

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

E·XFI

Product Status	Active
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	133MHz
Co-Processors/DSP	Communications; CPM
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (2), 10/100Mbps (2)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 95°C (TA)
Security Features	Cryptography
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mpc880zp133

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Overview

The MPC885/MPC880 is a versatile single-chip integrated microprocessor and peripheral combination that can be used in a variety of controller applications and communications and networking systems. The MPC885/MPC880 provides enhanced ATM functionality, an additional fast Ethernet controller, a USB, and an encryption block.

Table 1 shows the functionality supported by MPC885/MPC880.

Part	Cache (Kbytes)	Ethernet		500	SMC	USB	ATM Support	Security
Tart	I Cache	D Cache	10BaseT	10/100	300	51110	000		Engine
MPC885	8	8	Up to 3	2	3	2	1	Serial ATM and UTOPIA interface	Yes
MPC880	8	8	Up to 2	2	2	2	1	Serial ATM and UTOPIA interface	No

Table 1. MPC885 Family

2 Features

The MPC885/MPC880 is comprised of three modules that each use the 32-bit internal bus: a MPC8xx core, a system integration unit (SIU), and a communications processor module (CPM).

The following list summarizes the key MPC885/MPC880 features:

- Embedded MPC8xx core up to 133 MHz
- Maximum frequency operation of the external bus is 80 MHz (in 1:1 mode)
 - The 133-MHz core frequency supports 2:1 mode only.
 - The 66-/80-MHz core frequencies support both the 1:1 and 2:1 modes.
- Single-issue, 32-bit core (compatible with the Power Architecture definition) with thirty-two 32-bit general-purpose registers (GPRs)
 - The core performs branch prediction with conditional prefetch and without conditional execution.
 - 8-Kbyte data cache and 8-Kbyte instruction cache (see Table 1)
 - Instruction cache is two-way, set-associative with 256 sets in 2 blocks
 - Data cache is two-way, set-associative with 256 sets
 - Cache coherency for both instruction and data caches is maintained on 128-bit (4-word) cache blocks.
 - Caches are physically addressed, implement a least recently used (LRU) replacement algorithm, and are lockable on a cache block basis.
 - MMUs with 32-entry TLB, fully associative instruction and data TLBs
 - MMUs support multiple page sizes of 4, 16, and 512 Kbytes, and 8 Mbytes; 16 virtual address spaces and 16 protection groups
 - Advanced on-chip emulation debug mode

Maximum Tolerated Ratings

3 Maximum Tolerated Ratings

This section provides the maximum tolerated voltage and temperature ranges for the MPC885/MPC880. Table 2 displays the maximum tolerated ratings, and Table 3 displays the operating temperatures.

Rating	Symbol	Value	Unit
Supply voltage ¹	V _{DDH}	-0.3 to 4.0	V
	V _{DDL}	-0.3 to 2.0	V
	VDDSYN	-0.3 to 2.0	V
	Difference between V_{DDL} and V_{DDSYN}	<100	mV
Input voltage ²	V _{in}	GND – 0.3 to V _{DDH}	V
Storage temperature range	T _{stg}	-55 to +150	°C

Table 2. Maximum Tolerated Ratings

 $^{1}\,$ The power supply of the device must start its ramp from 0.0 V.

² Functional operating conditions are provided with the DC electrical specifications in Table 6. Absolute maximum ratings are stress ratings only; functional operation at the maxima is not guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage to the device. See Section 8, "Power Supply and Power Sequencing." Caution: All inputs that tolerate 5 V cannot be more than 2.5 V greater than V_{DDH}. This restriction applies to power up and normal operation (that is, if the MPC885/MPC880 is unpowered, a voltage greater than 2.5 V must not be applied to its inputs).

Figure 3 shows the undershoot and overshoot voltages at the interfaces of the MPC885/MPC880.

1. t_{interface} refers to the clock period associated with the bus clock interface.

Figure 3. Undershoot/Overshoot Voltage for $\rm V_{DDH}$ and $\rm V_{DDL}$

Thermal Characteristics

Rating	Symbol	Value	Unit
Temperature ¹ (standard)	T _{A(min)}	0	°C
	T _{J(max)}	95	°C
Temperature (extended)	T _{A(min)}	-40	°C
	T _{J(max)}	100	°C

Table 3.	Operating	Temperatures
----------	-----------	--------------

Minimum temperatures are guaranteed as ambient temperature, T_A . Maximum temperatures are guaranteed as junction temperature, $T_{,l}$.

This device contains circuitry protecting against damage due to high-static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for example, either GND or V_{DD}).

4 Thermal Characteristics

Table 4 shows the thermal characteristics for the MPC885/MPC880.

Rating	Enviro	Symbol	Value	Unit	
Junction-to-ambient ¹	Natural convection Single-layer board (1s)		$R_{\theta JA}^2$	37	°C/W
		Four-layer board (2s2p)		25	
	Airflow (200 ft/min)	low (200 ft/min) Single-layer board (1s)			
		Four-layer board (2s2p)	$R_{\thetaJMA}{}^3$	22	
Junction-to-board ⁴	—	—	$R_{\theta J B}$	17	
Junction-to-case ⁵	—	—	$R_{ extsf{ heta}JC}$	10	
Junction-to-package top ⁶	Natural convection	—	Ψ_{JT}	2	
	Airflow (200 ft/min)	—	Ψ_{JT}	2	

Table 4. MPC885/MPC880 Thermal Resistance Data

Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal resistance.

- ² Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.
- ³ Per JEDEC JESD51-6 with the board horizontal.
- ⁴ Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.
- ⁵ Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature. For exposed pad packages where the pad would be expected to be soldered, junction-to-case thermal resistance is a simulated value from the junction to the exposed pad without contact resistance.
- ⁶ Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2.

1

News	Characteristic		MHz	40	MHz	66 MHz		80 MHz		11
NUM	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
B16b	$\overline{\text{BB}}, \overline{\text{BG}}, \overline{\text{BR}}, \text{ valid to CLKOUT (setup time)}^2$ (4MIN = 0.00 × B1 + 0.00)	4.00	_	4.00	_	4.00	_	4.00	_	ns
B17	CLKOUT to \overline{TA} , \overline{TEA} , \overline{BI} , \overline{BB} , \overline{BG} , \overline{BR} valid (hold time) (MIN = $0.00 \times B1 + 1.00^3$)	1.00	_	1.00	_	2.00	_	2.00	_	ns
B17a	CLKOUT to $\overline{\text{KR}}$, $\overline{\text{RETRY}}$, $\overline{\text{CR}}$ valid (hold time) (MIN = 0.00 × B1 + 2.00)	2.00	—	2.00	—	2.00	—	2.00	—	ns
B18	D(0:31) valid to CLKOUT rising edge (setup time) ⁴ (MIN = $0.00 \times B1 + 6.00$)	6.00	—	6.00	—	6.00	—	6.00	—	ns
B19	CLKOUT rising edge to D(0:31) valid (hold time) ⁴ (MIN = $0.00 \times B1 + 1.00^5$)	1.00	—	1.00	—	2.00	—	2.00	—	ns
B20	D(0:31) valid to CLKOUT falling edge (setup time) ⁶ (MIN = $0.00 \times B1 + 4.00$)	4.00	—	4.00	—	4.00	—	4.00	—	ns
B21	CLKOUT falling edge to D(0:31) valid (hold time) ⁶ (MIN = $0.00 \times B1 + 2.00$)	2.00	—	2.00	—	2.00	—	2.00	—	ns
B22	CLKOUT rising edge to \overline{CS} asserted GPCM ACS = 00 (MAX = 0.25 × B1 + 6.3)	7.60	13.80	6.30	12.50	3.80	10.00	3.13	9.43	ns
B22a	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 10, TRLX = [0 or 1] (MAX = 0.00 × B1 + 8.00)	_	8.00	_	8.00	_	8.00	_	8.00	ns
B22b	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 11, TRLX = [0 or 1], EBDF = 0 (MAX = $0.25 \times B1 + 6.3$)	7.60	13.80	6.30	12.50	3.80	10.00	3.13	9.43	ns
B22c	CLKOUT falling edge to \overline{CS} asserted GPCM ACS = 11, TRLX = [0 or 1], EBDF = 1 (MAX = 0.375 × B1 + 6.6)	10.90	18.00	10.90	16.00	5.20	12.30	4.69	10.93	ns
B23	CLKOUT rising edge to \overline{CS} negated GPCM read access, GPCM write access ACS = 00 and CSNT = 0 (MAX = 0.00 × B1 + 8.00)	2.00	8.00	2.00	8.00	2.00	8.00	2.00	8.00	ns
B24	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 10, TRLX = 0 (MIN = $0.25 \times B1 - 2.00$)	5.60		4.30		1.80		1.13		ns
B24a	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 11 TRLX = 0 (MIN = 0.50 × B1 - 2.00)	13.20		10.50		5.60		4.25		ns
B25	CLKOUT rising edge to \overline{OE} , \overline{WE} (0:3) asserted (MAX = 0.00 × B1 + 9.00)	—	9.00	_	9.00	_	9.00	_	9.00	ns
B26	CLKOUT rising edge to \overline{OE} negated (MAX = 0.00 × B1 + 9.00)	2.00	9.00	2.00	9.00	2.00	9.00	2.00	9.00	ns
B27	A(0:31) and BADDR(28:30) to \overline{CS} asserted GPCM ACS = 10, TRLX = 1 (MIN = 1.25 × B1 - 2.00)	35.90		29.30		16.90		13.60		ns

Table 9. Bus Operation Timings (continued)

Num	Characteristic	33	MHz	40 MHz		66 MHz		80 MHz		Unit
Nulli	Characteristic		Max	Min	Max	Min	Max	Min	Max	Unit
B36	A(0:31), BADDR(28:30), and D(0:31) to $\overline{\text{GPL}}$ valid, as requested by control bit GxT4 in the corresponding word in the UPM (MIN = 0.25 × B1 - 2.00)	5.60	—	4.30	_	1.80	_	1.13	_	ns
B37	UPWAIT valid to CLKOUT falling edge ⁹ (MIN = $0.00 \times B1 + 6.00$)	6.00	—	6.00	_	6.00	—	6.00	_	ns
B38	CLKOUT falling edge to UPWAIT valid 9 (MIN = 0.00 × B1 + 1.00)	1.00	—	1.00	_	1.00	—	1.00	_	ns
B39	$\overline{\text{AS}}$ valid to CLKOUT rising edge ¹⁰ (MIN = 0.00 × B1 + 7.00)	7.00	—	7.00	_	7.00	—	7.00	_	ns
B40	A(0:31), TSIZ(0:1), RD/ \overline{WR} , \overline{BURST} , valid to CLKOUT rising edge (MIN = $0.00 \times B1 + 7.00$)	7.00	—	7.00	_	7.00	—	7.00	_	ns
B41	$\overline{\text{TS}}$ valid to CLKOUT rising edge (setup time) (MIN = 0.00 × B1 + 7.00)	7.00	—	7.00	-	7.00	_	7.00	-	ns
B42	CLKOUT rising edge to $\overline{\text{TS}}$ valid (hold time) (MIN = 0.00 × B1 + 2.00)	2.00	—	2.00	_	2.00	_	2.00	_	ns
B43	$\overline{\text{AS}}$ negation to memory controller signals negation (MAX = TBD)	_	TBD	_	TBD	_	TBD	_	TBD	ns

Table 9. Bus Operation Timings (continued)

¹ For part speeds above 50 MHz, use 9.80 ns for B11a.

² The timing required for BR input is relevant when the MPC885/MPC880 is selected to work with the internal bus arbiter. The timing for BG input is relevant when the MPC885/MPC880 is selected to work with the external bus arbiter.

³ For part speeds above 50 MHz, use 2 ns for B17.

⁴ The D(0:31) input timings B18 and B19 refer to the rising edge of the CLKOUT in which the TA input signal is asserted.

⁵ For part speeds above 50 MHz, use 2 ns for B19.

⁶ The D(0:31) input timings B20 and B21 refer to the falling edge of the CLKOUT. This timing is valid only for read accesses controlled by chip-selects under control of the user-programmable machine (UPM) in the memory controller, for data beats where DLT3 = 1 in the RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)

⁷ This formula applies to bus operation up to 50 MHz.

⁸ The timing B30 refers to \overline{CS} when ACS = 00 and to \overline{CS} and $\overline{WE}(0:3)$ when CSNT = 0.

⁹ The signal UPWAIT is considered asynchronous to the CLKOUT and synchronized internally. The timings specified in B37 and B38 are specified to enable the freeze of the UPM output signals as described in Figure 21.

¹⁰ The AS signal is considered asynchronous to the CLKOUT. The timing B39 is specified in order to allow the behavior specified in Figure 24.

Figure 12 provides the timing for the input data controlled by the UPM for data beats where DLT3 = 1 in the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)

Figure 12. Input Data Timing when Controlled by UPM in the Memory Controller and DLT3 = 1

Figure 13 through Figure 16 provide the timing for the external bus read controlled by various GPCM factors.

Bus Signal Timing

Bus Signal Timing

Figure 19. External Bus Write Timing (GPCM Controlled—TRLX = 1, CSNT = 1)

Figure 29 provides the PCMCIA access cycle timing for the external bus write.

Figure 29. PCMCIA Access Cycles Timing External Bus Write

Figure 30 provides the PCMCIA \overline{WAIT} signals detection timing.

Table 14 shows the reset timing for the MPC885/MPC880.

Table 14. Reset Timing

Num	Characteristic	33	MHz	40 1	MHz	66 I	ИНz	80 MHz		Unit
Num	Characteristic	Min	Max	Min	Max	Min	in Max Min I		Max	Unit
R69	CLKOUT to $\overline{\text{HRESET}}$ high impedance (MAX = 0.00 × B1 + 20.00)	—	20.00	—	20.00	—	20.00	—	20.00	ns
R70	CLKOUT to $\overline{\text{SRESET}}$ high impedance (MAX = 0.00 × B1 + 20.00)	—	20.00	—	20.00	_	20.00	—	20.00	ns
R71	RSTCONF pulse width (MIN = 17.00 × B1)	515.20	_	425.00	_	257.60	_	212.50	_	ns
R72	_	—	_	—	_	_	_	—	_	—
R73	Configuration data to HRESET rising edge setup time (MIN = 15.00 × B1 + 50.00)	504.50	_	425.00	—	277.30	_	237.50	_	ns
R74	Configuration data to $\overrightarrow{\text{RSTCONF}}$ rising edge setup time (MIN = 0.00 × B1 + 350.00)	350.00	_	350.00	—	350.00	_	350.00	—	ns
R75	$\frac{\text{Configuration data hold time after}}{\text{RSTCONF}}$ negation (MIN = 0.00 × B1 + 0.00)	0.00	_	0.00	—	0.00	_	0.00	_	ns
R76	$\frac{\text{Configuration data hold time after}}{\text{HRESET negation}}$ (MIN = 0.00 × B1 + 0.00)	0.00	_	0.00	_	0.00	_	0.00	_	ns
R77	HRESET and RSTCONF asserted to data out drive (MAX = 0.00 × B1 + 25.00)	—	25.00	—	25.00	—	25.00	—	25.00	ns
R78	$\frac{\text{RSTCONF}}{\text{RSTCONF}} \text{ negated to data out high}$ impedance (MAX = 0.00 × B1 + 25.00)	—	25.00	—	25.00	_	25.00	—	25.00	ns
R79	CLKOUT of last rising edge before chip three-states $\overrightarrow{\text{HRESET}}$ to data out high impedance (MAX = 0.00 × B1 + 25.00)	_	25.00	_	25.00	_	25.00	_	25.00	ns
R80	DSDI, DSCK setup (MIN = 3.00 × B1)	90.90		75.00		45.50		37.50		ns
R81	DSDI, DSCK hold time (MIN = 0.00 × B1 + 0.00)	0.00	_	0.00	—	0.00	—	0.00	—	ns
R82	$\begin{tabular}{l} \hline $$ \overline{SRESET} negated to CLKOUT rising \\ edge for DSDI and DSCK sample \\ (MIN = 8.00 \times B1) \end{tabular}$	242.40	_	200.00	_	121.20		100.00	_	ns

Figure 59 through Figure 61 show the NMSI timings.

Figure 65. SMC Transparent Timing Diagram

12.10 SPI Master AC Electrical Specifications

Table 26 provides the SPI master timings as shown in Figure 66 and Figure 67.

Table 26. SPI Master	r Timing
----------------------	----------

Num	Charactoristic	All Freq	Unit	
Nulli	Cildiacteristic	Min	Мах	Onit
160	MASTER cycle time	4	1024	t _{cyc}
161	MASTER clock (SCK) high or low time	2	512	t _{cyc}
162	MASTER data setup time (inputs)	15	—	ns
163	Master data hold time (inputs)	0	—	ns
164	Master data valid (after SCK edge)	—	10	ns
165	Master data hold time (outputs)	0	_	ns
166	Rise time output	—	15	ns
167	Fall time output	—	15	ns

Num	Characteristic	All Freq	uencies	Unit	
Num	Characteristic	Min	Мах	- Crint	
210	SDL/SCL fall time	_	300	ns	
211	Stop condition setup time	4.7	_	μs	

Table 28. I²C Timing (SCL < 100 kHz) (continued)

SCL frequency is given by SCL = BRGCLK_frequency/((BRG register + 3) × pre_scaler × 2). The ratio SyncClk/(BRGCLK/pre_scaler) must be greater or equal to 4/1.

Table 29 provides the I^2C (SCL > 100 kHz) timings.

Table 29.	l ² C	Timing	(SCL >	> 100	kHz)
-----------	------------------	--------	--------	-------	------

Num	Characteristic	Evanosian	All Frequ	llait		
NUIT	Characteristic	Expression	Min	Мах	Unit	
200	SCL clock frequency (slave)	fSCL	0	BRGCLK/48	Hz	
200	SCL clock frequency (master) ¹	fSCL	BRGCLK/16512	BRGCLK/48	Hz	
202	Bus free time between transmissions	—	1/(2.2 × fSCL)	—	S	
203	Low period of SCL	—	1/(2.2 × fSCL)	—	S	
204	High period of SCL	—	1/(2.2 × fSCL)	—	S	
205	Start condition setup time	—	1/(2.2 × fSCL)	—	S	
206	Start condition hold time	—	1/(2.2 × fSCL)	—	S	
207	Data hold time	—	0	—	S	
208	Data setup time	—	1/(40 × fSCL)	—	S	
209	SDL/SCL rise time	—	—	1/(10 × fSCL)	S	
210	SDL/SCL fall time	—	—	$1/(33 \times \text{fSCL})$	s	
211	Stop condition setup time	—	$1/2(2.2 \times \text{fSCL})$	—	S	

SCL frequency is given by SCL = BrgClk_frequency/((BRG register + 3) × pre_scaler × 2). The ratio SyncClk/(Brg_Clk/pre_scaler) must be greater or equal to 4/1.

Figure 70 shows the I^2C bus timing.

14 USB Electrical Characteristics

This section provides the AC timings for the USB interface.

14.1 USB Interface AC Timing Specifications

The USB Port uses the transmit clock on SCC1. Table 33 lists the USB interface timings.

Table 33. USB Interface AC Timing Specifications

Name	Characteristic	All Frequencies		Unit
		Min	Max	
US1	USBCLK frequency of operation ¹ Low speed 6 Full speed 48		6 8	MHz MHz
US4	USBCLK duty cycle (measured at 1.5 V)	45	55	%

¹ USBCLK accuracy should be ±500 ppm or better. USBCLK may be stopped to conserve power.

15 FEC Electrical Characteristics

This section provides the AC electrical specifications for the fast Ethernet controller (FEC). Note that the timing specifications for the MII signals are independent of system clock frequency (part speed designation). Also, MII signals use TTL signal levels compatible with devices operating at either 5.0 or 3.3 V.

15.1 MII and Reduced MII Receive Signal Timing

The receiver functions correctly up to a MII_RX_CLK maximum frequency of 25 MHz + 1%. The reduced MII (RMII) receiver functions correctly up to a RMII_REFCLK maximum frequency of 50 MHz + 1%. There is no minimum frequency requirement. In addition, the processor clock frequency must exceed the MII_RX_CLK frequency – 1%.

Table 34 provides information on the MII and RMII receive signal timing.

Num	Characteristic	Min	Max	Unit
M1	MII_RXD[3:0], MII_RX_DV, MII_RX_ERR to MII_RX_CLK setup	5	_	ns
M2	MII_RX_CLK to MII_RXD[3:0], MII_RX_DV, MII_RX_ER hold	5	_	ns
M3	MII_RX_CLK pulse width high	35%	65%	MII_RX_CLK period
M4	MII_RX_CLK pulse width low	35%	65%	MII_RX_CLK period
M1_RMII	RMII_RXD[1:0], RMII_CRS_DV, RMII_RX_ERR to RMII_REFCLK setup	4	_	ns
M2_RMII	RMII_REFCLK to RMII_RXD[1:0], RMII_CRS_DV, RMII_RX_ERR hold	2		ns

Table 34. MII Receive Signal Timing

Table 39 contains a list of the MPC885 input and output signals and shows multiplexing and pin assignments.

Name	Pin Number	Туре
A[0:31]	M16, N18, N19, M19, M17, M18, L16, L19, L17, L18, K19, K18, K17, K16, J19, J17, J18, J16, E19, H18, H17, G19, F17, G17, H16, F19, D19, H19, E18, G18, F18, D18	Bidirectional Three-state
D[0:31]	P2, M1, L1, K2, N1, K4, H3, F2, P1, L4, L3, L2, N3, N2, K3, K1, J2, M4, J1, J3, H2, H1, J4, M3, G2, G1, G3, M2, H4, F1, E1, F3	Bidirectional Three-state
TSIZ0, REG	G16	Bidirectional Three-state
TSIZ1	E17	Bidirectional Three-state
RD/WR	D13	Bidirectional Three-state
BURST	C10	Bidirectional Three-state
BDIP, GPL_B5	A13	Output
TS	A12	Bidirectional Active pull-up
TA	C12	Bidirectional Active pull-up
TEA	B12	Open-drain
BI	D12	Bidirectional Active pull-up
IRQ2, RSV	B10	Bidirectional Three-state
ÎRQ4, KR, RETRY, SPKROUT	C7	Bidirectional Three-state
CR, IRQ3	A11	Input
BR	D11	Bidirectional
BG	C11	Bidirectional
BB	B11	Bidirectional Active pull-up
FRZ, IRQ6	D10	Bidirectional
IRQ0	N4	Input
IRQ1	P3	Input
IRQ7	P4	Input
CS[0:5]	B14, C14, A15, D14, C16, A16	Output
CS6, CE1_B	D15	Output
CS7, CE2_B	B16	Output

Table 39. Pin Assignments

Table 39. Pin Assignments (continued)

Name	Pin Number	Туре
ALE_B, DSCK/AT1	D8	Bidirectional Three-state
IP_B[0:1], IWP[0:1], VFLS[0:1]	A9, D9	Bidirectional
IP_B2, IOIS16_B, AT2	C8	Bidirectional Three-state
IP_B3, IWP2, VF2	C9	Bidirectional
IP_B4, LWP0, VF0	B9	Bidirectional
IP_B5, LWP1, VF1	A10	Bidirectional
IP_B6, DSDI, AT0	A8	Bidirectional Three-state
IP_B7, PTR, AT3	B8	Bidirectional Three-state
OP0, UtpClk_Split ¹	B6	Bidirectional
OP1	C6	Output
OP2, MODCK1, STS	D6	Bidirectional
OP3, MODCK2, DSDO	A6	Bidirectional
BADDR30, REG	A7	Output
BADDR[28:29]	C5, B5	Output
AS	D7	Input
PA15, USBRXD	N16	Bidirectional
PA14, USBOE	P17	Bidirectional (Optional: open-drain)
PA13, RXD2	W11	Bidirectional
PA12, TXD2	P16	Bidirectional (Optional: open-drain)
PA11, RXD4, MII1-TXD0, RMII1-TXD0	W9	Bidirectional (Optional: open-drain)
PA10, MII1-TXER, TIN4, CLK7	W17	Bidirectional (Optional: open-drain)
PA9, L1TXDA, RXD3	T15	Bidirectional (Optional: open-drain)
PA8, L1RXDA, TXD3	W15	Bidirectional (Optional: open-drain)
PA7, CLK1, L1RCLKA, BRGO1, TIN1	V14	Bidirectional
PA6, CLK2, TOUT1	U13	Bidirectional
PA5, CLK3, L1TCLKA, BRGO2, TIN2	W13	Bidirectional

Table 39. Pin Assignments (continued)

Name	Pin Number	Туре
PA4, CTS4, MII1-TXD1, RMII1-TXD1	U4	Bidirectional
PA3, MII1-RXER, RMII1-RXER, BRGO3	W2	Bidirectional
PA2, MII1-RXDV, RMII1-CRS_DV, TXD4	Τ4	Bidirectional
PA1, MII1-RXD0, RMII1-RXD0, BRGO4	U1	Bidirectional
PA0, MII1-RXD1, RMII1-RXD1, TOUT4	U3	Bidirectional
PB31, <u>SPISEL,</u> MII1-TXCLK, RMII1-REFCLK	V3	Bidirectional (Optional: open-drain)
PB30, SPICLK	P18	Bidirectional (Optional: open-drain)
PB29, SPIMOSI	T19	Bidirectional (Optional: open-drain)
PB28, SPIMISO, BRGO4	V19	Bidirectional (Optional: open-drain)
PB27, I2CSDA, BRGO1	U19	Bidirectional (Optional: open-drain)
PB26, I2CSCL, BRGO2	R17	Bidirectional (Optional: open-drain)
PB25, RXADDR3 ¹ , TXADDR3, SMTXD1	V17	Bidirectional (Optional: open-drain)
PB24, TXADDR3 ¹ , RXADDR3, SMRXD1	U16	Bidirectional (Optional: open-drain)
PB23, TXADDR2 ¹ , RXADDR2, SDACK1, SMSYN1	W16	Bidirectional (Optional: open-drain)
PB22, TXADDR4 ¹ , RXADDR4, SDACK2, SMSYN2	V15	Bidirectional (Optional: open-drain)
PB21, SMTXD2, TXADDR1 ¹ , BRG01, RXADDR1, PHSEL[1]	U14	Bidirectional (Optional: open-drain)
PB20, SMRXD2, L1CLKOA, TXADDR0 ¹ , RXADDR0, PHSEL[0]	T13	Bidirectional (Optional: open-drain)
PB19, MII1-RXD3, RTS4	V13	Bidirectional (Optional: open-drain)
PB18, RXADDR4 ¹ , TXADDR4, RTS2, L1ST2	T12	Bidirectional (Optional: open-drain)

Table 39. Pin Assignments (continued)

Name	Pin Number	Туре
PD5, CLK8, L1TCLKB, UTPB6	V6	Bidirectional
PD4, CLK4, UTPB7	W4	Bidirectional
PD3, CLK7, TIN4, SOC	Т9	Bidirectional
PE31, CLK8, L1TCLKB, MII1-RXCLK	U9	Bidirectional (Optional: open-drain)
PE30, L1RXDB, MII1-RXD2	W7	Bidirectional (Optional: open-drain)
PE29, MII2-CRS	Т8	Bidirectional (Optional: open-drain)
PE28, TOUT3, MII2-COL	V5	Bidirectional (Optional: open-drain)
PE27, RTS3, L1RQB, MII2-RXER, RMII2-RXER	V4	Bidirectional (Optional: open-drain)
PE26, L1CLKOB, MII2-RXDV, RMII2-CRS_DV	T1	Bidirectional (Optional: open-drain)
PE25, RXD4, MII2-RXD3, L1ST2	Т3	Bidirectional (Optional: open-drain)
PE24, SMRXD1, BRGO1, MII2-RXD2	V8	Bidirectional (Optional: open-drain)
PE23, <u>SMSYN2</u> , TXD4, MII2-RXCLK, L1ST1	V2	Bidirectional (Optional: open-drain)
PE22, TOUT2, MII2-RXD1, RMII2-RXD1, SDACK1	V1	Bidirectional (Optional: open-drain)
PE21, SMRXD2, TOUT1, MII2-RXD0, RMII2-RXD0, RTS3	V9	Bidirectional (Optional: open-drain)
PE20, L1RSYNCA, SMTXD2, CTS3, MII2-TXER	R4	Bidirectional (Optional: open-drain)
PE19, L1TXDB, MII2-TXEN, RMII2-TXEN	Т6	Bidirectional (Optional: open-drain)
PE18, L1TSYNCA, SMTXD1, MII2-TXD3	R1	Bidirectional (Optional: open-drain)
PE17, TIN3, CLK5, BRGO3, SMSYN1, MII2-TXD2	W8	Bidirectional (Optional: open-drain)
PE16, L1RCLKB, CLK6, TXD3, MII2-TXCLK, RMII2-REFCLK	Τ7	Bidirectional (Optional: open-drain)
PE15, TGATE1, MII2-TXD1, RMII2-TXD1	W6	Bidirectional