

NXP USA Inc. - KMPC885VR80 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	80MHz
Co-Processors/DSP	Communications; CPM, Security; SEC
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (3), 10/100Mbps (2)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 95°C (TA)
Security Features	Cryptography
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc885vr80

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- 1.8-V core and 3.3-V I/O operation
- The MPC885/MPC880 comes in a 357-pin ball grid array (PBGA) package

The MPC885 block diagram is shown in Figure 1.

Figure 1. MPC885 Block Diagram

Characteristic	Symbol	Min	Мах	Unit
Output high voltage, $I_{OH} = -2.0$ mA, except XTAL and open-drain pins	V _{OH}	2.4	—	V
	V _{OL}	_	0.5	V

Table 6. DC Electrical Specifications (continued)

¹ The difference between V_{DDL} and V_{DDSYN} cannot be more than 100 mV.

² The signals PA[0:15], PB[14:31], PC[4:15], PD[3:15], PE(14:31), TDI, TDO, TCK, TRST, TMS, MII1_TXEN, MII_MDIO are 5-V tolerant. The minimum voltage is still 2.0 V.

 3 V_{IL}(max) for the I²C interface is 0.8 V rather than the 1.5 V as specified in the I²C standard.

⁴ Input capacitance is periodically sampled.

⁵ A(0:31), TSIZ0/REG, TSIZ1, D(0:31), IRQ(2:4), IRQ6, RD/WR, BURST, IP_B(3:7), PA(0:11), PA13, PA15, PB(14:31),

PC(4:15), PD(3:15), PE(14:31), MII1_CRS, MII_MDIO, MII1_TXEN, and MII1_COL.

⁶ BDIP/GPL_B(5), BR, BG, FRZ/IRQ6, CS(0:7), WE(0:3), BS_A(0:3), GPL_A0/GPL_B0, OE/GPL_A1/GPL_B1, GPL_A(2:3)/GPL_B(2:3)/CS(2:3), UPWAITA/GPL_A4, UPWAITB/GPL_B4, GPL_A5, ALE_A, CE1_A, CE2_A, OP(0:3), and BADDR(28:30).

7 Thermal Calculation and Measurement

For the following discussions, $P_D = (V_{DDL} \times I_{DDL}) + PI/O$, where PI/O is the power dissipation of the I/O drivers.

NOTE

The V_{DDSYN} power dissipation is negligible.

7.1 Estimation with Junction-to-Ambient Thermal Resistance

An estimation of the chip junction temperature, T_J, in °C can be obtained from the following equation:

$$T_{J} = T_{A} + (R_{\theta JA} \times P_{D})$$

where:

 T_A = ambient temperature (°C)

 $R_{\theta IA}$ = package junction-to-ambient thermal resistance (°C/W)

 P_D = power dissipation in package

The junction-to-ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. However, the answer is only an estimate; test cases have demonstrated that errors of a factor of two (in the quantity $T_J - T_A$) are possible.

Thermal Calculation and Measurement

If the board temperature is known, an estimate of the junction temperature in the environment can be made using the following equation:

$$T_{J} = T_{B} + (R_{\theta JB} \times P_{D})$$

where:

 $R_{\theta JB}$ = junction-to-board thermal resistance (°C/W)

 T_{B} = board temperature (°C)

 P_D = power dissipation in package

If the board temperature is known and the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made. For this method to work, the board and board mounting must be similar to the test board used to determine the junction-to-board thermal resistance, namely a 2s2p (board with a power and a ground plane) and vias attaching the thermal balls to the ground plane.

7.4 Estimation Using Simulation

When the board temperature is not known, a thermal simulation of the application is needed. The simple two resistor model can be used with the thermal simulation of the application [2], or a more accurate and complex model of the package can be used in the thermal simulation.

7.5 Experimental Determination

To determine the junction temperature of the device in the application after prototypes are available, the thermal characterization parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using the following equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

 Ψ_{JT} = thermal characterization parameter

 T_T = thermocouple temperature on top of package

 P_D = power dissipation in package

The thermal characterization parameter is measured per the JESD51-2 specification published by JEDEC using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by the cooling effects of the thermocouple wire.

Part Frequency	66 I	MHz	80 MHz		
Fait Frequency		Max	Min	Max	
Core frequency	40	66.67	40	80	
Bus frequency	40	66.67	40	80	

Table 7. Frequency Ranges for Standard Part Frequencies (1:1 Bus Mode)

Table 8. Frequency Ranges for Standard Part Frequencies (2:1 Bus Mode)

Port Fraguenov	66 I	66 MHz		MHz	133 MHz		
Faithequency	Min	Мах	Min	Мах	Min	Мах	
Core frequency	40	66.67	40	80	40	133	
Bus frequency	20	33.33	20	40	20	66	

Table 9 provides the timings for the MPC885/MPC880 at 33-, 40-, 66-, and 80-MHz bus operation.

The timing for the MPC885/MPC880 bus shown assumes a 50-pF load for maximum delays and a 0-pF load for minimum delays. CLKOUT assumes a 100-pF load for maximum delays and a 50-pF load for minimum delays.

Num	Characteristic	33 I	33 MHz		40 MHz		MHz	80 MHz		Unit
Nulli	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
B1	Bus period (CLKOUT), see Table 7		_					_		ns
B1a	EXTCLK to CLKOUT phase skew - If CLKOUT is an integer multiple of EXTCLK, then the rising edge of EXTCLK is aligned with the rising edge of CLKOUT. For a non-integer multiple of EXTCLK, this synchronization is lost, and the rising edges of EXTCLK and CLKOUT have a continuously varying phase skew.	-2	+2	-2	+2	-2	+2	-2	+2	ns
B1b	CLKOUT frequency jitter peak-to-peak	_	1	_	1	_	1	—	1	ns
B1c	Frequency jitter on EXTCLK	_	0.50	_	0.50	—	0.50	—	0.50	%
B1d	CLKOUT phase jitter peak-to-peak for OSCLK \geq 15 MHz	—	4	—	4	_	4	_	4	ns
	CLKOUT phase jitter peak-to-peak for OSCLK < 15 MHz	—	5	—	5	—	5	—	5	ns
B2	CLKOUT pulse width low (MIN = $0.4 \times B1$, MAX = $0.6 \times B1$)	12.1	18.2	10.0	15.0	6.1	9.1	5.0	7.5	ns
B3	CLKOUT pulse width high (MIN = $0.4 \times B1$, MAX = $0.6 \times B1$)	12.1	18.2	10.0	15.0	6.1	9.1	5.0	7.5	ns
B4	CLKOUT rise time		4.00		4.00		4.00	_	4.00	ns

Table 9. Bus Operation Timings

Figure 12 provides the timing for the input data controlled by the UPM for data beats where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)

Figure 12. Input Data Timing when Controlled by UPM in the Memory Controller and DLT3 = 1

Figure 13 through Figure 16 provide the timing for the external bus read controlled by various GPCM factors.

Figure 16. External Bus Read Timing (GPCM Controlled—TRLX = 1, ACS = 10, ACS = 11)

Bus Signal Timing

Figure 18. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 1)

Figure 20 provides the timing for the external bus controlled by the UPM.

Figure 20. External Bus Timing (UPM-Controlled Signals)

Table 14 shows the reset timing for the MPC885/MPC880.

Table 14. Reset Timing

Num	Characteristic	33	33 MHz		40 MHz		ИНz	80 MHz		Unit
Num			Max	Min	Max	Min	Max	Min	Max	Unit
R69	CLKOUT to $\overline{\text{HRESET}}$ high impedance (MAX = 0.00 × B1 + 20.00)	—	20.00	—	20.00	—	20.00	—	20.00	ns
R70	CLKOUT to $\overline{\text{SRESET}}$ high impedance (MAX = 0.00 × B1 + 20.00)	—	20.00	—	20.00	_	20.00	—	20.00	ns
R71	RSTCONF pulse width (MIN = 17.00 × B1)	515.20	_	425.00	_	257.60	_	212.50	_	ns
R72	_	—	_	—	_	_	_	—	_	—
R73	Configuration data to HRESET rising edge setup time (MIN = 15.00 × B1 + 50.00)	504.50	_	425.00	—	277.30	_	237.50	_	ns
R74	Configuration data to $\overrightarrow{\text{RSTCONF}}$ rising edge setup time (MIN = 0.00 × B1 + 350.00)	350.00	_	350.00	—	350.00	_	350.00	_	ns
R75	$\frac{\text{Configuration data hold time after}}{\text{RSTCONF}}$ negation (MIN = 0.00 × B1 + 0.00)	0.00	_	0.00	—	0.00	_	0.00	_	ns
R76	$\frac{\text{Configuration data hold time after}}{\text{HRESET negation}}$ (MIN = 0.00 × B1 + 0.00)	0.00	_	0.00	—	0.00	_	0.00	_	ns
R77	HRESET and RSTCONF asserted to data out drive (MAX = 0.00 × B1 + 25.00)	—	25.00	—	25.00	—	25.00	—	25.00	ns
R78	$\frac{\text{RSTCONF}}{\text{RSTCONF}} \text{ negated to data out high}$ impedance (MAX = 0.00 × B1 + 25.00)	—	25.00	—	25.00	_	25.00	—	25.00	ns
R79	CLKOUT of last rising edge before chip three-states $\overrightarrow{\text{HRESET}}$ to data out high impedance (MAX = 0.00 × B1 + 25.00)	_	25.00	_	25.00	_	25.00	_	25.00	ns
R80	DSDI, DSCK setup (MIN = 3.00 × B1)	90.90		75.00		45.50		37.50		ns
R81	DSDI, DSCK hold time (MIN = 0.00 × B1 + 0.00)	0.00	—	0.00	—	0.00	—	0.00	—	ns
R82	$\begin{tabular}{l} \hline $$ \overline{SRESET} negated to CLKOUT rising \\ edge for DSDI and DSCK sample \\ (MIN = 8.00 \times B1) \end{tabular}$	242.40	_	200.00	_	121.20		100.00	_	ns

IEEE 1149.1 Electrical Specifications

11 IEEE 1149.1 Electrical Specifications

Table 15 provides the JTAG timings for the MPC885/MPC880 shown in Figure 38 through Figure 41.

Table 15. JTAG Timing

Num	Characteristic	All Freq	uencies	Unit
Nulli	Characteristic		Max	Unit
J82	TCK cycle time	100.00	_	ns
J83	TCK clock pulse width measured at 1.5 V	40.00	_	ns
J84	TCK rise and fall times	0.00	10.00	ns
J85	TMS, TDI data setup time	5.00	_	ns
J86	TMS, TDI data hold time	25.00	_	ns
J87	TCK low to TDO data valid	—	27.00	ns
J88	TCK low to TDO data invalid	0.00	_	ns
J89	TCK low to TDO high impedance	—	20.00	ns
J90	TRST assert time	100.00	_	ns
J91	TRST setup time to TCK low	40.00	_	ns
J92	TCK falling edge to output valid	—	50.00	ns
J93	TCK falling edge to output valid out of high impedance	—	50.00	ns
J94	TCK falling edge to output high impedance	—	50.00	ns
J95	Boundary scan input valid to TCK rising edge	50.00	_	ns
J96	TCK rising edge to boundary scan input invalid	50.00		ns

Figure 38. JTAG Test Clock Input Timing

Figure 59 through Figure 61 show the NMSI timings.

12.11 SPI Slave AC Electrical Specifications

Table 27 provides the SPI slave timings as shown in Figure 68 and Figure 69.

Table 27. SPI Slave Timing

Num	Charactariatia	All Freq	uencies	Unit
Nulli	Characteristic	Min	Мах	Onit
170	Slave cycle time	2	—	t _{cyc}
171	Slave enable lead time	15	—	ns
172	Slave enable lag time	15	—	ns
173	Slave clock (SPICLK) high or low time	1	—	t _{cyc}
174	Slave sequential transfer delay (does not require deselect)	1	—	t _{cyc}
175	Slave data setup time (inputs)	20	—	ns
176	Slave data hold time (inputs)	20	—	ns
177	Slave access time	—	50	ns

Figure 69. SPI Slave (CP = 1) Timing Diagram

12.12 I²C AC Electrical Specifications

Table 28 provides the I^2C (SCL < 100 kHz) timings.

Table 28. I^2C Timing (SCL < 100 kHz)

Num	Characteristic	All Freq	uencies	Unit
Num		Min	Мах	Unit
200	SCL clock frequency (slave)	0	100	kHz
200	SCL clock frequency (master) ¹	1.5	100	kHz
202	Bus free time between transmissions	4.7	—	μs
203	Low period of SCL	4.7	—	μs
204	High period of SCL	4.0	—	μs
205	Start condition setup time	4.7	_	μs
206	Start condition hold time	4.0	_	μs
207	Data hold time	0	_	μs
208	Data setup time	250	_	ns
209	SDL/SCL rise time		1	μs

Num	Characteristic	All Freq	uencies	Unit
Num		Min	Мах	Onic
210	SDL/SCL fall time	_	300	ns
211	Stop condition setup time	4.7	_	μs

Table 28. I²C Timing (SCL < 100 kHz) (continued)

SCL frequency is given by SCL = BRGCLK_frequency/((BRG register + 3) × pre_scaler × 2). The ratio SyncClk/(BRGCLK/pre_scaler) must be greater or equal to 4/1.

Table 29 provides the I^2C (SCL > 100 kHz) timings.

Table 29.	l ² C	Timing	(SCL >	> 100	kHz)
-----------	------------------	--------	--------	-------	------

Num	Characteristic	Evanosian	All Frequ	llait	
NUIT	Characteristic	Expression	Min	Мах	Unit
200	SCL clock frequency (slave)	fSCL	0	BRGCLK/48	Hz
200	SCL clock frequency (master) ¹	fSCL	BRGCLK/16512	BRGCLK/48	Hz
202	Bus free time between transmissions	—	1/(2.2 × fSCL)	—	S
203	Low period of SCL	—	1/(2.2 × fSCL)	—	S
204	High period of SCL	—	1/(2.2 × fSCL)	—	S
205	Start condition setup time	—	1/(2.2 × fSCL)	—	S
206	Start condition hold time	—	1/(2.2 × fSCL)	—	S
207	Data hold time	—	0	—	S
208	Data setup time	—	1/(40 × fSCL)	—	S
209	SDL/SCL rise time	—	—	1/(10 × fSCL)	S
210	SDL/SCL fall time	—	—	$1/(33 \times \text{fSCL})$	s
211	Stop condition setup time	—	$1/2(2.2 \times \text{fSCL})$	—	S

SCL frequency is given by SCL = BrgClk_frequency/((BRG register + 3) × pre_scaler × 2). The ratio SyncClk/(Brg_Clk/pre_scaler) must be greater or equal to 4/1.

Figure 70 shows the I^2C bus timing.

13 UTOPIA AC Electrical Specifications

Table 30, Table 31, and Table 32, show the AC electrical specifications for the UTOPIA interface.

Table 30. UTO	PIA Master	(Muxed Mode)	Electrical	Specifications
---------------	------------	--------------	------------	----------------

Num	Signal Characteristic	Direction	Min	Max	Unit
U1	UtpClk rise/fall time (internal clock option)	Output		4	ns
	Duty cycle		50	50	%
	Frequency			33	MHz
U2	UTPB, SOC, RxEnb, TxEnb, RxAddr, and TxAddr active delay (PHREQ and PHSEL active delay in multi-PHY mode)	Output	2	16	ns
U3	UTPB, SOC, Rxclav, and Txclav setup time	Input	4		ns
U4	UTPB, SOC, Rxclav, and Txclav hold time	Input	1		ns

Table 31. UTOPIA Master (Split Bus Mode) Electrical Specifications

Num	Signal Characteristic	Direction	Min	Max	Unit
U1	UtpClk rise/fall time (Internal clock option)	Output		4	ns
	Duty cycle		50	50	%
	Frequency			33	MHz
U2	UTPB, SOC, RxEnb, TxEnb, RxAddr, and TxAddr active delay (PHREQ and PHSEL active delay in multi-PHY mode)	Output	2	16	ns
U3	UTPB_Aux, SOC_Aux, Rxclav, and Txclav setup time	Input	4		ns
U4	UTPB_Aux, SOC_Aux, Rxclav, and Txclav hold time	Input	1		ns

Table 32. UTOPIA Slave (Split Bus Mode) Electrical Specifications

Num	Signal Characteristic	Direction	Min	Мах	Unit
U1	UtpClk rise/fall time (external clock option)	Input		4	ns
	Duty cycle		40	60	%
	Frequency			33	MHz
U2	UTPB, SOC, Rxclav, and Txclav active delay	Output	2	16	ns
U3	UTPB_AUX, SOC_Aux, RxEnb, TxEnb, RxAddr, and TxAddr setup time	Input	4		ns
U4	UTPB_AUX, SOC_Aux, RxEnb, TxEnb, RxAddr, and TxAddr hold time	Input	1		ns

Figure 74 shows the MII transmit signal timing diagram.

Figure 74. MII Transmit Signal Timing Diagram

15.3 MII Async Inputs Signal Timing (MII_CRS, MII_COL)

Table 36 provides information on the MII async inputs signal timing.

Table 36. MII Async Inputs Signal Timing

Num	Characteristic	Min	Max	Unit
M9	MII_CRS, MII_COL minimum pulse width	1.5	_	MII_TX_CLK period

Figure 75 shows the MII asynchronous inputs signal timing diagram.

15.4 MII Serial Management Channel Timing (MII_MDIO, MII_MDC)

Table 37 provides information on the MII serial management channel signal timing. The FEC functions correctly with a maximum MDC frequency in excess of 2.5 MHz.

Table 37. MII Serial Management Channel	el Timing
---	-----------

Num	Characteristic	Min	Мах	Unit
M10	MII_MDC falling edge to MII_MDIO output invalid (minimum propagation delay)	0		ns
M11	MII_MDC falling edge to MII_MDIO output valid (max prop delay)		25	ns
M12	MII_MDIO (input) to MII_MDC rising edge setup	10	_	ns
M13	MII_MDIO (input) to MII_MDC rising edge hold	0	_	ns

Num	Characteristic	Min	Max	Unit
M14	MII_MDC pulse width high	40%	60%	MII_MDC period
M15	MII_MDC pulse width low	40%	60%	MII_MDC period

Table 37. MII Serial Management Char	nnel Timing (continued)
--------------------------------------	-------------------------

Figure 76 shows the MII serial management channel timing diagram.

Figure 76. MII Serial Management Channel Timing Diagram

Mechanical Data and Ordering Information

16.1 Pin Assignments

Figure 77 shows the top-view pinout of the PBGA package. For additional information, see the *MPC885 PowerQUICCTM Family Reference Manual*.

	C TRST	O PA10	О РВ23	O PA8	O PC8	O PA5	O PB17	O PA13	O PC4	O PA11	O PE17	O PE30	O PE15	O PD6	O PD4	O PD7	O PA3		w
O PB28	О тмs	O PB25	O PC11	O PB22	O PA7	О РВ19	O PC7	O PB16	O PC13	O PE21	O PE24	O PE14	O PD5	O PE28	O PE27	O PB31	O PE23	O PE22	v
O PB27	О РВ14	() тск	О РВ24	O PC10	O PB21	O PA6		O PC6	O PB15	O PE31	O PD15	O PD14	O PD13	O PD12	O PA4	O PA0	O PD9	O PA1	U
O PB29	O PC12	O TDO		O PA9	O PC9	О РВ20	O PB18		O PC5	O PD3	O PE29	O PE16	O PE19		0 N PA2	O PE25	O PD10	O PE26	т
O PC15	O PC14	О РВ26	O GND		0	0		0	0		0	0	VDDL	VDDH	O PE20	O PD8	O PD11	O PE18	R
	О РВ30	O PA14	O PA12		0	O GND	0		0		0		0	0				O D8	Ρ
() A2	() A1	O N/C	O PA15	0	0	\bigcirc	\bigcirc	\bigcirc	GND	\bigcirc	0	\bigcirc	0			() D12	0 D13	() D4	Ν
() A3	() A5	() A4	() A0		0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		0	D17) D23	0 D27	() D1	М
() A7	() A9	() A8	() A6	0		O GND	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		0		O D9) D10	O D11	() D2	L
○ A10	() A11	() A12	() A13		0	0	\bigcirc	\bigcirc	GND	\bigcirc	0	\bigcirc	O VDDH	0	0 D5	O D14	О) D15	к
O A14	() A16	() A15	() A17	0	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0		O D22	() D19	O D16	() D18	J
∩ A27	() A19	() A20	() A24		0	GND	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	0	0	0 D28	O D6	O D20	() D21	н
O A21	() A29	() A23				0	\bigcirc	\bigcirc	GND	\bigcirc	0	\bigcirc	GND		CLKOUT	() D26	O D24	() D25	G
() A25	() A30	() A22	O BSA3	0	0	0	\bigcirc	\bigcirc		0	0	\bigcirc	\bigcirc	0) D31	0 D7	() D29	F
	() A28			\bigcirc		0	0		0		0	0	0					O D30	E
O A26	O A31	BSA0		\bigcirc	\bigcirc		O BI												D
BSA2	BSA1					GPL A5							OP1	BADDR2					С
																			В
			000																A
19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	

NOTE: This is the top view of the device.

Figure 77. Pinout of the PBGA Package

Table 39. Pin Assignments (continued)

Name	Pin Number	Туре
PA4, CTS4, MII1-TXD1, RMII1-TXD1	U4	Bidirectional
PA3, MII1-RXER, RMII1-RXER, BRGO3	W2	Bidirectional
PA2, MII1-RXDV, RMII1-CRS_DV, TXD4	Τ4	Bidirectional
PA1, MII1-RXD0, RMII1-RXD0, BRGO4	U1	Bidirectional
PA0, MII1-RXD1, RMII1-RXD1, TOUT4	U3	Bidirectional
PB31, <u>SPISEL,</u> MII1-TXCLK, RMII1-REFCLK	V3	Bidirectional (Optional: open-drain)
PB30, SPICLK	P18	Bidirectional (Optional: open-drain)
PB29, SPIMOSI	T19	Bidirectional (Optional: open-drain)
PB28, SPIMISO, BRGO4	V19	Bidirectional (Optional: open-drain)
PB27, I2CSDA, BRGO1	U19	Bidirectional (Optional: open-drain)
PB26, I2CSCL, BRGO2	R17	Bidirectional (Optional: open-drain)
PB25, RXADDR3 ¹ , TXADDR3, SMTXD1	V17	Bidirectional (Optional: open-drain)
PB24, TXADDR3 ¹ , RXADDR3, SMRXD1	U16	Bidirectional (Optional: open-drain)
PB23, TXADDR2 ¹ , RXADDR2, SDACK1, SMSYN1	W16	Bidirectional (Optional: open-drain)
PB22, TXADDR4 ¹ , RXADDR4, SDACK2, SMSYN2	V15	Bidirectional (Optional: open-drain)
PB21, SMTXD2, TXADDR1 ¹ , BRG01, RXADDR1, PHSEL[1]	U14	Bidirectional (Optional: open-drain)
PB20, SMRXD2, L1CLKOA, TXADDR0 ¹ , RXADDR0, PHSEL[0]	T13	Bidirectional (Optional: open-drain)
PB19, MII1-RXD3, RTS4	V13	Bidirectional (Optional: open-drain)
PB18, RXADDR4 ¹ , TXADDR4, RTS2, L1ST2	T12	Bidirectional (Optional: open-drain)

Mechanical Data and Ordering Information

16.2 Mechanical Dimensions of the PBGA Package

Figure 78 shows the mechanical dimensions of the PBGA package.

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETERS.

2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.

3. MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.

4. DATUM A, THE SEATING PLANE, IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.

Figure 78. Mechanical Dimensions and Bottom Surface Nomenclature of the PBGA Package