

NXP USA Inc. - KMPC885VR66 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	66MHz
Co-Processors/DSP	Communications; CPM, Security; SEC
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (3), 10/100Mbps (2)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 95°C (TA)
Security Features	Cryptography
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc885vr66

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Periodic interrupt timer (PIT)
- Clock synthesizer
- Decrementer and time base
- Reset controller
- IEEE Std 1149.1TM test access port (JTAG)
- Security engine is optimized to handle all the algorithms associated with IPsec, SSL/TLS, SRTP, IEEE Std 802.11iTM, and iSCSI processing. Available on the MPC885, the security engine contains a crypto-channel, a controller, and a set of crypto hardware accelerators (CHAs). The CHAs are:
 - Data encryption standard execution unit (DEU)
 - DES, 3DES
 - Two key (K1, K2, K1) or three key (K1, K2, K3)
 - ECB and CBC modes for both DES and 3DES
 - Advanced encryption standard unit (AESU)
 - Implements the Rijndael symmetric key cipher
 - ECB, CBC, and counter modes
 - 128-, 192-, and 256- bit key lengths
 - Message digest execution unit (MDEU)
 - SHA with 160- or 256-bit message digest
 - MD5 with 128-bit message digest
 - HMAC with either algorithm
 - Crypto-channel supporting multi-command descriptor chains
 - Integrated controller managing internal resources and bus mastering
 - Buffer size of 256 bytes for the DEU, AESU, and MDEU, with flow control for large data sizes
- Interrupts
 - Six external interrupt request (IRQ) lines
 - 12 port pins with interrupt capability
 - 23 internal interrupt sources
 - Programmable priority between SCCs
 - Programmable highest priority request
- Communications processor module (CPM)
 - RISC controller
 - Communication-specific commands (for example, GRACEFUL STOP TRANSMIT, ENTER HUNT MODE, and RESTART TRANSMIT)
 - Supports continuous mode transmission and reception on all serial channels
 - 8-Kbytes of dual-port RAM
 - Several serial DMA (SDMA) channels to support the CPM
 - Three parallel I/O registers with open-drain capability

- 1.8-V core and 3.3-V I/O operation
- The MPC885/MPC880 comes in a 357-pin ball grid array (PBGA) package

The MPC885 block diagram is shown in Figure 1.

Figure 1. MPC885 Block Diagram

5 **Power Dissipation**

Table 5 provides information on power dissipation. The modes are 1:1, where CPU and bus speeds are equal, and 2:1, where CPU frequency is twice bus speed.

Die Revision	Bus Mode	CPU Frequency	Typical ¹	Maximum ²	Unit
0	1:1	66 MHz	310	390	mW
		80 MHz	350	430	mW
	2:1	133 MHz	430	495	mW

Table 5. Power Dissipation (PD)

¹ Typical power dissipation at $V_{DDL} = V_{DDSYN} = 1.8$ V, and V_{DDH} is at 3.3 V.

 2 Maximum power dissipation at V_DDL = V_DDSYN = 1.9 V, and V_DDH is at 3.5 V.

NOTE

The values in Table 5 represent V_{DDL} -based power dissipation and do not include I/O power dissipation over V_{DDH} . I/O power dissipation varies widely by application due to buffer current, depending on external circuitry.

The V_{DDSYN} power dissipation is negligible.

6 DC Characteristics

Table 6 provides the DC electrical characteristics for the MPC885/MPC880.

Table 6. DC Electrical Specifications

Characteristic	Symbol	Min	Max	Unit
Operating voltage	V _{DDL} (core)	1.7	1.9	V
	V _{DDH} (I/O)	3.135	3.465	V
	V _{DDSYN} ¹	1.7	1.9	V
	Difference between V _{DDL} and V _{DDSYN}	—	100	mV
Input high voltage (all inputs except EXTAL and EXTCLK) ²	V _{IH}	2.0	3.465	V
Input low voltage ³	V _{IL}	GND	0.8	V
EXTAL, EXTCLK input high voltage	V _{IHC}	0.7*(V _{DDH})	V _{DDH}	V
Input leakage current, Vin = 5.5 V (except TMS, TRST, DSCK and DSDI pins) for 5-V tolerant pins 2	l _{in}	—	100	μA
Input leakage current, $V_{in} = V_{DDH}$ (except TMS, TRST, DSCK, and DSDI)	I _{In}	—	10	μA
Input leakage current, $V_{in} = 0 V$ (except TMS, TRST, DSCK and DSDI pins)	l _{in}	_	10	μA
Input capacitance ⁴	C _{in}	_	20	pF

Num	Characteristic		MHz	40 MHz		66 MHz		80 MHz		Unit
Nulli	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
B36	A(0:31), BADDR(28:30), and D(0:31) to $\overline{\text{GPL}}$ valid, as requested by control bit GxT4 in the corresponding word in the UPM (MIN = 0.25 × B1 - 2.00)	5.60	—	4.30	_	1.80	_	1.13	_	ns
B37	UPWAIT valid to CLKOUT falling edge ⁹ (MIN = $0.00 \times B1 + 6.00$)	6.00	—	6.00	_	6.00	—	6.00	_	ns
B38	CLKOUT falling edge to UPWAIT valid 9 (MIN = 0.00 × B1 + 1.00)	1.00	—	1.00	_	1.00	—	1.00	_	ns
B39	$\overline{\text{AS}}$ valid to CLKOUT rising edge ¹⁰ (MIN = 0.00 × B1 + 7.00)	7.00	—	7.00	_	7.00	—	7.00	_	ns
B40	A(0:31), TSIZ(0:1), RD/ \overline{WR} , \overline{BURST} , valid to CLKOUT rising edge (MIN = $0.00 \times B1 + 7.00$)	7.00	—	7.00	_	7.00	—	7.00	_	ns
B41	$\overline{\text{TS}}$ valid to CLKOUT rising edge (setup time) (MIN = 0.00 × B1 + 7.00)	7.00	—	7.00	-	7.00	_	7.00	-	ns
B42	CLKOUT rising edge to $\overline{\text{TS}}$ valid (hold time) (MIN = 0.00 × B1 + 2.00)	2.00	—	2.00	_	2.00	—	2.00	_	ns
B43	$\overline{\text{AS}}$ negation to memory controller signals negation (MAX = TBD)	_	TBD	_	TBD	_	TBD	_	TBD	ns

Table 9. Bus Operation Timings (continued)

¹ For part speeds above 50 MHz, use 9.80 ns for B11a.

² The timing required for BR input is relevant when the MPC885/MPC880 is selected to work with the internal bus arbiter. The timing for BG input is relevant when the MPC885/MPC880 is selected to work with the external bus arbiter.

³ For part speeds above 50 MHz, use 2 ns for B17.

⁴ The D(0:31) input timings B18 and B19 refer to the rising edge of the CLKOUT in which the TA input signal is asserted.

⁵ For part speeds above 50 MHz, use 2 ns for B19.

⁶ The D(0:31) input timings B20 and B21 refer to the falling edge of the CLKOUT. This timing is valid only for read accesses controlled by chip-selects under control of the user-programmable machine (UPM) in the memory controller, for data beats where DLT3 = 1 in the RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)

⁷ This formula applies to bus operation up to 50 MHz.

⁸ The timing B30 refers to \overline{CS} when ACS = 00 and to \overline{CS} and $\overline{WE}(0:3)$ when CSNT = 0.

⁹ The signal UPWAIT is considered asynchronous to the CLKOUT and synchronized internally. The timings specified in B37 and B38 are specified to enable the freeze of the UPM output signals as described in Figure 21.

¹⁰ The AS signal is considered asynchronous to the CLKOUT. The timing B39 is specified in order to allow the behavior specified in Figure 24.

Bus Signal Timing

Bus Signal Timing

Figure 21 provides the timing for the asynchronous asserted UPWAIT signal controlled by the UPM.

Figure 21. Asynchronous UPWAIT Asserted Detection in UPM-Handled Cycles Timing

Figure 22 provides the timing for the asynchronous negated UPWAIT signal controlled by the UPM.

Figure 22. Asynchronous UPWAIT Negated Detection in UPM-Handled Cycles Timing

Bus Signal Timing

Figure 28 provides the PCMCIA access cycle timing for the external bus read.

Figure 28. PCMCIA Access Cycles Timing External Bus Read

Table 14 shows the reset timing for the MPC885/MPC880.

Table 14. Reset Timing

Num	Characteristic	33	MHz	40 1	MHz	66 I	ИНz	80 1	80 MHz	
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
R69	CLKOUT to $\overline{\text{HRESET}}$ high impedance (MAX = 0.00 × B1 + 20.00)	—	20.00	—	20.00	—	20.00	—	20.00	ns
R70	CLKOUT to $\overline{\text{SRESET}}$ high impedance (MAX = 0.00 × B1 + 20.00)	—	20.00	—	20.00	_	20.00	—	20.00	ns
R71	RSTCONF pulse width (MIN = 17.00 × B1)	515.20	_	425.00	_	257.60	_	212.50	_	ns
R72	_	—	_	—	_	_	_	—	_	—
R73	Configuration data to HRESET rising edge setup time (MIN = 15.00 × B1 + 50.00)	504.50	_	425.00	—	277.30	_	237.50	_	ns
R74	Configuration data to $\overrightarrow{\text{RSTCONF}}$ rising edge setup time (MIN = 0.00 × B1 + 350.00)	350.00	_	350.00	—	350.00	_	350.00	—	ns
R75	Configuration data hold time after RSTCONF negation (MIN = $0.00 \times B1 + 0.00$)		_	0.00	—	0.00	_	0.00	_	ns
R76	$\frac{\text{Configuration data hold time after}}{\text{HRESET negation}}$ (MIN = 0.00 × B1 + 0.00)	0.00	_	0.00	—	0.00	_	0.00	_	ns
R77	HRESET and RSTCONF asserted to data out drive (MAX = 0.00 × B1 + 25.00)	—	25.00	—	25.00	—	25.00	—	25.00	ns
R78	$\frac{\text{RSTCONF}}{\text{RSTCONF}} \text{ negated to data out high}$ impedance (MAX = 0.00 × B1 + 25.00)	—	25.00	—	25.00	_	25.00	—	25.00	ns
R79	CLKOUT of last rising edge before chip three-states $\overrightarrow{\text{HRESET}}$ to data out high impedance (MAX = 0.00 × B1 + 25.00)		25.00	_	25.00	_	25.00	_	25.00	ns
R80	DSDI, DSCK setup (MIN = 3.00 × B1)	90.90		75.00		45.50		37.50		ns
R81	DSDI, DSCK hold time (MIN = 0.00 × B1 + 0.00)	0.00	_	0.00	—	0.00	—	0.00	—	ns
R82	$\begin{tabular}{l} \hline $$ \overline{SRESET} negated to CLKOUT rising \\ edge for DSDI and DSCK sample \\ (MIN = 8.00 \times B1) \end{tabular}$	242.40	_	200.00	_	121.20		100.00	_	ns

12 CPM Electrical Characteristics

This section provides the AC and DC electrical specifications for the communications processor module (CPM) of the MPC885/MPC880.

Table 16. PIP/PIO Timing

12.1 PIP/PIO AC Electrical Specifications

Table 16 provides the PIP/PIO AC timings as shown in Figure 42 through Figure 46.

All Frequencies Num Characteristic Unit Min Max 21 Data-in setup time to STBI low 0 ____ ns 22 Data-In hold time to STBI high 0 clk 23 STBI pulse width 1.5 clk 24 STBO pulse width 1 clk – 5 ns ns 25 Data-out setup time to STBO low 2 clk Data-out hold time from STBO high 5 26 clk STBI low to STBO low (Rx interlock) 27 4.5 clk 28 STBI low to STBO high (Tx interlock) 2 clk ____ 29 Data-in setup time to clock high 15 ns 30 Data-in hold time from clock high 7.5 ns Clock low to data-out valid (CPU writes data, control, or direction) 31 25 ns

Figure 42. PIP Rx (Interlock Mode) Timing Diagram

Nume	Characteristic	All Fre	Unit	
Num	Characteristic	Min	Мах	Onit
76	L1RXD valid to L1CLK edge (L1RXD setup time)	17.00	—	ns
77	L1CLK edge to L1RXD invalid (L1RXD hold time)	13.00		ns
78	L1CLK edge to L1ST(1-4) valid ⁴	10.00	45.00	ns
78A	L1SYNC valid to L1ST(1-4) valid	10.00	45.00	ns
79	L1CLK edge to L1ST(1-4) invalid	10.00	45.00	ns
80	L1CLK edge to L1TXD valid	10.00	55.00	ns
80A	L1TSYNC valid to L1TXD valid ⁴	10.00	55.00	ns
81	L1CLK edge to L1TXD high impedance	0.00	42.00	ns
82	L1RCLK, L1TCLK frequency (DSC =1)	_	16.00 or SYNCCLK/2	MHz
83	L1RCLK, L1TCLK width low (DSC =1)	P + 10	_	ns
83a	L1RCLK, L1TCLK width high (DSC = 1) ³	P + 10	_	ns
84	L1CLK edge to L1CLKO valid (DSC = 1)	_	30.00	ns
85	L1RQ valid before falling edge of L1TSYNC ⁴	1.00	_	L1TCLK
86	L1GR setup time ²	42.00	—	ns
87	L1GR hold time	42.00	—	ns
88	L1CLK edge to L1SYNC valid (FSD = 00) CNT = 0000, BYT = 0, DSC = 0)	_	0.00	ns

Table 21. SI Timing (continued)

The ratio SyncCLK/L1RCLK must be greater than 2.5/1.
 These specs are valid for IDL mode only.

³ Where P = 1/CLKOUT. Thus for a 25-MHz CLKO1 rate, P = 40 ns.

⁴ These strobes and TxD on the first bit of the frame become valid after L1CLK edge or L1SYNC, whichever comes later.

CPM Electrical Characteristics

Figure 57. SI Transmit Timing with Double Speed Clocking (DSC = 1)

Figure 59 through Figure 61 show the NMSI timings.

Figure 65. SMC Transparent Timing Diagram

12.10 SPI Master AC Electrical Specifications

Table 26 provides the SPI master timings as shown in Figure 66 and Figure 67.

Table 26. SPI Master	r Timing
----------------------	----------

Num	Charactoristic	All Freq	Unit	
Nulli	Cildiacteristic	Min	Мах	Onit
160	MASTER cycle time	4	1024	t _{cyc}
161	MASTER clock (SCK) high or low time	2	512	t _{cyc}
162	MASTER data setup time (inputs)	15	—	ns
163	Master data hold time (inputs)	0	—	ns
164	Master data valid (after SCK edge)	—	10	ns
165	Master data hold time (outputs)	0	_	ns
166	Rise time output	—	15	ns
167	Fall time output	—	15	ns

14 USB Electrical Characteristics

This section provides the AC timings for the USB interface.

14.1 USB Interface AC Timing Specifications

The USB Port uses the transmit clock on SCC1. Table 33 lists the USB interface timings.

Table 33. USB Interface AC Timing Specifications

Name	Characteristic	All Freq	Unit	
		Min	Max	•
US1	USBCLK frequency of operation ¹ Low speed Full speed	6 4	6 8	MHz MHz
US4	USBCLK duty cycle (measured at 1.5 V)	45	55	%

¹ USBCLK accuracy should be ±500 ppm or better. USBCLK may be stopped to conserve power.

15 FEC Electrical Characteristics

This section provides the AC electrical specifications for the fast Ethernet controller (FEC). Note that the timing specifications for the MII signals are independent of system clock frequency (part speed designation). Also, MII signals use TTL signal levels compatible with devices operating at either 5.0 or 3.3 V.

15.1 MII and Reduced MII Receive Signal Timing

The receiver functions correctly up to a MII_RX_CLK maximum frequency of 25 MHz + 1%. The reduced MII (RMII) receiver functions correctly up to a RMII_REFCLK maximum frequency of 50 MHz + 1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed the MII_RX_CLK frequency – 1%.

Table 34 provides information on the MII and RMII receive signal timing.

Num	Characteristic	Min	Max	Unit
M1	MII_RXD[3:0], MII_RX_DV, MII_RX_ERR to MII_RX_CLK setup	5	_	ns
M2	MII_RX_CLK to MII_RXD[3:0], MII_RX_DV, MII_RX_ER hold	5	_	ns
M3	MII_RX_CLK pulse width high	35%	65%	MII_RX_CLK period
M4	MII_RX_CLK pulse width low	35%	65%	MII_RX_CLK period
M1_RMII	RMII_RXD[1:0], RMII_CRS_DV, RMII_RX_ERR to RMII_REFCLK setup	4	_	ns
M2_RMII	RMII_REFCLK to RMII_RXD[1:0], RMII_CRS_DV, RMII_RX_ERR hold	2		ns

Table 34. MII Receive Signal Timing

Mechanical Data and Ordering Information

16.1 Pin Assignments

Figure 77 shows the top-view pinout of the PBGA package. For additional information, see the *MPC885 PowerQUICCTM Family Reference Manual*.

	C TRST	O PA10	О РВ23	O PA8	O PC8	O PA5	O PB17	O PA13	O PC4	O PA11	O PE17	O PE30	O PE15	O PD6	O PD4	O PD7	O PA3		w
O PB28	О тмs	O PB25	O PC11	O PB22	O PA7	О РВ19	O PC7	O PB16	O PC13	O PE21	O PE24	O PE14	O PD5	O PE28	O PE27	O PB31	O PE23	O PE22	v
O PB27	О РВ14	() тск	О РВ24	O PC10	O PB21	O PA6		PC6	O PB15	O PE31	O PD15	O PD14	O PD13	O PD12	O PA4	O PA0	O PD9	O PA1	U
O PB29	O PC12	O TDO		O PA9	O PC9	O PB20	O PB18		O PC5	O PD3	O PE29	O PE16	O PE19		0 N PA2	O PE25	O PD10	O PE26	т
O PC15	O PC14	О РВ26	O GND		0	0		0	0		0	0	VDDL	VDDH	O PE20	O PD8	O PD11	O PE18	R
	О РВ30	O PA14	O PA12		0	O GND	0		0		0		0	0				O D8	Ρ
() A2	() A1	O N/C	O PA15	0	0	\bigcirc	\bigcirc	\bigcirc	GND	\bigcirc	0	\bigcirc	0			() D12	0 D13	() D4	Ν
() A3	() A5	() A4	() A0		0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	O VDDH	0	D17) D23	0 D27	() D1	М
() A7	() A9	() A8	() A6	0		O GND	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		0		O D9) D10	O D11	() D2	L
○ A10	() A11	() A12	() A13		0	0	\bigcirc	\bigcirc	GND	\bigcirc	0	\bigcirc	O VDDH	0	0 D5	O D14	О) D15	к
O A14	() A16	() A15	() A17	0	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0		0 D22	() D19	O D16	() D18	J
∩ A27	() A19	() A20	() A24		0	GND	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	0	0	0 D28	O D6	O D20	() D21	н
O A21	() A29	() A23				0	\bigcirc	\bigcirc	GND	\bigcirc	0	\bigcirc	GND		CLKOUT	() D26	O D24	() D25	G
() A25	() A30	() A22	O BSA3	0	0	0	\bigcirc	\bigcirc		0	0	\bigcirc	\bigcirc	0) D31	0 D7	() D29	F
	() A28			\bigcirc		0	0		0		0	0	0					O D30	Е
O A26	O A31	BSA0		\bigcirc	\bigcirc		O BI												D
BSA2	BSA1					GPL A5					IPB2		OP1	BADDR2					С
																			В
			000																A
19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	

NOTE: This is the top view of the device.

Figure 77. Pinout of the PBGA Package

Table 39. Pin Assignments (continued)

Name	Pin Number	Туре
ALE_B, DSCK/AT1	D8	Bidirectional Three-state
IP_B[0:1], IWP[0:1], VFLS[0:1]	A9, D9	Bidirectional
IP_B2, IOIS16_B, AT2	C8	Bidirectional Three-state
IP_B3, IWP2, VF2	C9	Bidirectional
IP_B4, LWP0, VF0	B9	Bidirectional
IP_B5, LWP1, VF1	A10	Bidirectional
IP_B6, DSDI, AT0	A8	Bidirectional Three-state
IP_B7, PTR, AT3	B8	Bidirectional Three-state
OP0, UtpClk_Split ¹	B6	Bidirectional
OP1	C6	Output
OP2, MODCK1, STS	D6	Bidirectional
OP3, MODCK2, DSDO	A6	Bidirectional
BADDR30, REG	A7	Output
BADDR[28:29]	C5, B5	Output
AS	D7	Input
PA15, USBRXD	N16	Bidirectional
PA14, USBOE	P17	Bidirectional (Optional: open-drain)
PA13, RXD2	W11	Bidirectional
PA12, TXD2	P16	Bidirectional (Optional: open-drain)
PA11, RXD4, MII1-TXD0, RMII1-TXD0	W9	Bidirectional (Optional: open-drain)
PA10, MII1-TXER, TIN4, CLK7	W17	Bidirectional (Optional: open-drain)
PA9, L1TXDA, RXD3	T15	Bidirectional (Optional: open-drain)
PA8, L1RXDA, TXD3	W15	Bidirectional (Optional: open-drain)
PA7, CLK1, L1RCLKA, BRGO1, TIN1	V14	Bidirectional
PA6, CLK2, TOUT1	U13	Bidirectional
PA5, CLK3, L1TCLKA, BRGO2, TIN2	W13	Bidirectional

Table 39. Pin Assignments (continued)

Name	Pin Number	Туре
PA4, CTS4, MII1-TXD1, RMII1-TXD1	U4	Bidirectional
PA3, MII1-RXER, RMII1-RXER, BRGO3	W2	Bidirectional
PA2, MII1-RXDV, RMII1-CRS_DV, TXD4	Τ4	Bidirectional
PA1, MII1-RXD0, RMII1-RXD0, BRGO4	U1	Bidirectional
PA0, MII1-RXD1, RMII1-RXD1, TOUT4	U3	Bidirectional
PB31, <u>SPISEL,</u> MII1-TXCLK, RMII1-REFCLK	V3	Bidirectional (Optional: open-drain)
PB30, SPICLK	P18	Bidirectional (Optional: open-drain)
PB29, SPIMOSI	T19	Bidirectional (Optional: open-drain)
PB28, SPIMISO, BRGO4	V19	Bidirectional (Optional: open-drain)
PB27, I2CSDA, BRGO1	U19	Bidirectional (Optional: open-drain)
PB26, I2CSCL, BRGO2	R17	Bidirectional (Optional: open-drain)
PB25, RXADDR3 ¹ , TXADDR3, SMTXD1	V17	Bidirectional (Optional: open-drain)
PB24, TXADDR3 ¹ , RXADDR3, SMRXD1	U16	Bidirectional (Optional: open-drain)
PB23, TXADDR2 ¹ , RXADDR2, SDACK1, SMSYN1	W16	Bidirectional (Optional: open-drain)
PB22, TXADDR4 ¹ , RXADDR4, SDACK2, SMSYN2	V15	Bidirectional (Optional: open-drain)
PB21, SMTXD2, TXADDR1 ¹ , BRG01, RXADDR1, PHSEL[1]	U14	Bidirectional (Optional: open-drain)
PB20, SMRXD2, L1CLKOA, TXADDR0 ¹ , RXADDR0, PHSEL[0]	T13	Bidirectional (Optional: open-drain)
PB19, MII1-RXD3, RTS4	V13	Bidirectional (Optional: open-drain)
PB18, RXADDR4 ¹ , TXADDR4, RTS2, L1ST2	T12	Bidirectional (Optional: open-drain)

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, and PowerQUICC, are trademarks of Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2010 Freescale Semiconductor, Inc.

Document Number: MPC885EC Rev. 7 07/2010

