

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	MPC8xx
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	133MHz
Co-Processors/DSP	Communications; CPM, Security; SEC
RAM Controllers	DRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	10Mbps (3), 10/100Mbps (2)
SATA	-
USB	USB 2.0 (1)
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 100°C (TA)
Security Features	Cryptography
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc885cvr133

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Provides enhanced ATM functionality found on the MPC862 and MPC866 families and includes the following:
 - Improved operation, administration and maintenance (OAM) support
 - OAM performance monitoring (PM) support
 - Multiple APC priority levels available to support a range of traffic pace requirements
 - Port-to-port switching capability without the need for RAM-based microcode
 - Simultaneous MII (100BaseT) and UTOPIA (half- or full -duplex) capability
 - Optional statistical cell counters per PHY
 - UTOPIA L2-compliant interface with added FIFO buffering to reduce the total cell transmission time and multi-PHY support. (The earlier UTOPIA L1 specification is also supported.)
 - Parameter RAM for both SPI and I²C can be relocated without RAM-based microcode
 - Supports full-duplex UTOPIA master (ATM side) and slave (PHY side) operations using a split bus
 - AAL2/VBR functionality is ROM-resident
 - Up to 32-bit data bus (dynamic bus sizing for 8, 16, and 32 bits)
 - Thirty-two address lines
 - Memory controller (eight banks)
 - Contains complete dynamic RAM (DRAM) controller
 - Each bank can be a chip select or \overline{RAS} to support a DRAM bank
 - Up to 30 wait states programmable per memory bank
 - Glueless interface to DRAM, SIMMS, SRAM, EPROMs, Flash EPROMs, and other memory devices
 - DRAM controller programmable to support most size and speed memory interfaces
 - Four \overline{CAS} lines, four \overline{WE} lines, and one \overline{OE} line
 - Boot chip-select available at reset (options for 8-, 16-, or 32-bit memory)
 - Variable block sizes (32 Kbytes–256 Mbytes)
 - Selectable write protection
 - On-chip bus arbitration logic
 - General-purpose timers
 - Four 16-bit timers or two 32-bit timers
 - Gate mode can enable/disable counting.
 - Interrupt can be masked on reference match and event capture
 - Two fast Ethernet controllers (FEC)—Two 10/100 Mbps Ethernet/IEEE Std. 802.3™ CDMA/CS that interface through MII and/or RMII interfaces
 - System integration unit (SIU)
 - Bus monitor
 - Software watchdog

Features

- Flexible data buffers with multiple buffers per frame
- Automatic retransmission upon transmit error
- The USB host controller has the following features:
 - Supports control, bulk, interrupt, and isochronous data transfers
 - CRC16 generation and checking
 - NRZI encoding/decoding with bit stuffing
 - Supports both 12- and 1.5-Mbps data rates (automatic generation of preamble token and data rate configuration). Note that low-speed operation requires an external hub.
 - Flexible data buffers with multiple buffers per frame
 - Supports local loop back mode for diagnostics (12 Mbps only)
- Serial peripheral interface (SPI)
 - Supports master and slave modes
 - Supports multiple-master operation on the same bus
- Inter-integrated circuit (I²C) port
 - Supports master and slave modes
 - Supports a multiple-master environment
- Time-slot assigner (TSA)
 - Allows SCCs and SMCs to run in multiplexed and/or non-multiplexed operation
 - Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user defined
 - 1- or 8-bit resolution
 - Allows independent transmit and receive routing, frame synchronization, and clocking
 - Allows dynamic changes
 - Can be internally connected to four serial channels (two SCCs and two SMCs)
- Parallel interface port (PIP)
 - Centronics interface support
 - Supports fast connection between compatible ports on MPC885/MPC880 and other MPC8xx devices
- PCMCIA interface
 - Master (socket) interface, release 2.1-compliant
 - Supports two independent PCMCIA sockets
 - 8 memory or I/O windows supported
- Debug interface
 - Eight comparators: four operate on instruction address, two operate on data address, and two
 operate on data
 - Supports conditions: $= \neq < >$
 - Each watchpoint can generate a break point internally.
- Normal high and normal low power modes to conserve power

- 1.8-V core and 3.3-V I/O operation
- The MPC885/MPC880 comes in a 357-pin ball grid array (PBGA) package

The MPC885 block diagram is shown in Figure 1.

Figure 1. MPC885 Block Diagram

7.6 References

Semiconductor Equipment and Materials International(415) 964-5111 805 East Middlefield Rd Mountain View, CA 94043

MIL-SPEC and EIA/JESD (JEDEC) specifications800-854-7179 or (Available from Global Engineering Documents)303-397-7956

JEDEC Specifications http://www.jedec.org

- 1. C.E. Triplett and B. Joiner, "An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module," Proceedings of SemiTherm, San Diego, 1998, pp. 47–54.
- 2. B. Joiner and V. Adams, "Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling," Proceedings of SemiTherm, San Diego, 1999, pp. 212–220.

8 Power Supply and Power Sequencing

This section provides design considerations for the MPC885/MPC880 power supply. The MPC885/MPC880 has a core voltage (V_{DDL}) and PLL voltage (V_{DDSYN}), which both operate at a lower voltage than the I/O voltage V_{DDH} . The I/O section of the MPC885/MPC880 is supplied with 3.3 V across V_{DDH} and V_{SS} (GND).

The signals PA[0:15], PB[14:31], PC[4:15], PD[3:15], TDI, TDO, TCK, TRST_B, TMS, MII_TXEN, and MII_MDIO are 5 V tolerant. All inputs cannot be more than 2.5 V greater than V_{DDH}. In addition, 5-V tolerant pins cannot exceed 5.5 V and remaining input pins cannot exceed 3.465 V. This restriction applies to power up/down and normal operation.

One consequence of multiple power supplies is that when power is initially applied the voltage rails ramp up at different rates. The rates depend on the nature of the power supply, the type of load on each power supply, and the manner in which different voltages are derived. The following restrictions apply:

- V_{DDL} must not exceed V_{DDH} during power up and power down.
- V_{DDL} must not exceed 1.9 V, and V_{DDH} must not exceed 3.465 V.

These cautions are necessary for the long-term reliability of the part. If they are violated, the electrostatic discharge (ESD) protection diodes are forward-biased, and excessive current can flow through these diodes. If the system power supply design does not control the voltage sequencing, the circuit shown Figure 5 can be added to meet these requirements. The MUR420 Schottky diodes control the maximum potential difference between the external bus and core power supplies on power up, and the 1N5820 diodes regulate the maximum potential difference on power down.

Bus Signal Timing

Figure 19. External Bus Write Timing (GPCM Controlled—TRLX = 1, CSNT = 1)

Figure 20 provides the timing for the external bus controlled by the UPM.

Figure 20. External Bus Timing (UPM-Controlled Signals)

Bus Signal Timing

Figure 21 provides the timing for the asynchronous asserted UPWAIT signal controlled by the UPM.

Figure 21. Asynchronous UPWAIT Asserted Detection in UPM-Handled Cycles Timing

Figure 22 provides the timing for the asynchronous negated UPWAIT signal controlled by the UPM.

Figure 22. Asynchronous UPWAIT Negated Detection in UPM-Handled Cycles Timing

Bus Signal Timing

Figure 28 provides the PCMCIA access cycle timing for the external bus read.

Figure 28. PCMCIA Access Cycles Timing External Bus Read

Table 13 shows the debug port timing for the MPC885/MPC880.

Table 13. Debug Port Timing

Num	Characteristic	All Frequer	Unit	
Nulli	Characteristic	Min	Мах	Onit
D61	DSCK cycle time	3 × T _{CLOCKOUT}	_	_
D62	DSCK clock pulse width	$1.25 \times T_{CLOCKOUT}$	-	_
D63	DSCK rise and fall times	0.00	3.00	ns
D64	DSDI input data setup time	8.00	-	ns
D65	DSDI data hold time	5.00	-	ns
D66	DSCK low to DSDO data valid	0.00	15.00	ns
D67	DSCK low to DSDO invalid	0.00	2.00	ns

Figure 33 provides the input timing for the debug port clock.

Figure 33. Debug Port Clock Input Timing

Figure 34 provides the timing for the debug port.

Table 14 shows the reset timing for the MPC885/MPC880.

Table 14. Reset Timing

Num	Characteristic	33 MHz		40 MHz		66 MHz		80 MHz		Unit
Num	Characteristic	Min	Max	Min	Max	Min	Max	Min	Max	Unit
R69	CLKOUT to $\overline{\text{HRESET}}$ high impedance (MAX = 0.00 × B1 + 20.00)	—	20.00	—	20.00	—	20.00	—	20.00	ns
R70	CLKOUT to $\overline{\text{SRESET}}$ high impedance (MAX = 0.00 × B1 + 20.00)	—	20.00	—	20.00	_	20.00	—	20.00	ns
R71	RSTCONF pulse width (MIN = 17.00 × B1)	515.20	_	425.00	_	257.60	_	212.50	_	ns
R72	_	—	_	—	_	_	_	—	_	—
R73	Configuration data to HRESET rising edge setup time (MIN = 15.00 × B1 + 50.00)	504.50	_	425.00	—	277.30	_	237.50	_	ns
R74	Configuration data to $\overrightarrow{\text{RSTCONF}}$ rising edge setup time (MIN = 0.00 × B1 + 350.00)	350.00	_	350.00	—	350.00	_	350.00	—	ns
R75	$\frac{\text{Configuration data hold time after}}{\text{RSTCONF}}$ negation (MIN = 0.00 × B1 + 0.00)	0.00	_	0.00	—	0.00	_	0.00	_	ns
R76	$\frac{\text{Configuration data hold time after}}{\text{HRESET negation}}$ (MIN = 0.00 × B1 + 0.00)	0.00	_	0.00	—	0.00	_	0.00	_	ns
R77	HRESET and RSTCONF asserted to data out drive (MAX = 0.00 × B1 + 25.00)	—	25.00	—	25.00	—	25.00	—	25.00	ns
R78	$\frac{\text{RSTCONF}}{\text{RSTCONF}} \text{ negated to data out high}$ impedance (MAX = 0.00 × B1 + 25.00)	—	25.00	—	25.00	_	25.00	—	25.00	ns
R79	CLKOUT of last rising edge before chip three-states $\overrightarrow{\text{HRESET}}$ to data out high impedance (MAX = 0.00 × B1 + 25.00)	_	25.00	_	25.00	_	25.00	_	25.00	ns
R80	DSDI, DSCK setup (MIN = 3.00 × B1)	90.90		75.00		45.50		37.50		ns
R81	DSDI, DSCK hold time (MIN = 0.00 × B1 + 0.00)	0.00	—	0.00	—	0.00	_	0.00	—	ns
R82	$\begin{tabular}{l} \hline $$ \overline{SRESET} negated to CLKOUT rising \\ edge for DSDI and DSCK sample \\ (MIN = 8.00 \times B1) \end{tabular}$	242.40	_	200.00	_	121.20		100.00	_	ns

CPM Electrical Characteristics

CPM Electrical Characteristics

Figure 57. SI Transmit Timing with Double Speed Clocking (DSC = 1)

CPM Electrical Characteristics

Figure 59 through Figure 61 show the NMSI timings.

Figure 64. Ethernet Transmit Timing Diagram

12.9 SMC Transparent AC Electrical Specifications

Table 25 provides the SMC transparent timings as shown in Figure 65.

Table 25	. SMC	Transparent	Timing
----------	-------	-------------	--------

Num	Charactoristic	All Freq	Unit	
NUIT	Num Characteristic		Мах	Unit
150	SMCLK clock period ¹	100	—	ns
151	SMCLK width low	50	—	ns
151A	SMCLK width high	50	—	ns
152	SMCLK rise/fall time	—	15	ns
153	SMTXD active delay (from SMCLK falling edge)	10	50	ns
154	SMRXD/SMSYNC setup time	20	—	ns
155	RXD1/SMSYNC hold time	5	—	ns

¹ SyncCLK must be at least twice as fast as SMCLK.

UTOPIA AC Electrical Specifications

Figure 71. UTOPIA Receive Timing

Figure 72 shows signal timings during UTOPIA transmit operations.

Figure 72. UTOPIA Transmit Timing

Mechanical Data and Ordering Information

16.1 Pin Assignments

Figure 77 shows the top-view pinout of the PBGA package. For additional information, see the *MPC885 PowerQUICCTM Family Reference Manual*.

	C TRST	O PA10	О РВ23	O PA8	O PC8	O PA5	O PB17	O PA13	O PC4	O PA11	O PE17	O PE30	O PE15	O PD6	O PD4	O PD7	O PA3		w
O PB28	О тмs	O PB25	O PC11	O PB22	O PA7	О РВ19	O PC7	O PB16	O PC13	O PE21	O PE24	O PE14	O PD5	O PE28	O PE27	O PB31	O PE23	O PE22	v
O PB27	О РВ14	() тск	О РВ24	O PC10	O PB21	O PA6		O PC6	O PB15	O PE31	O PD15	O PD14	O PD13	O PD12	O PA4	O PA0	O PD9	O PA1	U
O PB29	O PC12	O TDO		O PA9	O PC9	O PB20	O PB18		O PC5	O PD3	O PE29	O PE16	O PE19		0 N PA2	O PE25	O PD10	O PE26	т
O PC15	O PC14	О РВ26	O GND		0	0		0	0		0	0	VDDL	VDDH	O PE20	O PD8	O PD11	O PE18	R
	О РВ30	O PA14	O PA12		0	O GND	0		0		0		0	0				O D8	Ρ
() A2	() A1	O N/C	O PA15	0	0	\bigcirc	\bigcirc	\bigcirc	GND	\bigcirc	0	\bigcirc	0			() D12	0 D13	() D4	Ν
() A3	() A5	() A4	() A0		0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		0	D17) D23	0 D27	() D1	М
() A7	() A9	() A8	() A6	0		O GND	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc		0		O D9) D10	O D11	() D2	L
○ A10	() A11	() A12	() A13		0	0	\bigcirc	\bigcirc	GND	\bigcirc	0	\bigcirc	O VDDH	0	0 D5) D14	О) D15	к
O A14	() A16	() A15	() A17	0	0	0	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0		0 D22	() D19	O D16	() D18	J
∩ A27	() A19	() A20	() A24		0	GND	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	0	0	0 D28	O D6	O D20	() D21	н
O A21	() A29	() A23				0	\bigcirc	\bigcirc	GND	\bigcirc	0	\bigcirc	GND		CLKOUT	() D26	O D24	() D25	G
() A25	() A30	() A22		0	0	0	\bigcirc	\bigcirc		0	0	\bigcirc	\bigcirc	0) D31	0 D7	() D29	F
	() A28			\bigcirc		0	0		0		0	0	0					O D30	Е
O A26	O A31	BSA0		\bigcirc $\overline{CS6}$	\bigcirc		O BI												D
BSA2	BSA1					GPL A5							OP1	BADDR2					С
																			В
			000																A
19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	

NOTE: This is the top view of the device.

Figure 77. Pinout of the PBGA Package

Table 39. Pin Ass	ignments (continued)
-------------------	----------------------

Name	Pin Number	Туре
WE0, BS_B0, IORD	B18	Output
WE1, BS_B1, IOWR	E16	Output
WE2, BS_B2, PCOE	C17	Output
WE3, BS_B3, PCWE	B19	Output
BS_A[0:3]	D17, C18, C19, F16	Output
GPL_A0, GPL_B0	B17	Output
OE, GPL_A1, GPL_B1	A18	Output
<u>GPL_A</u> [2:3], <u>GPL_B</u> [2:3], <u>CS</u> [2:3]	D16, A17	Output
UPWAITA, GPL_A4	B13	Bidirectional
UPWAITB, GPL_B4	A14	Bidirectional
GPL_A5	C13	Output
PORESET	B3	Input
RSTCONF	D4	Input
HRESET	B4	Open-drain
SRESET	A3	Open-drain
XTAL	A4	Analog output
EXTAL	D5	Analog input (3.3 V only)
CLKOUT	G4	Output
EXTCLK	A5	Input (3.3 V only)
TEXP	C4	Output
ALE_A	B7	Output
CE1_A	B15	Output
CE2_A	C15	Output
WAIT_A, SOC_Split ¹	A2	Input
WAIT_B	C3	Input
IP_A0, UTPB_Split0 ¹	B1	Input
IP_A1, UTPB_Split1 ¹	C1	Input
IP_A2, IOIS16_A, UTPB_Split2 ¹	F4	Input
IP_A3, UTPB_Split3 ¹	E3	Input
IP_A4, UTPB_Split4 ¹	D2	Input
IP_A5, UTPB_Split5 ¹	D1	Input
IP_A6, UTPB_Split6 ¹	E2	Input
IP_A7, UTPB_Split7 ¹	D3	Input

Table 39. Pin Assignments (continued)

Name	Pin Number	Туре
PA4, CTS4, MII1-TXD1, RMII1-TXD1	U4	Bidirectional
PA3, MII1-RXER, RMII1-RXER, BRGO3	W2	Bidirectional
PA2, MII1-RXDV, RMII1-CRS_DV, TXD4	Τ4	Bidirectional
PA1, MII1-RXD0, RMII1-RXD0, BRGO4	U1	Bidirectional
PA0, MII1-RXD1, RMII1-RXD1, TOUT4	U3	Bidirectional
PB31, <u>SPISEL,</u> MII1-TXCLK, RMII1-REFCLK	V3	Bidirectional (Optional: open-drain)
PB30, SPICLK	P18	Bidirectional (Optional: open-drain)
PB29, SPIMOSI	T19	Bidirectional (Optional: open-drain)
PB28, SPIMISO, BRGO4	V19	Bidirectional (Optional: open-drain)
PB27, I2CSDA, BRGO1	U19	Bidirectional (Optional: open-drain)
PB26, I2CSCL, BRGO2	R17	Bidirectional (Optional: open-drain)
PB25, RXADDR3 ¹ , TXADDR3, SMTXD1	V17	Bidirectional (Optional: open-drain)
PB24, TXADDR3 ¹ , RXADDR3, SMRXD1	U16	Bidirectional (Optional: open-drain)
PB23, TXADDR2 ¹ , RXADDR2, SDACK1, SMSYN1	W16	Bidirectional (Optional: open-drain)
PB22, TXADDR4 ¹ , RXADDR4, SDACK2, SMSYN2	V15	Bidirectional (Optional: open-drain)
PB21, SMTXD2, TXADDR1 ¹ , BRG01, RXADDR1, PHSEL[1]	U14	Bidirectional (Optional: open-drain)
PB20, SMRXD2, L1CLKOA, TXADDR0 ¹ , RXADDR0, PHSEL[0]	T13	Bidirectional (Optional: open-drain)
PB19, MII1-RXD3, RTS4	V13	Bidirectional (Optional: open-drain)
PB18, RXADDR4 ¹ , TXADDR4, RTS2, L1ST2	T12	Bidirectional (Optional: open-drain)

Table 39. Pin Assignments (continued)

Name	Pin Number	Туре
PD5, CLK8, L1TCLKB, UTPB6	V6	Bidirectional
PD4, CLK4, UTPB7	W4	Bidirectional
PD3, CLK7, TIN4, SOC	Т9	Bidirectional
PE31, CLK8, L1TCLKB, MII1-RXCLK	U9	Bidirectional (Optional: open-drain)
PE30, L1RXDB, MII1-RXD2	W7	Bidirectional (Optional: open-drain)
PE29, MII2-CRS	Т8	Bidirectional (Optional: open-drain)
PE28, TOUT3, MII2-COL	V5	Bidirectional (Optional: open-drain)
PE27, RTS3, L1RQB, MII2-RXER, RMII2-RXER	V4	Bidirectional (Optional: open-drain)
PE26, L1CLKOB, MII2-RXDV, RMII2-CRS_DV	T1	Bidirectional (Optional: open-drain)
PE25, RXD4, MII2-RXD3, L1ST2	Т3	Bidirectional (Optional: open-drain)
PE24, SMRXD1, BRGO1, MII2-RXD2	V8	Bidirectional (Optional: open-drain)
PE23, <u>SMSYN2</u> , TXD4, MII2-RXCLK, L1ST1	V2	Bidirectional (Optional: open-drain)
PE22, TOUT2, MII2-RXD1, RMII2-RXD1, SDACK1	V1	Bidirectional (Optional: open-drain)
PE21, SMRXD2, TOUT1, MII2-RXD0, RMII2-RXD0, RTS3	V9	Bidirectional (Optional: open-drain)
PE20, L1RSYNCA, SMTXD2, CTS3, MII2-TXER	R4	Bidirectional (Optional: open-drain)
PE19, L1TXDB, MII2-TXEN, RMII2-TXEN	Т6	Bidirectional (Optional: open-drain)
PE18, L1TSYNCA, SMTXD1, MII2-TXD3	R1	Bidirectional (Optional: open-drain)
PE17, TIN3, CLK5, BRGO3, SMSYN1, MII2-TXD2	W8	Bidirectional (Optional: open-drain)
PE16, L1RCLKB, CLK6, TXD3, MII2-TXCLK, RMII2-REFCLK	Τ7	Bidirectional (Optional: open-drain)
PE15, TGATE1, MII2-TXD1, RMII2-TXD1	W6	Bidirectional

Mechanical Data and Ordering Information

16.2 Mechanical Dimensions of the PBGA Package

Figure 78 shows the mechanical dimensions of the PBGA package.

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETERS.

2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.

3. MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.

4. DATUM A, THE SEATING PLANE, IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.

Figure 78. Mechanical Dimensions and Bottom Surface Nomenclature of the PBGA Package