESET} negated to CLKOUT rising \\ edge for DSDI and DSCK sample \\ (MIN = 8.00 \times B1) \end{tabular}$	242.40	_	200.00	_	121.20		100.00	_	ns

IEEE 1149.1 Electrical Specifications

Figure 51. SDACK Timing Diagram—Peripheral Read, Internally-Generated TA

12.4 Baud Rate Generator AC Electrical Specifications

Table 19 provides the baud rate generator timings as shown in Figure 52.

Table 19	. Baud	Rate	Generator	Timing
----------	--------	------	-----------	--------

Num	Characteristic	All Freq	Unit	
		Min	Max	Onit
50	BRGO rise and fall time	—	10	ns
51	BRGO duty cycle	40	60	%
52	BRGO cycle	40	—	ns

Figure 52. Baud Rate Generator Timing Diagram

CPM Electrical Characteristics

SCC in NMSI Mode Electrical Specifications 12.7

Table 22 provides the NMSI external clock timing.

		All Frequ		
Num	Characteristic	Min	Мах	Unit
100	RCLK1 and TCLK1 width high ¹	1/SYNCCLK	—	ns
101	RCLK1 and TCLK1 width low	1/SYNCCLK + 5	—	ns
102	RCLK1 and TCLK1 rise/fall time	_	15.00	ns
103	TXD1 active delay (from TCLK1 falling edge)	0.00	50.00	ns
104	RTS1 active/inactive delay (from TCLK1 falling edge)	0.00	50.00	ns
105	CTS1 setup time to TCLK1 rising edge	5.00	—	ns
106	RXD1 setup time to RCLK1 rising edge	5.00	—	ns
107	RXD1 hold time from RCLK1 rising edge ²	5.00	—	ns
108	CD1 setup time to RCLK1 rising edge	5.00	—	ns

Table 22. NMSI External Clock Timing

The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater than or equal to 2.25/1.
Also applies to CD and CTS hold time when they are used as external sync signals.

Table 23 provides the NMSI internal clock timing.

Table 23. NMSI Internal Clock Timing

Num	Characteristic	All Fre	Unit	
	Characteristic	Min	Мах	Unit
100	RCLK1 and TCLK1 frequency ¹	0.00	SYNCCLK/3	MHz
102	RCLK1 and TCLK1 rise/fall time	_	—	ns
103	TXD1 active delay (from TCLK1 falling edge)	0.00	30.00	ns
104	RTS1 active/inactive delay (from TCLK1 falling edge)	0.00	30.00	ns
105	CTS1 setup time to TCLK1 rising edge	40.00	—	ns
106	RXD1 setup time to RCLK1 rising edge	40.00	—	ns
107	RXD1 hold time from RCLK1 rising edge ²	0.00	—	ns
108	CD1 setup time to RCLK1 rising edge	40.00	—	ns

¹ The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater than or equal to 3/1.

² Also applies to $\overline{\text{CD}}$ and $\overline{\text{CTS}}$ hold time when they are used as external sync signals

Figure 64. Ethernet Transmit Timing Diagram

12.9 SMC Transparent AC Electrical Specifications

Table 25 provides the SMC transparent timings as shown in Figure 65.

Table 25	. SMC	Transparent	Timing
----------	-------	-------------	--------

Num	Characteristic		All Frequencies			
Nulli	Characteristic	Min	Мах	Unit		
150	SMCLK clock period ¹	100	—	ns		
151	SMCLK width low	50	—	ns		
151A	SMCLK width high	50	—	ns		
152	SMCLK rise/fall time	—	15	ns		
153	SMTXD active delay (from SMCLK falling edge)	10	50	ns		
154	SMRXD/SMSYNC setup time	20	—	ns		
155	RXD1/SMSYNC hold time	5	—	ns		

¹ SyncCLK must be at least twice as fast as SMCLK.

CPM Electrical Characteristics

Figure 65. SMC Transparent Timing Diagram

12.10 SPI Master AC Electrical Specifications

Table 26 provides the SPI master timings as shown in Figure 66 and Figure 67.

Table 26. SPI Master	r Timing
----------------------	----------

Num	Characteristic	All Freq	Unit	
Nulli			Мах	Onit
160	MASTER cycle time	4	1024	t _{cyc}
161	MASTER clock (SCK) high or low time	2	512	t _{cyc}
162	MASTER data setup time (inputs)	15	—	ns
163	Master data hold time (inputs)	0	—	ns
164	Master data valid (after SCK edge)	—	10	ns
165	Master data hold time (outputs)	0	_	ns
166	Rise time output	—	15	ns
167	Fall time output	—	15	ns

CPM Electrical Characteristics

CPM Electrical Characteristics

Figure 69. SPI Slave (CP = 1) Timing Diagram

12.12 I²C AC Electrical Specifications

Table 28 provides the I^2C (SCL < 100 kHz) timings.

Table 28. I^2C Timing (SCL < 100 kHz)

Num	Characteristic	All Freq	Unit	
Num		Min	Мах	Unit
200	SCL clock frequency (slave)	0	100	kHz
200	SCL clock frequency (master) ¹	1.5	100	kHz
202	Bus free time between transmissions	4.7	—	μs
203	Low period of SCL	4.7	—	μs
204	High period of SCL	4.0	—	μs
205	Start condition setup time	4.7	_	μs
206	Start condition hold time	4.0	_	μs
207	Data hold time	0	_	μs
208	Data setup time	250	_	ns
209	SDL/SCL rise time		1	μs

Figure 74 shows the MII transmit signal timing diagram.

Figure 74. MII Transmit Signal Timing Diagram

15.3 MII Async Inputs Signal Timing (MII_CRS, MII_COL)

Table 36 provides information on the MII async inputs signal timing.

Table 36. MII Async Inputs Signal Timing

Num	Characteristic	Min	Мах	Unit
M9	MII_CRS, MII_COL minimum pulse width	1.5	_	MII_TX_CLK period

Figure 75 shows the MII asynchronous inputs signal timing diagram.

15.4 MII Serial Management Channel Timing (MII_MDIO, MII_MDC)

Table 37 provides information on the MII serial management channel signal timing. The FEC functions correctly with a maximum MDC frequency in excess of 2.5 MHz.

Table 37. MII Serial Managemer	t Channel	Timing
--------------------------------	-----------	--------

Num	Characteristic	Min	Мах	Unit
M10	MII_MDC falling edge to MII_MDIO output invalid (minimum propagation delay)	0		ns
M11	MII_MDC falling edge to MII_MDIO output valid (max prop delay)		25	ns
M12	MII_MDIO (input) to MII_MDC rising edge setup	10	_	ns
M13	MII_MDIO (input) to MII_MDC rising edge hold	0	_	ns

Mechanical Data and Ordering Information

16.1 Pin Assignments

Figure 77 shows the top-view pinout of the PBGA package. For additional information, see the *MPC885 PowerQUICCTM Family Reference Manual*.

	C TRST	O PA10	О РВ23	O PA8	O PC8	O PA5	O PB17	O PA13	O PC4	O PA11	O PE17	O PE30	O PE15	O PD6	O PD4	O PD7	O PA3		w
O PB28	О тмs	O PB25	O PC11	O PB22	O PA7	О РВ19	O PC7	O PB16	O PC13	O PE21	O PE24	O PE14	O PD5	O PE28	O PE27	O PB31	O PE23	O PE22	v
O PB27	О РВ14	() тск	О РВ24	O PC10	O PB21	O PA6		PC6	O PB15	O PE31	O PD15	O PD14	O PD13	O PD12	O PA4	O PA0	O PD9	O PA1	U
O PB29	O PC12	O TDO		O PA9	O PC9	O PB20	O PB18		O PC5	O PD3	O PE29	O PE16	O PE19		0 N PA2	O PE25	O PD10	O PE26	т
O PC15	O PC14	О РВ26	O GND		0	0		0	0		0	0	VDDL	VDDH	O PE20	O PD8	O PD11	O PE18	R
	О РВ30	O PA14	O PA12		0	O GND	0		0		0		0	0				O D8	Ρ
() A2	() A1	O N/C	O PA15	0	0	\bigcirc	\bigcirc	\bigcirc	GND	\bigcirc	0	\bigcirc	0			() D12	0 D13	() D4	Ν
() A3	() A5	() A4	() A0		0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O VDDH	0	D17) D23	0 D27	() D1	М
() A7	() A9	() A8	() A6	0		O GND	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		0		O D9) D10	O D11	() D2	L
○ A10	() A11	() A12	() A13		0	0	\bigcirc	\bigcirc	GND	\bigcirc	0	\bigcirc	O VDDH	0	0 D5) D14	О) D15	к
O A14	() A16	() A15	() A17	0	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0		O D22	() D19	O D16	() D18	J
∩ A27	() A19	() A20	() A24		0	GND	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	0	0	0 D28	O D6	O D20	() D21	н
O A21	() A29	() A23				0	\bigcirc	\bigcirc	GND	\bigcirc	0	\bigcirc	GND		CLKOUT	() D26	O D24	() D25	G
() A25	() A30	() A22		0	0	0	\bigcirc	\bigcirc		0	0	\bigcirc	\bigcirc	0) D31	0 D7	() D29	F
	() A28			\bigcirc		0	0		0		0	0	0					O D30	Е
O A26	O A31	BSA0		\bigcirc	\bigcirc		O BI												D
BSA2	BSA1					GPL A5							OP1	BADDR2					С
																			В
			000																A
19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	

NOTE: This is the top view of the device.

Figure 77. Pinout of the PBGA Package